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Abstract: The adaptive control of continuous-time linear dynamic systems preceded by an 
unknown dead-zone in state space form is discussed. A lemma to simplify the error equation 
between the plant and the matching reference model is introduced which allows the development 
of a robust adaptive control scheme by involving the dead-zone inverse terms. This adaptive 
control law ensures global stability ofthe entire system and achieves the desired tracking precision 
even when the slopes of the dead-zone are unequal. Simulations performed on a typical linear 
system illustrate and clarify the validity of this approach. 

1 Introduction 

A dead-zone, which can severely limit system performance, 
is one of the most important nonsmooth nonlinearitics that 
arise in actuators such as, servo valves and DC servo motors. 
In most practical motion systems, the dead-zone parameters 
are only poorly known, and robust adaptive control techni- 
ques are required. Proportional-derivative (PD) controllers 
have been observed to result in limit cycles, Due to the 
nonanalytic nature ofthe dead-zone in actuators and the fact 
that the exact parameters (e.g. the width of the dead-zonc) 
are unknown, systems with dead-zones present a challenge 
for control design engineers. 

An immediate method for the control of the dead-zone is 
to construct an adaptive dead-zone inverse. This approach 
was pioneered by Tan and Kokotovic [ I ,  21. Continuous- 
time and discrete-time adaptive dead-zone inverses for 
linear systems were built in [ I ]  and [2], respectively. 
Simulations indicated that the tracking performance is 
significantly improved by using a dead-zone inverse. This 
works was extended in [3] and [4] and a perfect asympto- 
tical adaptive cancellation of an unknown dead-zone was 
achieved with the condition that the output of a dead-zone 
is measurable. 

Alternative methods to produce an approximate dead- 
zone inversc include trying Fuzzy logic or neural network 
prccompensators. Kim et ai. [ 5 ] ,  Jang [6] and Lewis et d. 
[7] have proposed h z z y  prccompensators in nonlinear 
industrial motion systems and Selinic and Lewis [8] 
employed neural networks to construct a dead-zone 
precompensator. Corradini and Orlando [9] separated an 
unknown dead-zone into a known part and a bounded 
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unknown part, and used direct compensation of the 
known part and a variable structure controller for the 
whole system to overcome the effect of the unknown part. 

We now extend the approach of constructing an adaptive 
dead-zone inverse in transfer function fomi by considering 
systems in a state space form. By given a matching 
condition to the reference model, an adaptive controller 
with an adaptive dead-zone inverse can be introduced. 
Benefiting from the matching condition of the reference 
model, the global convergence is guaranteed even when 
the dead-zone slopes are unequal and the output of the 
dead-zone is not measurable as needed in [ I ]  and [4], 
which may he a valuable choice for a number of practical 
problems that can he simplified in the proposed system 
Structures. 

2 Dead-zone model and its properties 

The dead-zone with input v(t) and output w(t) is shown in 
Fig. I and can be described by: 

m,(v(t) - b,) for v(t) 3 h, I ml(v(t) - b,) for v(f) 5 bi 
w(t)  = D(v(t))  = 0 forb,  < v(l) c h, ( I )  

As stated in [ l ] ,  this dead-zone model is a static simplifi- 
cation of diverse physical phenomena with negligible fast 
dynamics. Equation (I) is a good model for a hydraulic 
servo valve or a servo motor. 

The key features of the dead-zone in the control 
problems currently investigated are: 

(AI) The dead-zone output w(t) is not available for 
measurement. 
(A2) The dead-zone parameters h,, b,, in,, mI are unknown, 
but their signs are known as: b, > 0, bl c 0, m, 0,  ml > 0. 
(A3) The dead-zone parameters b,, bl, m,, ml are hounded i.e. 
there exist known constants b, mill1 h, lnjlX, b, ,"in, bl mr ,,,ill, 
nl,,,,,, nll,i,,,ml,,,,,suchtbatb,~ [b,,,i,, br,,laxl,~~~[b~,ni,l, 

"Ir m,l. mi E tnaxl, and m, E [w min, mi ,nrnl 
Assumptions (AI)  and (A2) are common in practical 

systems, such as servo motors and servo valves. If w(t) is 
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4 Adaptive controller design 

In presenting the adaptive control law, we define the state 
difference (error) between the plant and the refcrence 
model as: 

E = X ,  -X," (7) 

( 8 )  

To design the controller, we simplify the vector equation to 
a scalar error form by introducing the following lemma as 
used and proved in [IO].  

Lemma I :  Let 

By using (3) ,  (4) and ( 6 ) ,  we have 

E = A,E + B(w(I) - r - a'X,) 

X = A X  + bv a(s) = det(s1 - A )  = (s + k)R(s)  (9) 
where A is asymptotically stable with a charactcristic 
polynomial a(.?), k >  0 and (A,  h) is controllable. Then 

1. There exist h, such that 

Fig. 1 Dead-zone model 

measurable, the control of the dead-zone will be relatively 
easy. Assumption (A3) is also common for linear systems 
with dead-zones, which is reasonable in real systems. 

2 .  if x=h'X, then: (i) X E L " + X E L ~ ;  and (ii) if 
lim,,,x(f)=O, then Iim,+" X(t)=O 

Based on lemma 1, it is obviously from ( I O )  that there exist 
a /I, so that: 

3 Statement of the problem 

A dead-zone nonlinearity can be denoted as an operator 

W(t) = O(v(0) (2) 

with v(t) being the input and w ( f )  the output. The operator 
D(v(t)) has been discussed in detail in the preceding 
Section. The dynamic system in a state spacc preceded 
by the above dead-zone can he described in canonical 
form as: 

X,,(t) = A,X,(t) + B 4 f )  (3) 

The control objective is to let X,,(t) in (3) follow a reference 
signal X,,(t) defined as: 

Xm(f) =A,X,(f) +Br(t )  (4) 

in which, r(t) is a specified desired trajectory input and A,,, 
is an asymptotically stable matrix in R""" with 

det(s1 - A , )  = R,,,(r) = (s + k)R(s) k > 0 ( 5 )  

and R(s) being a Hunvitz polynomial. 
We have the following assumptions about system (3) and 

the reference modal (4): 

(A4) A , E R " ~ "  is unknown, B ER" is known, while 
(Ap,  B )  is controllable with: 

A , + B ~ = A ,  (6)  

for some unknown vector a E R " .  

Assumption (A4) confines the type of systems to he 
considered to those that represent a number of systems of 
practical interest. An example system is discussed in 
Section 5.  
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Then, a scalar error IS defined as: 

e, = hTE (12) 
Form the Laplace transform of ( X ) ,  we have: 

E(s)  = (SI - A,)- 'B(MJ(s)  - T(S)  - aX, (s ) )  

Multiply both sides with h'and applying (1 1) and (12), we 
have: 

1 
s + k  

e, (s) = -(>*(A) - ~(s) - olx,(s)) 

Thus (8) is changed to: 

e, = -kec + ( ~ ( t )  - r - a'x,) 

4.1 
In  this case, v(t)= w(/), in (13), if we let: 

A known system without a dead-zone 

v( t )  = ~ ( t )  = r + arx, 
then we have 

c; =-Xe 

because k > O ,  which implies that et:+ 0 as f i w .  
According to lemma I ,  we have E + 0,  that is to say that 
as f +  00, we have X , + X , .  

4.2 A known system with a known dead-zone 
We define the desired output of dead-zone wd(t) as: 

Wd(f) = r + arx, 
It is obvious from (l4), that this wd(t) will lead X, + X,,,. 
Therefore, the task is to find v(t) so that the output of the 
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dead-zone satisfies W ( I )  = wd(f). For this purpose, we let the 
input of the known dead-zone be 

~ . - 

which will lead w(l) = ilid(f) To demonstrate the point, we 
introduce xr. xl and N as: 

I for wd( f )  b, 

0 otherwise 

I for wd(t) 5 b, 1 0 otherwise 

xr = 

%I = 

N = [%,2 &I 
And define 

H = [Or. HI]' = [m,b,, m,b,]' 

m = [m,. nil] 

(16) 
T 

Thus the dead-zone of ( I )  can be written as: 

w(t) = D(v(t)) = Nmv(t) ~ N O  (17) 

And we can rewrite (15) as 

' 0, if Bi = Bi,,, and ye, < 0 

if [L, < 6 < kn,l 
--..e , , , or [ H i  = O,,,, and ye, ? 01 

or [Hi = Himin and ye, 5 01 
(26) 

. 0. if Oi = Oimin and ye, > 0 Substituting (15) into' (17) clearly shows w ( f ) = v v d ( f ) .  
Thus, the effect of the known dead-zone can be  completely 
compensated and the same tracking performance as the 
preceding Section will he achieved. 

- - 4.3 Unknown system with an unknown 
dead-zone 
As stated in assumption (A4), A , E R " ~ "  is unknown, 
B E R "  is known, while (AP. E )  is controllable. What we 
do not know, is the unknown vector 01 ER" in the matching 
condition (6). 

In this case, we will use an adaptive controller to control 
the unknown system with the task of compensating the 
effect of the unknown dead-zone. 

By defining the estimated value of Q as dr ,  we have the 
estimate error of 01 

(19) 
-~ O1=a-a 

Assume i)= [a,, 8,1T is the estimated valne of 8, and the 
estimate error is: 

a -  - 1  - "  
8 = 8 - 0 = [Or, 011 

= [m,b,, mIb,lr ~ [m,b,, m,b11' (20) 

Define a slope ratio as 

0. if q5i = b,,,, and qe,n,. < 0 

-ilecn<,, or [Ji = 4i,,,ax and rle,n, ? 01 (27) 
if Mimi, < 4, < 4 i , " , X l  

or [di = q$,,,in and iI&nv 5 01 

if 9; = 4imjn and q e p ,  > 0 . 0, 

And the estimated slope ratio is defined as 

we have the estimate error of the slope ratio as 

From (17), the estimated dead-zone can be expressed as: 

W(f) = "v ( t )  - N 6  

Based on the given plant and reference model as well as the 
dead-zone model subjecting to the assumptions descnhed 
above, the following control and adaptation laws are presented: 



3. The term e, instead of e, ,  is employed in the adaptive 
law, which introduces a dead-hand and gives the robust 
property of the adaptive law. It also should be noticed that 
if t is chosen too small, the linear region of function 
sat(s/c) will he too thin, which will cause a risk of exciting 
high frequency fluctuation due to the disturbance. As 
t + 0, the function sat(s/t) eventually becomes discontin- 
uous. In such a case, the controller becomes a typical 
adaptive control scheme, which may cause chattering 
phenomena. It should also be noticed that this term will 
affect the tracking precision c of the plant. 
4. In the above control law, two projection operators 
have*been used. It can he found that the projection operator 
for O has the following properties: (i) if O(O)cn, then 

@, y ) z , - ( p  -.U*)&, where A is a positive defined 
symmetric matrix. And these three properties are also 
valid for the projection operator defined of $. 

The stability of the closed-loop system described by (3), 
(4) and (22-25) is established in the following theorem. 

Theorem I :  For the plant in (3) with the dead-zone ( I )  at 
the input subject to assumptions, (AI-A4), the robust 
adaptive controller specified by (22-25) ensures that: (i) 
O(1) E Cl,; (ii) the state vectors are hounded; and (iii) the 
state vector X,(t) converges to X,,,(t) with precision E for 
Vl? Io .  

Proof: To establish global boundedness, we define a 
Lyapunov function candidate as: 

W )  6%; (ii) Ilproj(p, y)ll 5 IIYII; (iii) -@ -p*)Aproj 

Since the discontinuity at le,/ = t is of the first kind and 
since e, = O  when le,l 5 t it follows that the denvative i /  
exists for all e,, and given by: 

P(t )  = 0 when le,l 5 t (3 1) 

When IP,.~ > L, the fact c e ,  = e,e,, by applying adaptive 
law (221, we have: 

To get the above equation, the following relation is used: 

Nm m, nil 

fl'r "I 
_-  " - LY + %I 7 

= &U + + %l(l +$,I 
= 1 + N &  (33) 

By using the properties of the projection opcrators: 

(ri; - ej)'proj(i,, -ye,) 5 -(ij - ej)Tye, 

(i, - 4j)Tproj(483 -vv,,) 5 -(i, - ~ J ~ W A  

we have 

+ N 6  - k*sat( ";>) - %e, + r + & ~ x ,  

(34) 
I - T ;  - NOTe, - N 4 T e , n ,  +;a a 
1. 

By applying adaptation law (23), (24) and (25) we have: 

P(I) 5 e< (- ke, - kde, - k*sat 

= -(k + kd)e: - ( k  + $)tie, I - k*le, I 
- C O  (35) 

To reach the above result, the relation le,( = e,sat(e,/c) for 
le,l > c and k >  0, kd > 0, k* > 0 are used. 

Equations (30), (3 I )  and (32) imply that Vis a Lyapunov 
function which leads e,  and O global hounded and conver- 
gence to zero. From the definition of e, ,  we can conclude 
that ec(t) is hounded, and convergence to csat (ec(t)/c), 
which implied that, if X(0) is hounded, then X(t)  is also 
hounded for all f > 0, and tracking bounded X m ( f )  with the 
precision of c. I3 

It should be noticed that, in practical use of the proposed 
method the state variables should he available either by 
estimate or measurement. 

5 Simulation studies 

In this Section, we illustrate the above method on a 
practical linear system, a 0.54 m long flexible beam with 
total inertial 0.07 kgm', whose first-order eigen frequency 
is 69.57rad/s, damping ratio is 0.05 and the first-order 
vibration shape at the tip is -2.91. 

Consider only the rigid motion and first-order vibration. 
In this case, the four state variables can he directly 
measured. Indeed we only need to measure the speed of 
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the shaft and the vibration signal of the first natural 
frequency at the beam tip. Wc have the system model as: 

-5.0 

-7.5 

-10.0 

1 = A&, + Bw(t) 
1; = ex, 

. 

. 

where w(t) is an output of a dead-zone. In the simulation, 
the beam is actuated by a DC motor with thc parameters of 
the dead-zone being b,=2.4, bl=-2.3, nz,=ml= 1.0. 
Andtheboundsofthemarechosenasb, ,",,, =O,b,,,,=3.0, 
blmi,=-3.0, bl,,=O, m,i.=0.7, mm,=1.3. Thus bm,= 
m,,/m,,,,= 1.310.7 and Q, ,,,," =nimi,lm,=0.7/l.3. In 
practice, all these limit values can be obtained from field 
experiment. 

By applying the beam theory [ I  I ] .  we have: 

0 1  0 0 

0 0 -4840 -6.96 

0.7 

0.6 

0.5 

0.4 

E > I 0.3 
1 

0.2 

I' 1 B = 0 - 0 -  [ 0.07 0.07 

- 

- 

- 

- 

C = [ 0 . 5 4  0 -2.91 01 

p-5.0 

-7.5 

This system is controllable and observable. We consider 
the close-loop pole placement system as the stable 
reference model. The poles and the zeros of the original 
system are poles = [-3.48 + 69.481', -3.48 - 69.48, 0, O]' ,  
zcros=[-21.90,22.61]', whilethcgainis -75.43. Wcwant 
to put the poles at [-2, -20, -25 + 401, -25 - 4Oi], which 
generate the reference system and corresponding N as 

r o  I 0 0 1  

- 

-18.4 -10.5 783.2 -27.3 
0 0 0 I 

L-36.8 -21 -3273.6 -61.51 

a = [ - 1 . 2 8  -0.74 54.83 -1.911' 

I1 
0.1 1 

-0.1 ' 
0 2 4 6 8 10 12 14 18 18 20 

iime,. s 

Fig. 2 
"mplrls 

Trucking CT~OI'  behveen the plant ond r+w!cc model 
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10.0 

5.0 

-12.5 

-15.0 
0 2 4 6 8 10 12 14 18 18 20 

time t .  s 

Fig. 3 Cfintrol input " f a  system with a dead-zone 

Thisimpliesthatin(5),k=2,R(s)=s3+70sZ+3225s+44 
500. Bascd on thc construction ofthe vectorh in the proofof 
lemma 1 in [IO], we have 

h = [0.65 0.05 3.94 0.021' 

In  the adaptive control law (22)-(29, we take k d =  15, 
k*=1.8,andchoosey=10.0,  q=O.O5,i .=0.1,~=0.05.  

Choosing the specific input signal as dt) = 5.5sin(2.5t) 
which is rather small signal compared with the dead-zone 
parameters mentioned above. That is the dead-zone is vital 
to the plant. 

For the initial values of bCo=0, blo=O, mfl= 1.0, 
m , o - l . O ,  XpO-[l.O 0.2 0 l]7Xnl0=[O 0 0 O] and a 
sample rate of 0,005, the simulation results are shown in 
Figs. 2-5. 

Fig. 2 shows the tracking error between the plant and the 
reference model and Fig 3 shows the input control signal 
"(1) to the motor, while the desired dead-zone output w, ( I )  is 
shown in Fig. 4. We see from Fig. 2 that the proposed 
adaptive controller clearly results in a good tracking 
performance. 

We should mention that it is desirable to compare the 
control inputs with and without the dead-zone. This can be 
done by comparing Fig. 3 with Fig. 5. It can be easily seen 
that the input signals are quite different during crossing 
zeros due to the existence of the dead-zone. It  should also 

2.5 5'0 I 
-2.5 1 

-10.0 

-1 2.5 

, -  -15.0 I ' ' ' ' ' ' 
0 2 4 6 8 10 12 14 16 18 20 

time t. s 

Fig. 4 O~rtprrr signal w(Q of the dead-zone 
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