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Real-Time Implementation of Regressor-Based 
Sliding Mode Control Algorithm for Robotic 

Manipulators 
Chun-Yi Su. Tin-Pui Leung, and Yury Stepanenko 

Abstract-A regressor-based variable structure control scheme 
has been developed for the trajectory control of robot manipula- 
tors in the presence of disturbances, parameter variations, and 
unmodeled dynamics. The method is based on the regressor 
structure given by Slotine and Li, 131, without parameter adap- 
tation. This avoids the requirement of persistency of excitation, 
and the convergence of the overall transient is exponential. The 
method is robust against a class of state-dependent uncertain- 
ties, which may result, for example, from unmodeled dynamics. 
The problem of chattering is solved by the smoothing control 
law. It is shown that the closed-loop system is globally ultimately 
bounded with respect to a set around the origin, which can be 
made arbitrarily small. To illustrate the feasibility of this con- 
troller, it was implemented using a Motorola M68000 micropro- 
cessor on a two-link revolute joint manipulator subjected to a 
variable payload. Experimental results confirm the validity of 
accurate tracking capability and the robust performance. 

I. INTRODUCTION 
E development of a modern industrial manipulator 

torque disturbances, parameter variations, and unmod- 
eled dynamics. Adaptive control of robot manipulators, as 
an approach to the solution of the trajectory tracking 
problem in the presence of uncertainties, has attracted 
intense research interest, and a full review is given in [ll. 
Adaptive controllers [2]-[5] are based on the linear pa- 
rameterization approach, resulting in better performance. 
However, in these controllers the convergence of the 
parameter estimation is based on the condition of persis- 
tent excitation, and even with persistency of excitation, 
the transients may not be uniform, and the convergence 
of the tracking errors to zero may be very slow 161. 

Variable structure control, as an alternative for the 
robust approach [7], has been applied to the trajectory 
control of robot manipulators [8]-[211, and is receiving 

T” calls for robustness with regard to variable payloads, 
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increasing attention. It differs from adaptive control in 
that the bounds of uncertainties must be known and no 
learning mechanism is used. It also has the advantage of a 
prescribed transient response in the sliding mode. 

The early works on sliding mode control for the trajec- 
tory tracking of manipulators [8]-[11] are based on the 
bounds of the unknown parameters and uncertainties. 
The discontinuous control laws, which make each sliding 
surface attractive in order to guarantee the asymptotic 
stability of their intersection, are constructed respectively. 
Corresponding controller gains are defined by a set of 
fairly complicated algebraic inequalities. A sliding mode 
controller which avoids the inversion of the estimate of 
the inertia matrix were introduced in [14]. More recent 
works in this field [13], [151, [18], [20], which take into 
consideration the important properties of the robot dy- 
namics, result in control laws that ensure the stability of 
the intersection of the surfaces without necessarily stabi- 
lizing each individual one. Other controllers were also 
developed by using a special Lyapunov function 1121 or 
linearizable methods [171, [21]. 

Inspired by the regressor structure presented by Slotine 
and Li [31, [4], a regressor-based algorithm, based on 
variable structure control, is proposed in this paper. This 
algorithm uses Slotine’s controller structure; however, 
there is no parameter adaptation. This provides advan- 
tages that make it particularly suitable for multiple ma- 
nipulator control. First it does not need persistency of 
excitation; second, the convergence of the overall tran- 
sient is exponential; and, finally, it is robust against uncer- 
tainties in the model. Compared with the sliding mode 
methods found in the literature, the main advantage of 
the algorithm is that the explicit requirements for guaran- 
teeing stability are easily known, and the switching gain 
can explicitly be determined in terms of parameter var- 
iations rather than in matrix bounds. The proposed 
algorithm is also implemented on a two-revolute joint 
manipulator power by PWM transistor converter-fed dc 
servomotors. 

The arrangement of this article is as follows: in Section 
I1 the robot dynamics and structure properties are re- 
viewed. The adaptive control scheme given by Slotine and 
Li is briefly reviewed in Section 111. Section IV presents 
the new control algorithm, and robustness, with respect to 
unmodeled dynamics, is analyzed. A smoothed control law 
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is also suggested in this section to overcome the problem 
of chattering. Finally, the real-time experiments and re- 
sults, in the presence of such uncertainty as handling a 
varying payload, are discussed in Section V. 

11. MANIPULATOR DYNAMIC MODEL 
A manipulator is defined as an open kinematic chain of 

rigid links. Each degree-of-freedom of the manipulator is 
powered by independent torques. Using the Lagrangian 
formulation, the equations of motion of an n-degree-of- 
freedom manipulator can be written as 

D ( q M  + B(q, 4)4  + G(q)  = U (1) 

where q E R" is the generalized coordinate (joint posi- 
tions); D ( q )  E R"'" is the symmetric, bounded, positive 
definite inertia matrix; vector B ( q ,  q>q E R" presents the 
centripetal and Coriolis torques; G(q) E R" is the vector 
of gravitational torques, which is a bounded C' function; 
and U E R" is the vector of applied joint torques. The 
robot model (1) is characterized by the following struc- 
tural properties, which are of central importance to the 
stability analysis. 

Property I :  There exists a vector a E R" with compo- 
nents depending on manipulator parameters (masses, mo- 
ments of inertia, etc.), such that 

D(q)U + B ( q , 4 ) u  + G(q)  = W q ,  4 ,  U, + ) a  (2) 

where @ E R"'" is called the regressor [21, [31, and 
u( t )  E R" is a vector of smooth functions. 

This property means that the dynamic equation can be 
linearized with respect to a specially selected set of ma- 
nipulator parameters, thus constituting the basis of the 
linear parameterization approach [21-[5]. 

Property 2: Using a proper definition of matrix B(q ,  q ) ,  
both D ( q )  and B(q,  q )  in (1) satisfy 

x T ( D  - 2B)x  = 0, V x E R" 

with x T  the transposition of x. That is, (d - 2 B )  is a 
skew-symmetric matrix [3]. In particular, the elements of 
B(q ,  4) may be defined as [l], [3] 

Property 2 is simply a statement that the so-called 
fictitious forces, defined by B ( q , q ) q ,  do not work on the 
system [l]. 

Remark: The structure properties of the robot dynam- 
ics presented above have been used to design a sliding 
mode controller for the trajectory tracking problem. By 
using Property 2, a simple sliding mode controller was 
presented [13]. Other classes of sliding mode controllers 
[15], [18], [20] were proposed with the help of Properties 1 
and 2. 

Throughout this paper, the norm of vector x is defined 

as 

and that of matrix A is defined as the corresponding 
induced norm 

The singular value of matrix A is defined as y ( A )  = 

(eigenvalue(A%))'/2. y,,,,,(A) denotes the smallest singu- 
lar value. The relation xTAx 2 y,,,in(A)llxl12, for A = A T  
> 0 concerning y ( A )  is useful in deriving the control 
algorithm. 

111. BRIEF OVERVIEW OF ADAPTIVE CONTROLLER 

In this section, a brief overview of the adaptive con- 
troller proposed by Slotine and Li [31, [41 is given. The 
considered sliding mode controller design problem is as 
follows: For any given desired trajectory qd E R", qd E R", 
and qd E R", with some or all of the manipulator parame- 
ters unknown, derive a controller for the actuator torques, 
and an estimation law for the unknown parameters, such 
that the manipulator joint position q(t)  precisely tracks 
q d ( t )  after an initial adaptive process. 

Let a = [ a ,  ... a,IT be a constant m-dimensional vec- 
tor containing the unknown elements in the suitably se- 
lected set of equivalent rokot gynamic parameters. Let iU 
be its estimate, and let D, B ,  and G be the matrices 
obtained from the matrices D, B, and G by substituting 
the estimated iU for actual a.  Then the linear parameteri- 
zability of the dynamics (Property 1) enables the following 
to be derived 

where W q ,  q,  q,, qr)  E R"'" is the regressor matrix [2], 
[3] independent of the dynamic parameters, G = i3 - a is 
the parameter estimation error, and qr is defined as 

Q, = id - A@ ( 5 )  

where A is a positive definite matrix whose eigenvalues 
are strictly in the right-half complex plane, and q(t) = 

q ( t )  - qd( t )  denotes the position tracking error. Vector q, 
is called "reference velocity," and is introduced to guaran- 
tee the convergence of the position tracking. 

The following choice of adaptive controller and adapta- 
tion law were suggested: 

U = @ ( q , q , q , , q , ) ~  - K,s  

& = - r W ( q , q , q r , q r ) ~  (7) 

(6) 

where r is a constant positive definite matrix, K ,  is a 
uniformly positive definite matrix, and the vector s, which 
can be thought of as a measure of tracking accuracy, is 
defined as 
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The above control and adaptation laws guarantee the 
global convergence of the positional and velocity tracking 
errors, as long as the desired trajectories q, qd, and id are 
bounded. It was proved that s converged asymptotically to 
zero with the following Lyapunov function candidate 

V ( t )  = i [ s T D s  + 15Tr-115] (9) 

Then, from definition (8), the convergence of s to zero in 
turn guarantees that q and q also converge to zero. 
Intuitively, this corresponds to the fact that the output of 
a stable linear filter, whose input converges to zero, must 
also converge to zero. Therefore, both global stability of 
the system, and convergence of the tracking error, are 
guaranteed by the above adaptive controller. 

This adaptive control result represents a turning point 
in the literature of adaptive robot controls. The significant 
contribution is the initial establishment of the global 
tracking convergence requiring no acceleration measure- 
ments. However, since the adaptation law (7)  is typically a 
gradient law, as remarked in [41, the guaranteed conver- 
gence of the tracking errors to zero does not imply the 
convergence of the estimated parameters to the exact 
values. It is shown in [23] that the estimated parameters 
asymptotically converge to the true parameters if the 
matrix W q d ,  qd,  id) is persistently exciting and uniformly 
continuous. Persistent excitation means the existence of 
positive constants 8 ,  a l ,  and a2 such that for all t ,  2 0 

a,Z 5 dt I a,Z 
I 

An important point, as suggested in [6], is that even with 
persistency of excitation, the quality of the adaptation 
transient, i.e., while li is away from a ,  is not uniform, and 
convergence of s or I5 = li - a may be very slow [6]. It 
can only guarantee zero steady errors. At present, the 
transient analysis of adaptive systems is still in its infancy 
and few significant results are available. It is also noted 
that pure integral action may lead to well-known robust- 
ness problems under nonideal conditions [25], [261. 

IV. SLIDING MODE CONTROLLER 

A. Controller Design 
To avoid the difficulty related to the parameter estima- 

tion and further improve performance of the above adap- 
tive controller, a variable structure control approach, 
combined with the controller structure described in the 
previous section, is now used to construct a new class of 
robust controllers. 

Consider the plant defined in (1): the controller, given 
in (61, is modified with estimated parameters li replaced 
by + = [+, ... GmIT, i.e., 

where $; are switching functions designed according to 

Taking s = 0, where s is defined in (8), as a sliding 
surface, then by combining (10) with (1)  and using the fact 
that s = q - q, the sliding mode equation becomes 

DS = @$ + @CY - BS - K ~ s  (11)  

where the following definition has been used, which fol- 
lows (4) 

D ( q ) i r  + B ( q ,  414, + G ( q )  = - @ ( q ,  4, i r 9 i r ) a .  (12)  

In order to design the switching function i,b, consider 
the generalized Lyapunov function 

(13)  V(  t ,  s)  = $sTDr. 

Differentiating (13) with respect to time along the solu- 
tion of (11) gives 

V = S T ( @ +  + @a - K,s - 
1 

Bs) + ?s' ( ~ D ) s .  (14)  

Using Property 2, (14) becomes 

Now choosing 

(16)  

where p, 2 I a,I and a, are defined in (12), are the upper 
bounds of the unknown parameters, which are assumed to 
be known. Then 

m 

m n  

+ c a, c s,@,, 
r = l  ] = 1  

where y = y,,, ,n[D-T/2KdD-(1/2)] > 0 denotes the small- 
est singular value. From (131, we get 

d 
dt - V ( t , s )  I - 2 y V ( t , s )  (18)  

~ ( t ,  s)  5 V(O, s(0))ep2Y'  (19)  

i.e., 

Thus, the convergence of IJsII to zero is exponential. 
Since q and s are related by (8), which, in turn, implies 
that the tracking error 11@11 will also converge exponen- 
tially to zero. Therefore, the following theorem can be 
obtained. 

Theorem 4.1: If the sliding mode control law given by 
(10) and (16) is applied to the manipulator ( l ) ,  then in the 
closed-loop system, the error between the desired and - .  

the variable structure theory [9], [ 103 as explained below. actual trajectory converges to zero exponentially. 
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The structure of the sliding mode controller given by 
(10) and (16) is sketched in Fig. 1. The controller consists 
of two parts. The first part is a special form of dynamics 
compensation, which attempts to provide the joint dy- 
namic torques necessary to make the desired motions. 
The second part actually contains two terms representing 
PD feedback. It intends to regulate the real trajectories 
about the desired trajectories. 

Remark: 

There are some main differences compared with the 
adaptive controller described in (6), (7). First, the 
parameter estimation is not required, avoiding the 
difficulty linked to the persistency of excitation. Sec- 
ond, q converges exponentially to zero independent 
of the excitation. Third, the controller assumes that 
the upper bounds of unknown parameters are avail- 
able, which is an important clue in guaranteeing the 
stability of the closed-loop system in VSS design. 
Also, there will exist the chattering phenomenon in 
real implementation, which will be discussed later. 
In sliding mode, the resulting system equation is 

q + A@ = 0. (20)  

Equation (20) represents n uncoupled first-order lin- 
ear system and the system only depends on the 
design parameter A > 0. Clearly, the transient be- 
havior could be prescribed and the robustness to the 
uncertainties of the system is guaranteed. 
Compared with literature of VSS control for robots 
[8]-[18], the main advantage of this algorithm is that 
the switching gains are determined only in terms of 
the bounds of robot parameters rather than the 
bounds of complicated matrix functions of dynamics. 
These bounds may not be easily obtained because of 
the complexity of the structure of the matrix func- 
tions. 
It is obvious from (19) that a maximal settling time 
T~~ is 7s1 = In ( V ( O ) / c ) / 2 y ,  where E is an arbitrarily 
chosen positive small number. The settling time here 
means that not later than at the moment t = T , ~  the 
system tracking trajectory is guaranteed in the E 

neighborhood of the sliding surface s = 0. The total 
maximal settling time is then 

In ( l q , ( t , l ) l / E )  + max, 
In ( V ( O ) / E )  

rs = 
2Y A,(A) 

where A,(A) denotes the largest eigenvalue of the 
matrix A. 

B. Robustness with Respect to Uncertainties 
In practice, some uncertainties, e.g., the friction coef- 

ficients, residual time-varying disturbances, such as stic- 
tion or torque ripple, may have some effect on the robot 
dynamics. The controller must be robust with respect to 
these uncertainties in the sense that the tracking error for 
the closed-loop system should be uniformly ultimately 

Fig. 1. The structure of the sliding mode controller. 

bounded [24], [28]. In this section, the behavior of the 
proposed algorithm (10) and (16) in the presence of un- 
certainties is analyzed. The dynamics equation (1) be- 
comes 

D ( q ) i  + B ( q ,  414 + G(q)  + U, = U (21) 

where D, B ,  and G are defined in (1), and U, E R" is the 
vector of uncertainties presenting friction, torque distur- 
bance, etc. 

In general, in the variable structure system, the uncer- 
tainties are assumed to be bounded. This assumption may 
be reasonable for external disturbance but is rather re- 
strictive as far as unmodeled dynamics are concerned. For 
example, the viscous and Coulomb friction forces may be 
modeled as F,q + F, sgn (4). Generally speaking, unmod- 
eled dynamics are functions of the system states and may 
grow beyond any constant bound if the system becomes 
unstable. Therefore, it is assumed here that the uncer- 
tainty effects are presented by [281 

llu,ll 5 d" + d,lldll + d,ll@ll (22)  

where do > 0, d ,  > 0, and d, > 0 are some constants. 
Concerning the uncertainties, the following theorem is 

presented. 
Theorem 4.2: For the closed-loop system (21), (lo), and 

(161, the sliding variable and tracking error are uniformly 
bounded if the feedback gain matrix K ,  is chosen prop- 
erly. Furthermore, the ultimate bound of the tracking 
error is given by 

lim IMI < &E 
t + x  

where E = di /2h , (Kd) ,  7 = min(C,/A,(D>, C,/aT). 
Proofi Combining (10) and (16) with (21) leads to 

D ( q ) i  + B(q9 414 + G ( q )  + 

= Q ( q , 4 , 4 r , i r ) I C I - K d s .  

Subtracting (12) from both sides of the above expres- 
sion, and using the fact that s = q - q,, one can write 

DS = Q(q,4,4, , i r )4J+ @ ( q , q > i , ? i +  

- K,s - B ( q , q ) s  - U,. (23)  

A Lyapunov function is chosen as 

V( 2, t )  = ~s'Ds + ;qTr@ (24) 
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where 2 = [ s , q l T  is a generalized error state vector and 
l- = a,Z, U, > 0 is a constant positive definite matrix. 

Differentiating V in (24) with respect to time and using 
Property 2 give 

v = s T ~ i  + s T ~ i  + gri .  

v = sT (@ (4 ,  4 9 4 , 7  4, ) * + (D (4  > 4 7 4,, 4, ) a 

(25)  
Evaluating along the trajectory of (23) yields 

-KdS - U T )  + qTrq 

- < - S T K , ~  -  ST^, + GTr(s - ~ 4 ) .  (26) 

According to (22), one can write 

- s ~ u ,  I IlsII(d, + d,( Ilsll + AII@II) + d~11~11) 

I dollsll + d,lls1I2 + (A , (A)d ,  + d2)llsll 11411. 
(27) 

It then follows that 

I -(A,( Kd) - d1)lls1I2 

+ ( U ,  + A,( A)d, + d2)IIsII 114'11 

- ~,A,(A)ll@ll~ + dollsll. (28) 

A further manipulation of (28) leads to 

where 

It is always possible to properly choose K, and U, such 
that Q > 0. Therefore, there exists Zd and 5, such that 

Q = [ "  0 a, O ] + Q  

where Q 2 0. Thus 

i.e., 
d 

dt 
-V(Z, t )  I -27V(Z,t)  + E (33) 

where 7 = min(Ed/A,(D), 5,/u,), E = (di/2A,(Kd)). 

Thus 

Therefore 

Remark: As we can see, the bound on E can be made 
arbitrarily small by increasing the control gain K,, which 
means increasing the control energy. From a practical 
point of view, the minimum size of the error bound is 
limited since sufficiently large control energy may not be 
available. 

C. Smoothing the Control Law 
Since the control law (10) and (16) is discontinuous 

across the sliding surface, such a control law leads to 
control chattering. Chattering is undesirable in practice 
because it involves high control activity, and furthermore, 
may excite unmodeled high-frequency plant dynamics, 
which could result in unforseen instabilities. This has 
been recognized by workers in the field, e.g., [91, [lo], [161, 
[22], who have suggested modifications in the control law 
to overcome the difficulties encountered. This takes the 
form of using x/(lxl + 8 )  in the place of sgn(x) in the 
control law (lo), where 6 is a constant. However, in such 
a case, 4' does not tend to zero but is uniformly bounded. 
In the following analysis, it is shown that the admissible 
amplitude of tracking error, given by engineering consid- 
eration, can be achieved by choosing a suitable S. 

Let the switching function 9 in the control law (10) be 
replaced by 

(37) 

where vi ( C ; = , S ~ @ ~ ~ ( ~ ,  4, q,, &I), Si > 0 and ei > 0 are 
arbitrary constants, a, are defined in (12). 

Such chosen control law (lo), (36), and (37) leads to the 
following theorem. 

Theorem 4.3: Set ei( > 0) and Si( > 0) arbitrarily. Then, 
the control system defined by (l), (lo), (361, and (37) is 
uniformly bounded, and the tracking error 4 converges to 
a region described by S(6) = {Q; ( ( S I (  < m}, where 

= Cm 1 ( ~ ~ l 6 ~ ,  y = ymin [ D - ( T / 2 ) K d D - ( 1 / 2 ) ] ,  and ai is 
defimd i'n (12). 

Proot Consider the generalized Lyapunov function 
given in (13). Using the same derivation in the proof of 
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Theorem 4.1, leads to / 

V = -s'K,s + s T (  (PI,!/ + (Pa).  ( 3 8 )  

In the case where I 'pil 2 ei, (38) becomes 

(39) 

Therefore 

lim Ils(t)ll 5 - 

Remark: 

1) The two constant parameters E, and 6, ( i  = l;.., m)  
are introduced. 6, may be considered to be the 
difference from an ideal discontinuous control input 
and the ratio 6 , / ~ ,  determines the magnitudes of 
control gains. The optimal selections of E , ,  6, are 
worthy of further investigation. 

2) Using the same argument as in Section III-B, the 
smoothed control law (lo), (36), and (37) retains 
robust with respect to uncertainties. The detailed 
discussions are not given here in order to save space. 

t + m  GY. 

V. REAL-TIME IMPLEMENTATION 
' A. Description of Control System 

To demonstrate the validity of the proposed robust 
algorithm (10) and (161, a real-time implementation of the 
control strategy was developed for only a two-degree of 
freedom out of a self-built five-axis manipulator. Since a 
robotic manipulator must have a three degree-of-freedom, 
at least in order to move to an arbitrary point in space, a 
two degree-of-freedom system, however, is sufficient to 
examine the validity of the control strategy. 

The controlled two-linkage manipulator is shown in Fig. 
2. All of its physical parameters are given in Table I. A dc 
servomotor is mounted on each joint, and coupled the 
links through harmonic drives with the gear ratio being 
1:60. The characteristics of actuators are shown in the 
Table 11. The computer controller is a Motorola M68000 

U m i  : Nass  o f  l i n k  i 

Fig. 2. Two-linkage manipulator. 

16-b single-board microprocessor (SBM) running at 8 
MHz. The SBM provides voltages to the PWM power 
amplifiers through 12-b D/A converters and the robot 
motors are fed by PWM power amplifiers. The manipula- 
tor angular positions were fed back to the microprocessor 
from encoders mounted at the motor shafts. The encoder 
outputs were converted into a count representing angular 
positions and read by the microprocessor through a 16-b 
parallel port. The speed information was derived from the 
encoder output at sampling instants. The hardware details 
of the control system are shown in Fig. 3. 

Software for implementing the control algorithm was 
developed in PASCAL programming language together 
with M68000 Assembly language. The impetus for using 
PASCAL was primarily due to the availability of a PAS- 
CAL compiler for M68000 and the complexity of the 
control strategy. Inasmuch as the SBM does not have a 
floating point processor, all floating point arithmetic oper- 
ations are performed in software, and therefore a signifi- 
cant performance bottleneck is caused. Thus the choice of 
sample time is restricted, and the sample interval cannot 
be selected to be small enough. Hence, in this situation, 
the desired trajectory to be tracked may not be planned 
too quickly and the switching frequency, which should be 
ideally infinite, is limited by the microprocessor speed. 

B. Dynamic model and Controller Design 

described by 1271 
The dynamics of the actuators can be approximately 

h l lk ' l  + h 2 1 i ,  + h,,u, = u1 

h,,;, + h,,i, + h,,u2 = U ,  

(43) 
(44) 

where h,, ( i  = 1,2,3 j = 1,2), as shown in Table 111, are 
known constants; U, ( i  = 1,2) are inputs of actuators. 

Therefore, the dynamics of the two-link manipulator, 
including actuators, are described in [151, 1271: 

a + p + 2qcos e* qcos 8, + "][i4 
qcos 8, + p P 

- T i ,  sin 0, - (6 ,  + i , )qsin R ~ ] [  

qOl sin 8, 0 
a cos o1 + qcos ( 8 ,  + 8,) g 

q c o s ( 8 ,  + 8,) ] K  
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control 
parameters 

desired 

Fig. 3. Schematic diagram of robot control system. 

TABLE I 
PHYSICAL PARAMETERS OF TWO-LINKAGE ARM 

Parameters Lower Upper 

Link inertia I ,  (kg.m) 0.09599 0.04115 
Link mass m, (kg) 12.3 10.9 
Link length L,  0.36 0.25 
Position of mass center I ,  (m) 0.18 0.12 

TABLE I1 
PARAMETERS FOR ACTUATORS 

Rated voltage 
No load speed at rated voltage 
Torque constant 
Voltage constant 
Armature moment of inertial 
Armature electric time const. 
Armature mechanical time const. 
Tachometer voltage gradient 

120 v 
3750 r/min 
43 ozin/A 
32 V/kr/min 
0.03 ozins 
3.1 ms 
15 ms 
30 V/kr/min 

TABLE 111 
KNOWN CONSTANTS 

h,, = 0.042 h,, = 0.033 h,, = 3.5 
h,, = 3.04 h,, = 0.027 h,, = 0.016 

where 1, is a known constant, g is the acceleration of 
gravity, and three unknown parameters a ,  p, and 7 are 
functions of unknown physical parameters of the manipu- 
lator. 

In order to examine the validity of the proposed method, 
the manipulator is required to move along the desired 
trajectories. The desired trajectories, illustrated in Fig. 4, 
are planned by using the 4-3-4 joint-interpolated method. 
The sliding surfaces are chosen as 

where 81, and e 2 d  are given desired trajectories. The 
resulting sliding mode equations are two decoupled 

- . o o  - 
.'D - . 5 2  
D - 
0 

'Z 1 . 5 7  

1 . 0 5  

t i m e  (second) 

Fig. 4. Desired trajectories. 

first-order systems 
. .  

(0 ' -  eid) = -%s(8i - oid) i = 192. 

For simplicity, the feedback gain matrk K ,  is chosen 
to be diagonal Kd = diag(a,, ud). The regressor matrix 
@(q,  q ,  q,, qr)  used in (10) can be expressed as 

@ l l  = ill. + ecos(8,)  

Q1, 01, + ' 2 ,  

Q~~ =2O,,cos(e,)  + i 2 r ~ ~ ~ ( + )  - i , i , , s i n ( ~ , )  

-(el + e,)e,, sin(e,) + e c o s ( ~ ,  + e,) 
= 0 

@** = Ql, 

where el, = 

= g/4. 

= elilr sin (e,) + el, cos (e,) + e cos ( 6 ,  + e,) 
- ( e ,  - o l d ) ,  e,, = e,, - (e, - e,,), e 

A removable 2-kg load was placed on the end of the 
manipulator. Test runs were made both with and without 
this load. Changes in the load were not accounted for in 
the controller in order to test the robustness of the 
controller. The smoothing controller (lo), (36), and (37) 
was run at a sample interval of 0.015 s; the parameters of 
the controller are given in Table IV. 
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X:88 
-0.06 

- 0 . 0 6  :::+ 
0 0 . 3  0 . 6  0 . 1  1 . 2  1 . 5  

t i m e  (second) 

Fig. 5. Tracking errors. 

23.33 

16.67 

10.08 

16.67 

0 0.3 0 . 6  0 . 9  1 . 2  1 . 5  

t i m e  (second)  

Fig. 6.  Control inputs. 

, 

I 

0 0 . 3  0 . 6  0.9 1 . 2  1 . 5  

t i m e  (second) 

Fig. 7 .  Sliding variables s1 and s p .  

TABLE IV 
PARAMETERS OF THE CONTROLLER 

0; (A = 0;Z) = 5 

€1 = 0.1 

ud ( K d  = u d I )  = 5 

E 2  = 0.1 

6, = 0.05 
6, = 0.05 6, = 0.05 j, = 4 
j2 = 1 j, = 1 €3 = 0.1 

C. Experimental Results 
System time responses were obtained from actual mea- 

surement and stored in the SBM, displayed on a CRT, 
and recorded. The experimental results for the maneuver 
as described in (lo), (36), and (37) with the load attached 
are shown in Figs. 5-7. Fig. 5 shows the trajectory track- 
ing errors. Fig. 6 shows the control inputs, and the sliding 
variable s are shown in Fig. 7. Fig. 8 shows the joint angle 
tracking errors with the load removed from the end of 

k - 0 . 0 6  0.06.1 0 . 0 0  

0 0.3 0 . 6  0 . 9  1 . 2  1 . 5  
t i m e  (second)  

Fig. 8. Tracking errors without load. 

23.33 

16.67 

18.00 

3.33 

-3.33 

-3.33 I 

Fig. 9. Control inputs without load. 

link 2. Fig. 9 shows the control input without the load. It 
is confirmed that validity of this novel variable structure 
controller is used explicitly for the purpose of trajectory 
tracking in the presence of uncertainties of the system. 

VI. CONCLUSION 
A novel variable structure control scheme has been 

developed using the theory of the variable structure sys- 
tems for the trajectory control of robot manipulators. 
Stability and robustness in the presence of uncertainties 
are analysed and discussed. The response transient is at 
least of the exponential type, with a decay rate larger than 
a certain value, independent of the excitation signal (no 
persistency of excitation is required). Problems inherent 
to the integral adaptation law such as the parameter drift 
do not appear in the scheme. A smoothed control law is 
also suggested, which overcomes principal drawbacks of 
the variable structure method. It is shown that the 
smoothed control renders the closed-loop system globally 
uniformly ultimately bounded with respect to a set S(S) ,  
which can be made arbitrarily small by decreasing 6. The 
proposed algorithm was implemented on a Motorola 
M68000 single-board microprocessor interfaced to a two 
degree-of-freedom manipulator. The experimental results 
show the good tracking of the manipulator with desired 
trajectories in the presence of such uncertainty as han- 
dling a varying payload. 
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