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Redesign of Hybrid Adaptive/Robust Motion Control of  the velocity measurements. The main differences between the hybrid
Rigid-Link Electrically-Driven Robot Manipulators adaptive/robust and adaptive scheme were explained in [16].

Chun-Yi Su and Yury Stepanenko
II. DESIGN OF THE CONTROL LAw

Abstract—In a recent work of [16], a hybrid adaptive controller for ~ A. Control Objective

rigid-link electrically-driven robot manipulators was proposed. Semi- . L . . .
global asymptotic stability of the controller was established in the Lya-  1he dynamics for rigid-link electrically-driven manipulators are

punov sense. However, there are two limitations in it. One is that the described by

controller requires the joint velocity measurements, that with the required

accuracy can be difficult to realize in practical applications. The other . . .

one assumes the boundedness of estimated inertia parameters of the (D(g) + g+ Blq, g + G(g) =KnT 1)
manipulator in order to reduce the computation complexity. In this LI+ RI+ K.qg=u 2)
paper, we propose a modification of the hybrid adaptive controller,

which eliminate the above-mentioned limitations. Hence the range of

applicability of the method in [16] can be greatly broadened. The whereq € R" is the vector of the joint positiod, € R" is the vector

capabilities of the proposed control strategies are illustrated through of the armature currents and € R" is the vector of the armature
computer simulation. voltages;D(q) is the manipulator mass-matrix, which is a symmetric
Index Terms—Actuators, robust control, adaptive control, robotic ma-  positive definite matrix; B(q, q)¢ represents the centripetal and
nipulators. Coriolis force;G(g) denotes the gravitational forcé;is the actuator
inertia matrix; L represents the actuator inductance matfxs the
actuator resistance matrik;. is the matrix characterizing the voltage
I. INTRODUCTION constant of the actuator anll 5 is the positive definite diagonal
Recently the problem of controlling the motion of rigid-linkMatrix which characterizes the electromechanical conversion between

electrically-driven manipulators has received considerable attentiGh/Tent and torque. Whild)(g), B(q. ¢)¢ and Gi(¢) are nonlinear
and many different approaches to this problem have been suggeé%@"_ionsv']v L. R, K. and Ky are positive definite constant diagonal
[1]-[16]. Research in which controllers are designed with the capabfatrices.
ity to compensate for uncertainty in the manipulator/actuator systemWe attacks the same control objective as in [15] [16], i.e., for any
includes work on robust control schemes [6]-[9], adaptive schem@yen desired bounded trajectorigg, ¢,.d,, and¢,”, with some
[10]-[13], and hybrid schemes [14]-[16]. It should be mentioned th&f all of the manipulator and actuator parameters unknown, derive
these controllers usually require velocity measurements, that with fecontroller for the actuator voltages such that the manipulator
required accuracy can be difficult to realize in practical applicatiosition vectorg(t) tracksg,(t).
since joint measurements are typically either contaminated with!n accordance with the backstepping control strategy described by
noise or not available at all [17]. An additional observation is thdd9], the design procedure can be described as a two-step process.
derivation of these robust and adaptive schemes typically requires fistly, the vectorI is regarded as a control variable for subsystem
calculation of very complex quantities, such as the time-derivative o) and arembeddedontrol inputl is designed so that the tracking
the manipulator regressor matrix or upper bounds on the derivati@@al may be achieved. Secondiyjs designed such thdttracks/ .
of the “embedded controls,” which can make implementation of thelfg turn, this allowsg(t) to trackg,(?). In this paper (1) is called the
strategies difficult and computationally expensive. manipulator subsystenend (2) theactuator subsystem

The schemes proposed in [15] and [16] also suffer the above
mentioned draw b_acks. _To a_void the_ derivative computa_tion of Adaptive Control for the Manipulator Subsystem
the regressor matrix, a simplified algorithm was proposed in [16]. .
However, such an algorithm is only valid under the assumption t atUsmg_theembeddechrmature current vectdi,, the model (1) can
estimated inertia parameters of the manipulator are bounded. In f rewritten as
paper, we redesign the control scheme presented in [16] in an effort .
to eliminate the two limitations, these being the measurements of (D(¢)+J)g+ Blq.9)q+ G(q) = KnI,+ KnT (3)
velocities and bounded assumption of estimated inertia parameters.
It is shown that the proposed controller guarantees semi-gloRghere] 2 1 — I, represents a current perturbating to the rigid-link

asymptotic link position tracking while also ensuring all Signa|§ynamics. The system (3) can be viewed as a rigid model system
remain bounded during closed-loop operation. Along the same liRgith an input disturbances x I, controlled by K 1.

a novel adaptive control algorithm [18] was also proposed to avoidggsed on the parameterization technique [14], the nonlinear terms
D, B, andd in (1) can be expressed as
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one has measurements of the velocify The challenge addressed here is to
- - design the control inpug without involving the computation o®,
Ky o = Paly 000 = Pactar (5)  andthe measurementsgfln order to do so, we divide the embedded

- A L signalsI; as
where K, = diag [kn:l.] andal), £ IxNaaa

We suppose that in the right hand side of (5) only the parameter 1,2 I,+1. (12)
vector ay is uncertain’ The desiredl, is then synthesized by A 9 ol
I, = v T(v§g—w) (13)
. . ~ 2 ~
Ta = 2a(g 40 40)ak =y T(w + 59) ©) I 2 3.(0.4,, 4000 —T( + 1) (14)
w=w+ q (7)
- and simply substitute
w=—27w—2+°q (8) Py
dak =Proj(dar, —o®l 2),  Gui(0) €11 9) I, =+T(%q-w)=27"Tw (15)
25-Lusliy (10)
== 0% v 0% 1 for I;. The effect of the signal.. will be compensated in the actuator

subsystem. We note that in (15) the relation= —2~w + ~*¢ has

wheregq = ¢ — g, is the joint tracking errorj., is the estimate been used. So, no velocityis involved in (15).
of aq; I' is an arbitrary positive definite constant diagonal matrix; Following [16], it is assumed that the electrical parameters
7.k, ande are positive constantsy andw are intermediate vectors; . L. R, and K. are all of uncertain values. However, there
Proj(-,-) is a projection operator, which is constructed as follows.exist L,, Ry, and K., all known, such that

Choose a sefl = {®ak|fimin < Qari < OimaxVi € {1,n X m}}
with #; min and#; max some known real numbers. In this case, the [|L — Lo|| < 613 ||R — Rol| < 623 || Ke — Keo
projection operator defined by

| <65 (16)

With the above in mind, the adaptive robust control law, forcing

{Proj(dur, 0%, 2)} I = 0, is then synthesized by
0 if Gari = 0imax ando (872); <0 . o
_J(@{Z)i if [eimin < daki < Hirnax] = L0[7Z +.R01d ti— IXP‘qu R -
= or [daki = fimax aNda(Py 2); > 0] = (01|l + 2 lLall + 8sll@qlsgn(d) 17)
Or [&aki = Oimin anda(<I> z)i <0 s e
0 if Gaki = Bimin ando(®L2); > 0 ‘Zl —’“”IP””{” (18)
(11) 62 = 2| Lal|[L]] 19)
satisfies by = nslla, Il (20)
1) Qar(t) € ILif dar(0) € II; wherel 4, I,. andI, are defined in (6), (13), and (15)..+ is given
2) ||Proj(p,y || llyll; by (9), 7; (i = 1,2,3) are constants which determine the rates of
3) —(p—p")7 APrOJ(p y) > —(p — p*)TAy, where A is a adaptations.
positive definite symmetric matrix. Remarks:
Remarks: 1) Thanks to the definition df,, the time derivative of,, does not
1) The choice off;min andfimam is only related to the bound involve the velocity measurements, which in turn implies no

range of the projection operator and such a range in this paper is  velocity measurements in the controller (17). Thus, the cascade
not restricted as long as the estimated parameters are bounded control system only requires the measurementf ahdgq.
(required for the stability proof); hence one can always choose?2) It is clear from (17), the time-derivative of the manipulator

suitable #; min and #;mam, although such a choice may be regressor matrix or upper bounds on the derivatives of the

conservative. embedded controls are not involved. Therefore, the difficulty
2) It can easily be shown that,; does not involve link velocity encountered in [15], [16] is removed.

measurements, though,. includes the signaj. Therefore I 3) Using the adaptive method, a scheme without using the veloc-

only needs link position measurements. This fact will be used ity measurements was also proposed in [18]. The difference

later to prove that the controller for the overall system will between adaptive and hybrid adaptive/robust schemes was

depend only on the measurements/candq. discussed in the remark 3) of [16] and the reader may refer

3) The role of the projection operator is crucial. The boundedness to it.
of the estimated parametefs, can be guaranteed; as will be 4) Similar to [16], the control law (17) involves the discontinuous
clear from the theorem proof, it is this boundedness that makes  function and may result in chattering behavior. For a discussion

it possible to prove the semi-global stability of the overall on how to remedy this the reader may refer to the remarks 4)
system. and 5) of [16].
C. Hybrid Adaptive Control for the Actuator Subsystem D. Stability Analysis

We now turn to the development of a voltage input which The stability of the closed-loop system described by (1), (2), (6),
forcesI to zero. However, as shown in [16], using the backsteppirgnd (17) is established in the following theorem.

technique [19], we are required to calculate Theorem: If the robust control voltages given by (6) and (17)
, L g .. are applied to the manipulator (1-2), then all closed-loop signals are
Lq = (d/dt)(®a(g, 445 4a)ar) = 7Lt + rq) bounded andim;_.. ¢ = 0, providedy initially satisfies:

where (d/dt)(®a6ar) = Padiax + Padar. Hence, the calculation 1) 7 > max{lx}; _ N N
of &, is involved. Also, the calculations of derivati; require ~ 2) the matrices” and( in (24) being positive-definite;
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3) see (21) obtain
Lo < =(vAq = 3[I1Ball = 20laDl|=l1* + 3o ||| ||
2T K ®otia + © & K nada
o

. )\12
7Aq > 3l Ball + pa + 20]gull + 20 4/ [l= (O] (21) o .
o —(7Aq = 3[1Ball = 20{lg[Dl=[|” + 3ovn [|||[L]]
. ) . ' . + 2T Kn®odvar
where A\, is defined in (24);\.1, Av1, andz,, are defined in (28) 1
while + ;%AA Na Proj(Qak, —o0®, 2)
A ,32 - all . 2 T
= ﬁ f= and <=(vAq = 3[Ball = 20[1gID =" + 3awn [l[I[[1]]
" T ~ T - ~
\ A ffTRf +z Podta —z (ba,IXAr-(nqak ] )
R = =G = 3Bl = 200Dl + 3ol 30

proof of stability. Substituting (6) into (3), one obtains the join{he property(1
position error equation

Proof: Some mathematical preparations are necessary before ffigare o, 2

, and the identityz” PCKy' = 2’ and
/o) aakKNu Proj(&ar, —0’@;{2) < —al Kno®Lz
have been used.

K;,l (D(q) + J)é The time derivative of; (#) is evaluated along the trajectory (2) as
= —'Tw — wy’Tg+T - K5'B(g,4)q Li=—I"[LU, +1.)+ Rl + K.§—u+ RI,+ K.q,]
— K5'Bag + ®.dar (22) s
where a a Qak — aar and Bd& A B(Q:‘L{)& = Blg.9i, — +; (6: = 0:)(—0:)/ns. (32)

B(q.4,4)q,, therein, the property3(q,§)q, = B(q.4,)q has been
used. It can be shown th&; is a uniformly bounded matrix because
g, is uniformly bounded. I LI = —T' L(®ubar + Padiar — ’T(* + 1)§).  (32)

. T A 20 T ~T . . . . .
UStIJng a state VZCIG*‘ =lg ,w", ¢ ], the dynamic equation (22) sinceg,, i, andq'’’ are uniformly bounded, one can write
can be expressed in state space as . .
P P 19l < pi 1all < elldll < oCll + laal)

i=—Az+CI - Kj' — Ky'Bag+ ®advar) (23
( Bla.d)a “a 0 (23) wherep andp are constants. Therefore, based on the property that
where the detailed expressions farand C' are given in [16] and IProj(Gar, —o®7 2)|| < o|®7

omitted here.

When~ > max{l K}, one can write

As shown in [16], by properly choosing a pair of positive definite ~I'Ll < cr[||I||(||<I>a||||&ak|| + [|®al[|da
matrices P’ and @. the relation 2(PA+ A"P) = @Q can be + T + w)lal)
established and Tey STatlsfy , . < Oélg||9nm||||j||(||§|| + a4l
Apllell” < 27 Pz and Aqfle]” < 27 Qz (24) + |l 2)] + 7T + m)ll)
where ), and\, denote the smallest eigenvalues of the matriPes < 10| a1 TN Nl + 1)
and (1/)Q. - i 2 22
At this point, the closed-loop stability poof can be established by +~”:’”I”(3””~”m” + TG+ )l
using a Lyapunov function candidate =< ||l + <IH1gqll (33)
V(t) = La(t) + Li(t) (25) where ¢ = ai(ollfmaxll + 300 + T(F 4
A A ~
Lo D2 Prd = Al Kyadu (26) "¢ = gl o = and fldarll <
- 20 ||91nax||-, Oimax = [91 max *** B(n,xnz) Inax]T s and 6 max is

wherez is defined in (23)&ax = dak — @k, therein,a,y is defined defined in (11)
in (5) andéday is its estimate; and Substitutingw in (31) by the control law (17) and noticing (16)

3 .
— Al-r - 1 R and (33), one obtains
Li(t) 2 5T LI+5 > (i = 60)* /i (27) ( ), o
i=1 L, <-I RI —-TI K.q—1 LI.
whered, = 81,8, = 6, andés = 63 +¢. 6 (i = 1,2,3) are defined + (ST + Sl Zall|l ) + 8]l I
in (16), ¢ is defined in (33), and; are the estimates af.. Given _ 51||I ””j” + b, ||Id||j|| +(§3qu””1”)
(25), one has '
Morlleal* <V < Al (28) + Z (8 = b:)(=b:)/ms
where 27 2 &7 &L, I (b - b by — by), (b5 —
! iBLA . .[1' Qg (61 : 1), (62 2)s ( s S—I Ri—i" K.
(53)];/\14 = 3 lnln{/\nﬁn(P)7)\min(IxNa)/(T,/\nﬁn(L)y 1/771 (7/ = 5 1 j ST j salle j
1.2.3)} and A 2 L max{Amax(P). Amax (K x)/0 Amae (L), + U IT+ 82 LA + esllaIVEI)
1/ni (= 1,2.3)}. + <lHl=ll + <1 llq.l
The time derivative ofL,(¢) along the trajectory of (23) is — (Si || ) + ,§Q||1d||j|| + dslla )
Lo=-2"Qz+z' PCau+a" PC(I- Kx'B(q.9)q 5.
I 1 7 1.7 .. + >0 (5 =8 (=8 1) /m:
— Ky Baq + ®adiar) + 5T Pz + p Qo KnvaGar. —
(29) <—I'"RI—T"K.q+ <|I||||=|
Following the derivations in [16], when > max{l,x}, one can < —T' BRI+ (c + o) ||=||| ] (34)



654 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

wherea, £ I&.||. Based on (30) and (34); can be expressed as  Error(Rad)

1.10
~, . T : P s ~T =~ 00 b e
V < —(vAq = 3IIBall = 20l@IDll=l1* + Sull= ||| - I" RI (’)Zg
< =(3Aq — 3| Ball = 20llg]l - o) llel® 0.80
= A (M = 2 fl))? 0.70
< = (7Aq = 3I1Ball = 20[1gll = po)l[|” (35) 060
0.50 e
where 040
. 0.30
A B2
B1 = (Ban + ¢+ ap)p = 0.20
T 4A, 0.10
- B ALe I' RI -0.00
TN T ER -0.10 l — —
. L -0.20 :
From the definitions of andx., it is easy to show from (28) that 0.30 | T(Seo)
0.00 2.00 4.00

. . . \4 . ; ; .
lall < Nl + aall <l + lall < /5 +llaall (36) Fig. 1. Tracking error of joint 1.
vl

which can be used to place an upper boundifoas Error(Rad) x 1073
350.00
. ol ) |4 .
V<= (W")\q = 3[|Ball — 29(lq4ll — 204 oW ) (Elk 300.00
, _ s H 2 250.00
< ol fort < A,y (o= 3Bl = 201l
2’1’ 200.00 JSSREU ESEUE
(37)
150.00
wherep is a positive constant. WheW < Xo1((vAq — 3[|Ball — 100.00 e E—
249|q,1l/29))%, V is positive definite and” is negative semi-definite,
we haveV(0) > V for all + > 0. From (28), we haved’(0) < 50.00
o2 ||2.(0)[|* which allows (37) to be written as 0.00 VI\
V <—pllzl* for Awallz.(0)]? -s0.00 [t -
A 31| Ball — 29|yl 2 000 200 4.00 TSea
<)\1<7 q ” d( V044 ) (38)
29 Fig. 2. Tracking error of joint 2.

which yields the gain condition of (21).
To complete the proof, it is necessary to show that> 0 as 1 x 107", n; =1 x 107°, andys = 1 x 10~°. The initial values
t — oo. SinceV is negative semi-definiter, a.,, and I are all of §; are chosen a; (0) = 8 x 1072, 4,(0) = 1, andés(0) = 5.
bounded, which implies that all signals on the right side of (23) Choosing the same desired trajectories and initial displacements
are bounded. The boundedness iofimplies thatz is uniformly and velocities as in [16], the results of the simulation are shown
continuous. Also, form (38), we can show that £3". Therefore, in Figs. 1 and 2. Fig. 1 shows the trajectory tracking error of joint
as a direct consequence of Barbalat's lemma, we have... x = 1. Fig. 2 shows the trajectory tracking error of joint 2. Validity of
0, which implies the result given in Theorem. O this adaptive controller is confirmed for the purpose of trajectory
Remark: The stability result is semi-global since the gaircan tracking in the presence of actuator dynamics. We should mention that
be arbitrarily increased to encompass any set of initial conditions gelection of controller parameters can affect the system performance.
provide for asymptotic link position tracking. However, we shouldFor example, in the case of smajl, 2, and ns, due to the slow
mention that too large may lead to a high gain scheme. Thereforerate of parameter adaptation, the parameter adaptation is not quick
a trade-off should be made between the control accuracy and congmbugh to arrive at a value satisfying the stability condition. Hence
gain. large values ofy., 72, and n3 may improve the system response.
On the other hand, too largg , 72, and,s; may cause high control
l. A SIMULATION EXAMPLE gains. Unfortunately, there is no systematic approach for the selection
oof these values. They must be chosen using iterative simulations, and

As an illustration, we will apply the adaptive algorithm (17)—(20) t .
a two-link robot arm with DC actuators as used in [16]. The detailed trade-off between system response and control gains should be

description of robot model may refer to [16]. made.

The desiredl; is synthesized by (6) where = 8,~% = 30,I" =
151, ando = 0.2. The initial values ofi.; are chosen a&.;(0) = IV.  ConcLusion
[1.0,0.35,0.19,0.1,2.2,2.3,1.2,0.4,0.2,0.12,2.5,2.6]". In the In this paper, a hybrid adaptive control law has been proposed
projection operatorf; min is chosen a¥ = [0,0,0,0,0,0,0,0,0, for rigid-link electrically-driven robot manipulators. The proposed
0,0, O]T and f;max is chosen as# = [3,2,1,1,5,5,3,2,1, controller is a modification of the controller in [16]. Two major
1,7,7]". The controller is then synthesized by (17) where = limitations of the scheme in [16] have been eliminated. This implies
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that the applicability of the scheme in [16] can be greatly broadeneds]
Simulation results verified the validity of the algorithm.
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