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Abstract

This paper deals with the adaptive control of a class of continuous-time nonlinear dynamic systems preceded by an unknown dead-zone.
By using a new description of a dead-zone and by exploring the properties of this dead-zone model intuitively and mathematically, a
robust adaptive control scheme is developed without constructing the dead-zone inverse. The new control scheme ensures global stability
of the adaptive system and achieves desired tracking precision. Simulations performed on a typical nonlinear system illustrate and clarify
the validity of this approach.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Generally, each industrial motion control system has the
structure of a dynamical system, usually of the Lagrangian
form, preceded by some nonsmooth nonlinearities in the ac-
tuator, either dead-zone, backlash, saturation, etc. Further-
more, these nonsmooth nonline9arities in such actuators (e.g.
hydraulic servo valves, electric servomotors) are often un-
known and time-variant. For example, a common source of
nonsmooth nonlinearities arises from friction, which vary
with temperature, speed and wear, or even di:er signi;-
cantly between mass-produced components. Thus, the study
of nonsmooth nonlinearities involved has been of great in-
terest to control researchers for a long time. The control of
such systems needs to be robust, in order to compensate the
time-variant e:ects of these nonlinearities. The problems are
particularly important when the expected accuracy of the
motion system is high.
Dead-zone,which can severely limit systemperformances,

is one of the most important nonsmooth nonlinearities arisen
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in actuators, such as servo valves and DC servo motors. In
most practical motion systems, the dead-zone parameters
are poorly known, and robust control techniques are being
sought. Proportional-derivative (PD) controllers have been
observed to result in limit cycles. Due to the nonanalytic
nature of dead-zone in actuators and the fact that the exact
parameters (e.g. width of dead-zone) are unknown, sys-
tems with dead-zones present a challenge for the control
design engineers. An immediate method for the control of
dead-zone is to construct an adaptive dead-zone inverse.
This approach was pioneered by Tao and Kokotovic (1994,
1995). Continuous- and discrete-time adaptive dead-zone in-
verses for linear systems with unmeasurable dead-zone out-
puts were built by Tao and Kokotovic (1994, 1995), respec-
tively. Simulations indicated that the tracking performance
is greatly improved by using dead-zone inverse. The work
by Cho and Bai (1998) continued the above research and a
perfect asymptotical adaptive cancellation of an unknown
dead-zone was achieved analytically to systems in which
the output of a dead-zone is measurable. To simplify the
controller design, Kim, Park, Lee, and Chong (1994) pro-
posed a two-layered fuzzy logic controller for the control of
systems with dead-zones. In which, a fuzzy precompensator
and a normal PD type fuzzy controller were introduced to
control systems with dead-zones. Most recently, Lewis, Tim,
Wang, and Li (1999) proposed a fuzzy precompensator in
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nonlinear industrial motion system and Selmic and Lewis
(2000) employed neural networks to construct a dead-zone
precompensator. Such approaches promise to improve the
tracking performance of motion system in presence of
unknown dead-zones.
A common feature for the above mentioned approaches

is the construction of an inverse dead-zone nonlinearity to
minimize the e:ects of dead-zone. However, di:erent ap-
proaches may also be pursued. Based only on the intuitive
concept and piece-wise description of dead-zones (Section
2), in this paper, a new approach for adaptive control of
linear or nonlinear systems with dead-zones is introduced
without constructing the inverse of the dead-zone. The new
control law ensures a global stability of the entire adaptive
system and asymptotical tracking (Section 4). Computer
simulations were carried out to illustrate the e:ectiveness of
the approach (Section 5).

2. Dead-zone model and its intuitive properties

The dead-zone with input v(t) and output w(t), as shown
in Fig. 1, is described by

w(t) = D(v(t)) =



mr(v(t)− br) for v(t)¿ br;

0 for bl ¡v(t)¡br;

ml(v(t)− bl) for v(t)6 bl:
(1)

As stated by Tao and Kokotovic (1994), this dead-zone
model is a static simpli;cation of diverse physical phenom-
ena with negligible fast dynamics. Eq. (1) is a good model
for a hydraulic servo valve or a servo motor.
The key features of the dead-zone in the control problems

investigated in this paper are

(A1) The dead-zone output w(t) is not available for
measurement.

(A2) The dead-zone slopes in positive and negative region
are same, i.e. mr = ml = m.

(A3) The dead-zone parameters br , bl, and m are unknown,
but their signs are known: br ¿ 0, bl ¡ 0, m¿ 0.

Fig. 1. Dead-zone model.

(A4) The dead-zone parameters br , bl, and m are bounded,
i.e. there exist known constants br min, br max, blmin,
blmax, mmin, mmax such that br ∈ [br min ; br max],
bl ∈ [blmin ; blmax], and m∈ [mmin ; mmax].

Remark. Assumption (A1) is common in practical systems,
such as servomotors and servovalves. If w(t) is measurable,
the control of dead-zone will be relatively easy and will not
be discussed in this paper. Assumption (A2) is generally
adopted in the literature (see, for example, Kim et al., 1994;
Lewis et al., 1999) and can commonly be met in the indus-
trial systems. Assumptions (A3) and (A4) are physically
satis;ed in real plants.

From a practical point of view, we can re-de;ne model
(1) as

w(t) = D(v(t)) = mv(t) + d(v(t)); (2)

where m is called the general slope of the dead-zone, d(v(t))
can be calculated from (1) and (2) as,

d(v(t)) =




−mbr for v(t)¿ br;

−mv(t) for bl ¡v(t)¡br;

−mbl for v(t)6 bl:

(3)

From Assumptions (A2) and (A4), one can conclude that
d(v(t)) is bounded, and satis;es

|d(v(t))|6 �;

where � is the upper-bound, which can be chosen as

�=max{mmaxbr max;−mmaxblmin}; (4)

where blmin carries a negative value.

3. Control problem statement

In this paper, the system to be controlled consists of non-
linear plants preceded by actuators with dead-zone. That is,
the dead-zone is present in series as the input of the nonlin-
ear plant.
A dead-zone nonlinearity can be denoted as an operator

w(t) = D(v(t)) (5)

with v(t) as input and w(t) as output. The operator D(v(t))
has been described in the previous section. The nonlinear
dynamic system preceded by the above dead-zone is
described as

x(n)(t) +
r∑
i=1

aiYi(x(t); ẋ(t); : : : ; x(n−1)(t)) = bw(t): (6)

We have the following assumptions about system (6):

(A5) Yi are known continuous, linear or nonlinear functions.
(A6) Parameters ai are unknown but constant.
(A7) The control gain b is unknown but constant. And fur-

ther the sign of b is known. From now on, without
losing generality, we assume b¿ 0.
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Remark. Assumptions (A5)–(A7) con;ne the type of sys-
tems to be considered in this paper. It should be noted that
this type of system represents a large class of physical non-
linear systems. In the spirit of the nonlinear control literature
(Isidori, 1989), these systems are in normal form and have
the relative degree equal to n without ;nite zero dynamics.
The system treated in this paper can be extended to an even
more general class of nonlinear systems (Mareels, Penfold,
& Evans, 1992). However, as will be clear later, the goal of
this paper is to show the controller design strategy without
construction of an inverse function in a simple setting that
reveals its essential features.

The control objective is to design a control law for v(t) in
(5) to let the plant state vector, x=[x; ẋ; : : : ; x(n−1)]T, follow
a speci;ed desired trajectory, xd = [xd ; ẋd ; : : : ; x

(n−1)
d ]T, i.e.,

x→ xd within a desired accuracy as t → ∞.

4. Adaptive controller design

In this section, we shall propose an adaptive controller
for plants of the form in (6), preceded by a dead-zone de-
scribed in (1), which will guarantee global system stability
and yields the system output tracking to a desired trajectory
within a desired accuracy.
Using expression (2), system (6) becomes

x(n)(t) +
r∑
i=1

aiYi(x(t); ẋ(t); : : : ; x(n−1)(t))

=bmv(t) + bd(v(t)): (7)

In which, the state variables of the control problem become
linear to the input signal v(t). It is very important to note
that d(v(t)) is uniformly bounded.
From (7), the signal w(t) is expressed as a linear func-

tion of input signal v(t) plus a bounded term. In such a
case, the currently available robust control techniques can
be utilized for the controller design. This explains the rea-
son for de;ning the intuitive simpli;ed dead-zone model
(3). In the following development, we shall adopt a robust
adaptive approach to illustrate the controller development.
It should be mentioned that other control approaches can
also be exploited for the controller development, see, for
example, Mareels et al. (1992).
For the development of an adaptive control law, the

following additional assumption regarding the desired
trajectory is made.

(A8) The desired trajectory, xd=[xd ; ẋd ; : : : ; x
(n−1)
d ]T is con-

tinuous and available. Furthermore [xTd ; x
(n)
d ]T ∈�d ⊂

Rn+1 with �d being a compact set.

Remark. Assumption (A8) depicts a restriction on the types
of reference signals which may be used.

To achieve the above stated control objective, a ;ltered
tracking error is de;ned as Slotine and Coetsee, 1986

s(t) =
(

d
dt

+ �
)n−1

x̃(t) with �¿ 0; (8)

which can be rewritten as

s(t) = �Tx̃(t)

with

�T = [�n−1; (n− 1)�n−2; : : : ; 1];

where x̃ = x− xd
From (8) and by de;ning �T

v = [0; �n−1; (n− 1)�n−2; : : : ;
(n− 1)�], it follows:

ṡ(t) =�T
v x̃(t) + x̃(n)(t)

=�T
v x̃(t)−

r∑
i=1

aiYi(x(t))

+ bmv(t) + bd(v(t))− x(n)d (t): (9)

Remark. It has been shown by Slotine and Coetsee (1986)
and Slotine (1984) that the de;nition (8) has the following
properties: (i) the equation s(t) = 0 de;nes a time-varying
hyperplane in Rn, on which the tracking error vector x̃(t) de-
cays exponentially to zero, (ii) if x̃(0)=0 and |s(t)|6 �with
constant �, then x̃(t)∈�� , {x̃(t)‖x̃i|6 2i−1�i−n�; i =
1; : : : ; n} for ∀t¿ 0, and (iii) if x̃(0) �= 0 and |s(t)|6 �, then
x̃(t) will converge to �� within a time-constant (n− 1)=�.

To keep the state variables on s(t) = 0, the condition
s(t)ṡ(t)6 −M |s(t)| should be satis;ed, which reasonably
leads to an ideal control law

v(t) =−kds(t) + 1
bm

(x(n)d (t)− �T
v x̃

T(t))

+
r∑
i=1

ai
bm

Yi(x(t))− d(v(t))
m

−Msgn(s(t)); (10)

where kd is a positive constant and M is a constant. How-
ever, in (10) some system parameters such as ai=bm are
unknown and a robust control law should be considered in
the controller design. Before introducing the control law,
some preparations are needed. Firstly, rather than driving
the adaptive law with the ;ltered error s(t) a tuning error,
s�, is introduced as follows:

s� = s− � sat
( s
�

)
; (11)

where � is an arbitrary positive constant and sat(·) is the
saturation function de;ned as:

sat(z) =




1 for z¿ 1;

z for − 1¡z¡ 1;

−1 for z6− 1:

(12)
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Secondly, in presenting the robust adaptive control law,
we de;ne

�̃= �̂− �;  ̃=  ̂−  ; (13)

where �̂ is an estimate of �, de;ned as � ,
[a1=bm; : : : ; ar=bm]T ∈Rr , and  ̂ is an estimate of  , which
is de;ned as  , (bm)−1.

Based on the given plant and dead-zone models under
the assumptions described above, the following control and
adaptation laws are presented:

v(t) =−kds(t) +  ̂ufd(t) + Y T(x)�̂− k∗sat
( s
�

)
; (14)

˙̂�i =−#Yi(x)s�; (15)

˙̂ =−$ufds�; (16)

where

ufd(t) = x(n)d (t)− �T
v x̃(t) (17)

Y , [Y1; : : : ; Yr]T ∈Rr; k∗ is a control gain, satisfying

k∗¿ �=mmin (18)

therein, � is de;ned in (4); # and $ are positive constants,
determining the rates of adaptations;

Remarks. (1) It should be noticed that in (14)–(16), the
exact values mentioned in Section 2 are not required. This
will simplify the control design in practical systems.
(2) The tuning error, s�, will disappear when the ;ltered

error, s, is less than �, which shall be the equivalent of
creating an adaptation deadband.
(3) The term k∗sat(s=�) actually reQects the component

for compensation of the bounded function d(v). And it gives
the robust property of the adaptive law. It also should be
noticed that if � is chosen too small, the linear region of
function sat(s=�) will be too thin, which will cause a risk of
exciting high-frequency Quctuations. As �→ 0, the function
sat(s=�) eventually becomes discontinuous. In such a case,
the controller becomes a typical variable structure control
scheme, which may cause chattering phenomena. This sug-
gests that a trade-o: must be made between the value of �
and trajectory-following requirements.

The stability of the closed-loop system described by (1),
(6) and (14)–(16) is established in the following theorem:

Theorem. For the plant in Eq. (6)with dead-zone (1) at the
input subject to assumptions (A1)–(A8), the robust adap-
tive controller speci;ed by Eqs. (14)–(16) ensures that all
the closed-loop signals are bounded and the state vector
x(t) converges to ��= {x(t)‖x̃i|6 2i−1�i−n�; i=1; : : : ; n}
for ∀t¿ t0.

The proof of this theorem is shown in the Appendix.

5. Simulation studies

In this section, we will illustrate the above method on a
nonlinear systems described as (Zhang & Feng, 1997)

Sx= a1
1− e−x

1 + e−x
− a2(ẋ2 + 2x)sin ẋ

− 0:5a3x sin 3t + bw(t); (19)

where w(t) is an output of a dead-zone. The parameters to be
simulated are b=1 and a1=a2=a3=1. Without control, i.e.,
w(t) = 0, as stated by Zhang and Feng (1997), the system
(19) is unstable (i.e. the linearization of the system at the
origin is unstable).This also has been veri;ed by simulation.
The control objective is to let the system state [x; ẋ]T follow
the desired trajectory [xd ; ẋd]T.
To verify the robustness of the method, the term

0:5a3x sin 3t in the above system is treated as an unmodeled
dynamics or disturbance, which will not be considered in
the controller design.
In the simulation, parameters of the dead-zone are br=0:5,

bl = −0:6, m = 1. And their bounds are chosen as br min =
0:1, br max = 0:6, blmin = −0:7, blmax = −0:1, mmin = 0:85,
mmax =1:25, and k∗=2:5. In the robust adaptive control law
(14)—(16), the control parameters are chosen as kd = 10,
#= 0:5, $= 0:5, �= 0:01, and the sample rate as 0.005.
Choosing the desired trajectory xd(t) = 2:5 sin t, simu-

lation results, with initial values as x(0) = [ − 2:5; 3:5]T,
�1(0) = 0:85, �2(0) = 0:85,  (0) = 0:85, are shown in
Figs. 2–6. Fig. 2 shows the position tracking perfor-
mance and Fig. 3 shows the corresponding tracking error.
Fig. 4 shows the input control signal of dead-zone v(t).
From Fig. 3, it clearly shows that the proposed robust con-
troller results in excellent tracking performance. We should
emphasize that the unmodeled dynamics 0:5a3x sin 3t has
not been accounted in the controller.
For the purpose of comparison, Fig. 5 shows the tracking

error of the same system with same parameters and desired
trajectory except that there was no dead-zone (i.e., br=bl=0
and m = 1). Fig. 6 shows the corresponding input control
signal to the system. Comparing Figs. 4 and 6, it is obvious
that v(t) plays a role when it crosses zero, which implies that
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Fig. 2. Tracking performance of the system with dead-zone.
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Fig. 3. Tracking error of the system state with dead-zone.
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Fig. 4. Control signal v(t) acting as the input of dead-zone.
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Fig. 5. Tracking error of the system state without dead-zone.

the developed control algorithm can overcome the e:ects of
the dead-zone.
As yet, no analytical approach has been developed for the

selection of the control constants. The approach to select
their values was through iterative simulation. For example,
in the simulation, � has been tried from 0.005 to 0.5, the
best tracking result was achieved when it was in the range
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Fig. 6. Control signal v(t) without dead-zone.

�= 0:015–0.05. All the simulation results in the paper cor-
respond to �= 0:02.

6. Conclusion

In practical control systems, dead-zones with unknown
parameters in physical components may severely limit the
performance of control. In this paper, a robust adaptive con-
trol architecture is proposed for a class of continuous-time
nonlinear dynamic systems preceded by a dead-zone. By us-
ing a new description of a dead-zone and by showing the
properties of this dead-zone model intuitively, this robust
adaptive control scheme is developed without constructing
a dead-zone inverse. The new control law ensures global
stability of the entire system and achieves both stabilization
and tracking within a desired precision. Simulations per-
formed on a unstable nonlinear system illustrate and clarify
the approach.
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Appendix.

Proof. Using expression (7), the time derivative of ;ltered
error (8) can be written as

ṡ(t) =−ufd(t)−
r∑
i=1

aiYi(x(t)) + bmv(t) + bd(v): (A.1)



412 X.-S. Wang et al. / Automatica 40 (2004) 407–413

Using the control law (14)–(16), the above equation can be
rewritten as

ṡ(t) =−ufd(t)−
r∑
i=1

aiYi(x(t))

+ bm
[
−kds(t) +  ̂ufd(t) + Y T(x)�̂− k∗sat

( s
�

)]
+ bd(v): (A.2)

To establish global boundedness, we de;ne a positive
function as

V (t) =
1
2

[
1
bm

s2� +
1
#
�̃ T�̃+

1
$
 ̃2

]
: (A.3)

Using (A.2) and the fact s�ṡ� = s�ṡ, it follows:

V̇ (t) =
1
bm

s�ṡ+
1
#
�̃ T ˙̂�+

1
$
 ̃ ˙̂ 

=−kds�s+ s�
[
 ̂ufd(t) + Y T(x)�̂− k∗sat

( s
�

)]

+
1
bm

s�

[
−ufd(t)−

r∑
i=1

aiYi(x(t)) + bd(v)

]

+
1
#
�̃ T ˙̂�+

1
$
 ̃ ˙̂ 

=−kds�s+ s�
[
 ̂ufd(t) + Y T(x)�̂− k∗sat

( s
�

)]
+ s�[−  ufd(t)− Y T�+ d(v)=m]

+
1
#
�̃ T ˙̂�+

1
$
 ̃ ˙̂ : (A.4)

By applying adaptation law (15), (16), one has

V̇ (t) = −kds�s− k∗s�sat
( s
�

)
+
d(v)
m

s�

= −kds�
(
s� + � sat

( s
�

))
− k∗s�sat

( s
�

)
+
d(v)
m

s�

= −kds2� − (kd�+ k∗)|s�|+ d(v)
m

s�

6−kds2� − kd�|s�| −
(
k∗ − |d(v)|

m

)
|s�|

6−kds2� : (A.5)

In the above procedure (A.5), the relationship equation (18),
|s�|=0 for |s|6 � and |s�|= s�sat(s=�) for |s|¿�, have been
used.
Integrating both sides of Eq. (A.5) shows that∫ t

0
kds2� d'6V (0)− V (t)6V (0)¡∞; ∀t¿ 0:

Therefore, s� ∈L2∩L∞ and �̃,  ̃∈L∞. From the de;nition of
s�, one can conclude that s(t)∈L∞. Considering the ;ltered
error dynamics (A.2), we see that ṡ∈L∞, which implies
that ṡ� ∈L∞. Because s� ∈L2 ∩ L∞ and ṡ� ∈L∞, it follows
from Barbalat’s lemma that s�(t) → 0 as t → ∞. The
remark following Eq. (8) indicates that x̃(t) will converge
to ��.
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