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Redesign of Hybrid Adaptive/Robust Motion Control of
Rigid-Link Electrically-Driven Robot Manipulators

Chun-Yi Su and Yury Stepanenko

Abstract—In a recent work of [16], a hybrid adaptive controller for
rigid-link electrically-driven robot manipulators was proposed. Semi-
global asymptotic stability of the controller was established in the Lya-
punov sense. However, there are two limitations in it. One is that the
controller requires the joint velocity measurements, that with the required
accuracy can be difficult to realize in practical applications. The other
one assumes the boundedness of estimated inertia parameters of the
manipulator in order to reduce the computation complexity. In this
paper, we propose a modification of the hybrid adaptive controller,
which eliminate the above-mentioned limitations. Hence the range of
applicability of the method in [16] can be greatly broadened. The
capabilities of the proposed control strategies are illustrated through
computer simulation.

Index Terms—Actuators, robust control, adaptive control, robotic ma-
nipulators.

I. INTRODUCTION

Recently the problem of controlling the motion of rigid-link
electrically-driven manipulators has received considerable attention,
and many different approaches to this problem have been suggested
[1]–[16]. Research in which controllers are designed with the capabil-
ity to compensate for uncertainty in the manipulator/actuator system
includes work on robust control schemes [6]–[9], adaptive schemes
[10]–[13], and hybrid schemes [14]–[16]. It should be mentioned that
these controllers usually require velocity measurements, that with the
required accuracy can be difficult to realize in practical applications
since joint measurements are typically either contaminated with
noise or not available at all [17]. An additional observation is that
derivation of these robust and adaptive schemes typically requires the
calculation of very complex quantities, such as the time-derivative of
the manipulator regressor matrix or upper bounds on the derivatives
of the “embedded controls,” which can make implementation of these
strategies difficult and computationally expensive.

The schemes proposed in [15] and [16] also suffer the above
mentioned draw backs. To avoid the derivative computation of
the regressor matrix, a simplified algorithm was proposed in [16].
However, such an algorithm is only valid under the assumption that
estimated inertia parameters of the manipulator are bounded. In this
paper, we redesign the control scheme presented in [16] in an effort
to eliminate the two limitations, these being the measurements of
velocities and bounded assumption of estimated inertia parameters.
It is shown that the proposed controller guarantees semi-global
asymptotic link position tracking while also ensuring all signals
remain bounded during closed-loop operation. Along the same line,
a novel adaptive control algorithm [18] was also proposed to avoid
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the velocity measurements. The main differences between the hybrid
adaptive/robust and adaptive scheme were explained in [16].

II. DESIGN OF THE CONTROL LAW

A. Control Objective

The dynamics for rigid-link electrically-driven manipulators are
described by

(D(qqq) + J)�qqq +B(qqq; _qqq)_qqq +G(qqq) =KNIII (1)

L _III +RIII +Ke _qqq =uuu (2)

whereqqq 2 Rn is the vector of the joint position,III 2 Rn is the vector
of the armature currents anduuu 2 Rn is the vector of the armature
voltages;D(qqq) is the manipulator mass-matrix, which is a symmetric
positive definite matrix;B(qqq; _qqq)_qqq represents the centripetal and
Coriolis force;G(qqq) denotes the gravitational force;J is the actuator
inertia matrix;L represents the actuator inductance matrix;R is the
actuator resistance matrix,Ke is the matrix characterizing the voltage
constant of the actuator andKN is the positive definite diagonal
matrix which characterizes the electromechanical conversion between
current and torque. WhileD(qqq); B(qqq; _qqq)_qqq and G(qqq) are nonlinear
functions,J;L;R;Ke andKN are positive definite constant diagonal
matrices.

We attacks the same control objective as in [15] [16], i.e., for any
given desired bounded trajectoriesqqq

d
; _qqq
d
; �qqq
d
; and qqq(3)

d
; with some

or all of the manipulator and actuator parameters unknown, derive
a controller for the actuator voltagesuuu such that the manipulator
position vectorqqq(t) tracksqqq

d
(t):

In accordance with the backstepping control strategy described by
[19], the design procedure can be described as a two-step process.
Firstly, the vectorIII is regarded as a control variable for subsystem
(1) and anembeddedcontrol inputIIId is designed so that the tracking
goal may be achieved. Secondly,uuu is designed such thatIII tracksIIId:
In turn, this allowsqqq(t) to trackqqq

d
(t): In this paper (1) is called the

manipulator subsystemsand (2) theactuator subsystem.

A. Adaptive Control for the Manipulator Subsystem

Using theembeddedarmature current vectorIIId; the model (1) can
be rewritten as

(D(qqq) + J)�qqq +B(qqq; _qqq)_qqq +G(qqq) = KNIIId +KN
~III (3)

where~III
�
= III � IIId represents a current perturbating to the rigid-link

dynamics. The system (3) can be viewed as a rigid model system
with an input disturbanceKN

~III; controlled byKNIIId:

Based on the parameterization technique [14], the nonlinear terms
D; B; andG in (1) can be expressed as

(D(qqq) + J)�qqq
d
+B(qqq; _qqq

d
)_qqq
d
+G(qqq)

= �a(qqq; _qqqd; �qqqd)�a (4)

where the term,�a(qqq; _qqqd; �qqqd) 2 Rn�(n�m); is the augmented
regressor matrix independent of the dynamic parameters; the term,
�Ta is a corresponding augmented inertia parameter vector. Then,
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one has

K�1N �a�a = �aK
�1

Na�a = �a�ak (5)

whereKNa
�
= diag [kNiIm] and�Tak

�
= K�1Na�a:

We suppose that in the right hand side of (5) only the parameter
vector�ak is uncertain.’ The desiredIIId is then synthesized by

IIId =�a(qqq; _qqqd; �qqqd)�̂ak � 
2�(www + �~qqq) (6)

www =www + 
2~qqq (7)
_www =�2
www � 2
3~qqq (8)

_̂�ak =Proj(�̂ak;���
T
a zzz); �̂ak(0) 2 � (9)

zzz
�
= _~qqq �

1



www +

�



~qqq (10)

where~qqq
�
= qqq � qqqd is the joint tracking error;̂�ak is the estimate

of �ak; � is an arbitrary positive definite constant diagonal matrix;

; �; and� are positive constants;www andwww are intermediate vectors;
Proj(�; �) is a projection operator, which is constructed as follows.

Choose a set� = f�akj�imin < �aki < �imax8i 2 f1; n�mgg
with �imin and �imax some known real numbers. In this case, the
projection operator defined by

fProj(�̂ak;���
T
a zzz)gi

=

0 if �̂aki = �imax and�(�T
a zzz)i < 0

��(�T
a zzz)i if [�imin < �̂aki < �imax]

or [�̂aki = �imax and�(�T
a zzz)i � 0]

or [�̂aki = �imin and�(�T
a zzz)i � 0]

0 if �̂aki = �imin and�(�T
a zzz)i > 0

(11)

satisfies

1) �̂ak(t) 2 � if �̂ak(0) 2 �;
2) kProj(p; y)k � kyk;
3) �(p � p�)T�Proj(p; y) � �(p � p�)T�y; where � is a

positive definite symmetric matrix.

Remarks:

1) The choice of�imin and �imam is only related to the bound
range of the projection operator and such a range in this paper is
not restricted as long as the estimated parameters are bounded
(required for the stability proof); hence one can always choose
suitable �imin and �imam; although such a choice may be
conservative.

2) It can easily be shown that̂�ak does not involve link velocity
measurements, though_̂�ak includes the signal_qqq: Therefore,IIId
only needs link position measurements. This fact will be used
later to prove that the controller for the overall system will
depend only on the measurements ofIII andqqq:

3) The role of the projection operator is crucial. The boundedness
of the estimated parameterŝ�ak can be guaranteed; as will be
clear from the theorem proof, it is this boundedness that makes
it possible to prove the semi-global stability of the overall
system.

C. Hybrid Adaptive Control for the Actuator Subsystem

We now turn to the development of a voltage inputuuu; which
forces~III to zero. However, as shown in [16], using the backstepping
technique [19], we are required to calculate

_IIId = (d=dt)(�a(qqq; _qqqd; �qqqd)�̂ak)� 
2�( _www + � _~qqq)

where (d=dt)(�a�̂ak) = _�a�̂ak + �a
_̂�ak: Hence, the calculation

of _�a is involved. Also, the calculations of derivative_IIId require

measurements of the velocity_qqq: The challenge addressed here is to
design the control inputuuu without involving the computation of_�a

and the measurements of_qqq: In order to do so, we divide the embedded
signalsIIId as

IIId
�
= IIIp + IIIc (12)

IIIp
�
= 
2�(
2~qqq �www) (13)

IIIc
�
= �a(qqq; _qqqd; �qqqd)�̂ak � 
2�(
2 + �)~qqq (14)

and simply substitute

_IIIp = 
2�(
2 _~qqq � _www) = 2
3�www (15)

for _IIId: The effect of the signalIIIc will be compensated in the actuator
subsystem. We note that in (15) the relation_www = �2
www + 
2 _~qqq has
been used. So, no velocity_qqq is involved in (15).

Following [16], it is assumed that the electrical parameters
KN ; L;R; and Ke are all of uncertain values. However, there
exist L0; R0; andKeo; all known, such that

kL� L0k � �1; kR�R0k � �2; kKe �Keok � �3 (16)

With the above in mind, the adaptive robust control law, forcing
~III = 0, is then synthesized by

uuu =L0 _IIIp +R0IIId +Keo _qqqd

� (�̂1k _IIIpk+ �̂2kIIIdk+ �̂3k _qqqdk)sgn(
~III) (17)

_̂
�1 = �1k _IIIpkk~IIIk (18)
_̂
�2 = �2kIIIdkk~IIIk (19)
_̂
�3 = �3k _qqqdkk

~IIIk (20)

whereIIId; IIIp; and _IIIp are defined in (6), (13), and (15),̂�ak is given
by (9), �i (i = 1; 2; 3) are constants which determine the rates of
adaptations.

Remarks:

1) Thanks to the definition ofIIIp; the time derivative ofIp does not
involve the velocity measurements, which in turn implies no
velocity measurements in the controller (17). Thus, the cascade
control system only requires the measurements ofIII andqqq:

2) It is clear from (17), the time-derivative of the manipulator
regressor matrix or upper bounds on the derivatives of the
embedded controls are not involved. Therefore, the difficulty
encountered in [15], [16] is removed.

3) Using the adaptive method, a scheme without using the veloc-
ity measurements was also proposed in [18]. The difference
between adaptive and hybrid adaptive/robust schemes was
discussed in the remark 3) of [16] and the reader may refer
to it.

4) Similar to [16], the control law (17) involves the discontinuous
function and may result in chattering behavior. For a discussion
on how to remedy this the reader may refer to the remarks 4)
and 5) of [16].

D. Stability Analysis

The stability of the closed-loop system described by (1), (2), (6),
and (17) is established in the following theorem.

Theorem: If the robust control voltagesuuu given by (6) and (17)
are applied to the manipulator (1–2), then all closed-loop signals are
bounded andlimt!1 ~qqq = 0, provided
 initially satisfies:

1) 
 � maxf1; �g;
2) the matricesP andQ in (24) being positive-definite;
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3) see (21)


�q > 3kBdk+ �1 + 2#kqqqdk+ 2#
�v2
�v1

kxxxv(0)k (21)

where�q is defined in (24);�v1; �v1; andxxxv; are defined in (28)
while

�1
�
=

�21
4�r

; �1 = (3kKNk+ & + kKek); and

�r
�
= inf

~III
T
R~III

k~IIIk2
:

Proof: Some mathematical preparations are necessary before the
proof of stability. Substituting (6) into (3), one obtains the joint
position error equation

K�1N (D(qqq) + J)�~qqq

= �
2�www � �
2�~qqq + ~III �K�1N B(qqq; _qqq)_~qqq

�K�1N Bd
_~qqq +�a ~�ak (22)

where ~�ak
�
= �̂ak � �ak and Bd

_~qqq
�
= B(qqq; _qqqd)_~qqq = B(qqq; _qqq)_qqqd �

B(qqq; _qqqd)_qqqd; therein, the propertyB(qqq; _qqq)_qqqd = B(qqq; _qqqd)_qqq has been
used. It can be shown thatBd is a uniformly bounded matrix because
_qqqd is uniformly bounded.

Using a state vectorxxxT
�
= [_~qqq

T
; wwwT ; ~qqqT ]; the dynamic equation (22)

can be expressed in state space as

_xxx =�Axxx+ C(~III �K�1N B(qqq; _qqq)_~qqq �K�1N Bd
_~qqq +�a ~�ak) (23)

where the detailed expressions forA andC are given in [16] and
omitted here.

As shown in [16], by properly choosing a pair of positive definite
matrices P and Q; the relation 1

2
(PA + ATP ) = Q can be

established and they satisfy

�pkxxxk
2 � xxxTPxxx and 
�qkxxxk

2 � xxxTQxxx (24)

where�p and�q denote the smallest eigenvalues of the matricesP
and (1=
)Q:

At this point, the closed-loop stability poof can be established by
using a Lyapunov function candidate

V (t) =La(t) + Li(t) (25)

La
�
=

1

2
xxxTPxxx+

1

2�
~�TakKNa~�ak (26)

wherexxx is defined in (23),~�ak = �̂ak��ak; therein,�ak is defined
in (5) and �̂ak is its estimate; and

Li(t)
�
=

1

2
~III
T
L~III +

1

2

3

i=1

(��i � �̂i)
2=�i (27)

where��1 = �1; ��2 = �2; and��3 = �3+ �; �i (i = 1; 2; 3) are defined
in (16), � is defined in (33), and̂�i are the estimates of��i: Given
(25), one has

�v1kxxxvk
2 � V � �v2kxxxvk

2 (28)

where xxxTv
�
= [xxxT ~�Tak ~III

T
(��1 � �̂1); (��2 � �̂2); (��3 �

�̂3)];�v1
�
= 1

2 minf�min(P ); �min(KNa)=�;�min(L); 1=�i (i =

1; 2; 3)g and �v2
�
= 1

2
maxf�max(P ); �max(KNa)=�;�max(L);

1=�i (i = 1; 2; 3)g.
The time derivative ofLa(t) along the trajectory of (23) is

_La =�xxxTQxxx+ xxxTPC~uuu+ xxxTPC(~III �K�1N B(qqq; _qqq)_~qqq

�K�1N Bd
_~qqq + �a ~�ak) +

1

2
xxxT _Pxxx+

1

�
_~�
T

akKNa~�ak:

(29)

Following the derivations in [16], when
 � maxf1; �g; one can

obtain

_La ��(
�q � 3kBdk � 2#k _qqqk)kxxxk2 + 3�nkxxxkk~IIIk

+ zzzTKN�a ~�ak +
1

�
_~�
T

akKNa~�ak

=�(
�q � 3kBdk � 2#k _qqqk)kxxxk2 + 3�nkxxxkk~IIIk

+ zzzTKN�a ~�ak

+
1

�
~�TakKNa Proj(�̂ak;���

T
a zzz)

��(
�q � 3kBdk � 2#k _qqqk)kxxxk2 + 3�nkxxxkk~IIIk

+ zzzT�a ~�a � zzzT�aKNa~�ak

=�(
�q � 3kBdk � 2#k _qqqk)kxxxk2 + 3�nkxxxkk~IIIk (30)

where �n
�
= kKNk; and the identityxxxTPCK�1N = zzzT and

the property(1=�)~�TakKNa Proj(�̂ak;���
T
a zzz) � �~�TakKNa�

T
a zzz

have been used.
The time derivative ofLi(t) is evaluated along the trajectory (2) as

_Li =�~III
T
[L( _IIIp + _IIIc) +R~III +Ke

_~qqq � uuu+RIIId +Ke _qqqd]

+

3

i=1

(��i � �̂i)(�
_̂
�i)=�i: (31)

When 
 � maxf1; �g; one can write

�~III
T
L _IIIc = �~III

T
L( _�a�̂ak +�a

_̂�ak � 
2�(
2 + �)_~qqq): (32)

Since _qqqd; �qqqd andqqq(3)d are uniformly bounded, one can write

k�ak � �; k _�ak � %k _qqqk � %(k _~qqqk+ k _qqqdk)

where� and % are constants. Therefore, based on the property that
kProj(�̂ak;���

T
a zzz)k � �k�T

a zzzk; the (32) becomes

�~III
T
L _IIIc ��lk~IIIk(k _�akk�̂akk+ k�akk _̂�akk

+ 
2�(
2 + �)k _~qqqk)

��l%k�maxkk~IIIk(k _~qqqk+ k _qqqdk)

+ �lk~IIIk(��
2kzzz)k+ 
2�(
2 + �)k _~qqqk)

��l%k�maxkk~IIIk(kxxxk+ k _qqqdk)

+ �lk~IIIk(3��
2kxxxk+ 
2�(
2 + �)kxxxk)

= &k~IIIkkxxxk+ �k~IIIkk _qqqdk (33)

where &
�
= �l(%k�maxk + 3��2 + 
2�(
2 +

�)); �
�
= �l%k�maxk; �l

�
= kLk; and k�̂akk �

k�maxk; �max
�
= [�1max � � � �(n�m) max]

T ; and �imax is
defined in (11).

Substitutinguuu in (31) by the control law (17) and noticing (16)
and (33), one obtains

_Li ��~III
T
R~III � ~III

T
Ke

_~qqq � ~III
T
L _IIIc

+ (�1k _IIIpkk~IIIk+ �2kIIIdkk~IIIk+ �3k _qqqdkk
~IIIk)

� (�̂1k _IIIpkk~IIIk+ �̂2kIIIdk~IIIk+ �̂3k _qqqdkk
~IIIk)

+

3

i=1

(��i � �̂i)(�
_̂
�i)=�i

��~III
T
R~III � ~III

T
Ke

_~qqq

+ (�1k _IIIpkk~IIIk+ �2kIIIdkk~IIIk+ �3k _qqqdkk
~IIIk)

+ &k~IIIkkxxxk+ �k~IIIkk _qqqdk

� (�̂1k _IIImkk~IIIk+ �̂2kIIIdk~IIIk+ �̂3k _qqqdkk
~IIIk)

+

3

i=1

(��i � ��i)(�
_��1)=�i

��~III
T
R~III � ~III

T
Ke

_~qqq + &k~IIIkkxxxk

��~III
T
R~III + (& + �k)kxxxkk~IIIk (34)
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where�k
�
= kKek: Based on (30) and (34),_V can be expressed as

_V ��(
�q � 3kBdk � 2#k _qqqk)kxxxk2 + �1kxxxkk~IIIk � ~III
T
R~III

��(
�q � 3kBdk � 2#k _qqqk � �1)kxxxk
2

� �r(k~IIIk � �1kxxxk)
2

��(
�q � 3kBdk � 2#k _qqqk � �1)kxxxk
2 (35)

where

�1
�
= (3�n + & + �k); �1

�
=

�21
4�r

�1
�
=

�1
2�r

; �r
�
= inf

~III
T
R~III

k~IIIk2
:

From the definitions ofxxx andxxxv ; it is easy to show from (28) that

k _qqqk � kxxxk+ k _qqqdk � kxxxvk+ k _qqqdk �
V

�v1
+ k _qqqdk (36)

which can be used to place an upper bound for_V as

_V �� 
�q � 3kBdk � 2#k _qqqdk � 2#
V

�v1
kxxxk2

���kxxxk2 forV < �v1

�q � 3kBdk � 2#k _qqqdk

2#

2

(37)

where� is a positive constant. WhenV < �v1((
�q � 3kBdk �
2#k _qqqdk=2#))

2; V is positive definite and_V is negative semi-definite,
we haveV (0) � V for all t � 0: From (28), we haveV (0) �
�v2kxxxv(0)k

2 which allows (37) to be written as

_V ���kxxxk2 for �v2kxxxv(0)k
2

<�1

�q � 3kBdk � 2#k _qqqdk

2#

2

(38)

which yields the gain condition of (21).
To complete the proof, it is necessary to show thatqqq ! 0 as

t ! 1: Since _V is negative semi-definite,xxx; ~�ak; and ~III are all
bounded, which implies that all signals on the right side of (23)
are bounded. The boundedness of_xxx implies thatxxx is uniformly
continuous. Also, form (38), we can show thatxxx 2 L3n2 : Therefore,
as a direct consequence of Barbalat’s lemma, we havelimt!1 xxx =
0, which implies the result given in Theorem.

Remark: The stability result is semi-global since the gain
 can
be arbitrarily increased to encompass any set of initial conditions to
provide for asymptotic link position tracking. However, we should
mention that too large
 may lead to a high gain scheme. Therefore,
a trade-off should be made between the control accuracy and control
gain.

III. A SIMULATION EXAMPLE

As an illustration, we will apply the adaptive algorithm (17)–(20) to
a two-link robot arm with DC actuators as used in [16]. The detailed
description of robot model may refer to [16].

The desiredIIId is synthesized by (6) where� = 8; 
2 = 30;� =
15I; and� = 0.2. The initial values of̂�ak are chosen aŝ�ak(0) =
[1:0; 0:35; 0:19; 0:1; 2:2; 2:3; 1:2; 0:4; 0:2; 0:12; 2:5; 2:6]T : In the
projection operator,�imin is chosen as� = [0; 0; 0; 0; 0; 0; 0; 0; 0;
0; 0; 0]T and �imax is chosen as� = [3; 2; 1; 1; 5; 5; 3; 2; 1;
1; 7; 7]T : The controller is then synthesized by (17) where�1 =

Fig. 1. Tracking error of joint 1.

Fig. 2. Tracking error of joint 2.

1 � 10�11; �2 = 1 � 10�6; and�3 = 1 � 10�6: The initial values
of �̂i are chosen aŝ�1(0) = 8� 10�5; �̂2(0) = 1; and �̂3(0) = 5:

Choosing the same desired trajectories and initial displacements
and velocities as in [16], the results of the simulation are shown
in Figs. 1 and 2. Fig. 1 shows the trajectory tracking error of joint
1. Fig. 2 shows the trajectory tracking error of joint 2. Validity of
this adaptive controller is confirmed for the purpose of trajectory
tracking in the presence of actuator dynamics. We should mention that
selection of controller parameters can affect the system performance.
For example, in the case of small�1; �2; and �3; due to the slow
rate of parameter adaptation, the parameter adaptation is not quick
enough to arrive at a value satisfying the stability condition. Hence
large values of�1; �2; and �3 may improve the system response.
On the other hand, too large�1; �2; and�3 may cause high control
gains. Unfortunately, there is no systematic approach for the selection
of these values. They must be chosen using iterative simulations, and
a trade-off between system response and control gains should be
made.

IV. CONCLUSION

In this paper, a hybrid adaptive control law has been proposed
for rigid-link electrically-driven robot manipulators. The proposed
controller is a modification of the controller in [16]. Two major
limitations of the scheme in [16] have been eliminated. This implies
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that the applicability of the scheme in [16] can be greatly broadened.
Simulation results verified the validity of the algorithm.
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