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Abstract

Recently, various adaptive fuzzy control schemes have been proposed to deal with nonlinear systems whose dynamics
are poorly understood by using the parameterized fuzzy approximators. However, most of the schemes presented so far
can only tune the parameters, which appear linearly in the parameterized fuzzy approximators. The major disadvantage is
that the desired approximation error may not be warranted and consequently, the control performance could be influenced.
In this paper, we tune not only the linear parameters but also the parameters, which appear nonlinearly in the fuzzy
approximators, to reduce the approximation error and to improve control performance. The proposed adaptive controller
ensures global stability of the overall adaptive system and achieves desired tracking. (©) 2002 Elsevier Science B.V. All
rights reserved.

Keywords: Fuzzy control; Fuzzy approximator; Adaptive control; Nonlinear parameterization; Global stability; Nonlinear
systems

1. Introduction

The application of fuzzy set theory to control problems has been the focus of numerous studies [1]. The
motivation is often that fuzzy set theory provides an alternative to the traditional modeling and design of
control systems where system knowledge and dynamic models in the traditional sense are uncertain and time
varying. In spite of many practical successes, fuzzy control has not been viewed as a rigorous approach due to
the lack of formal synthesis techniques, which can guarantee the basic requirements for control system such as
global stability. Recently, Lyapunov synthesis approach has successfully been used to construct stable fuzzy
controllers [2]. Therein, much attention has been paid to the systems with poorly understood dynamics and
several adaptive fuzzy control schemes have been proposed by using the parameterized fuzzy approximators
[2—6]. However, most of those schemes can only tune the parameters, which appear linearly in the parame-
terized fuzzy approximators [2,3,5,6]. The major disadvantage is that the desired approximation error may not
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be warranted and consequently, the control performance could be influenced. Until now, very few results are
available for the adjustment of nonlinearly parameterized systems [23]. Though the gradient approaches were
used [11-13], the way of fusing into the fuzzy control schemes to generate global stability is still an open
problem.

In this paper, our discussion is focused on a well-used parameterized fuzzy approximator, which is expressed
as a series of radial basis function (RBF) expansion [7]. The reason is its best approximation property. In the
RBF expansion, three parameter vectors are used: connection weights, variances, and centers. It is obvious
that as changes of these parameters, the bell-shaped radial functions will vary accordingly, and so will exhibit
various forms of shapes. This property could be utilized to capture the fast changing system dynamics, reduce
approximation error, and improve control performance. When centers are defined on a regular mesh, as shown
in [10], the approximation error of the RBF expansion relies crucially on the choices of the weights and
variances. Since the variances appear nonlinearly in RBF, the determination of adaptive law for such systems
is a nontrivial task. In this paper, with the help of concave/convex optimization technique in [15], a new
adaptive law is introduced, which not only tunes the linear parameters but also the nonlinear parameters. The
proposed adaptive controller ensures global stability of the overall adaptive system and achieves the desired
tracking. Simulations performed on different nonlinear systems illustrate and clarify the approach.

The arrangement of this article is as follows: Section 2 addresses the problem that will be discussed in
this paper. Section 3 is devoted to the general problem of function approximation using fuzzy IF-THEN
rules from human experts. In Section 4 an adaptive controller is developed to tune the parameters that appear
nonlinearly, while at the same time guaranteeing the global stability of the closed loop systems. In Section 5,
the performance of the proposed adaptive controller is verified through simulations and conclusion is given
in Section 6. A min—max optimization technique [15] used extensively in the paper is briefly reviewed in the
appendix.

2. Problem statement

This paper focuses on the design of adaptive control algorithms for a class of dynamic systems whose
equation of motion can be expressed in the canonical form as follows:

X)) 4+ F(x(2),%(2), ..., x" () = b(x(t),%(2), ..., x" "2 (t))u(t), (1)

where u(t) is the control input, f(-) is an unknown linear or nonlinear function and b(+) is the control gain. It
should be noted that more general classes of nonlinear systems could be transformed into this structure [22].

The control objective is to force the state X(¢)= [x(¢),x(¢),...,x""D(#)]" to follow a specified desired
trajectory, Xd(t):[xd(t),)'cd(t),...,xé"_l)(t)]T. Defining the 'Eracking error vector, X(¢)=X(t) — Xy4(¢), the
problem is to design a control law u(¢) which ensures that X(z) — 0 as t — oco. For simplicity in this initial
discussion, we take »=1 in the subsequent development.

Most of the results in adaptive control have focused on the situation where an explicit linear para-
meterization of the unknown function f(X) is possible. The parameterization f(X) can be expressed as
fX)= Z]ivzl 0;Y;(X), where 0; is a set of unknown parameters which appear linearly, and Y;(X) is a set of

known regressors or basis functions. Then, the function f(X) can be approximated as f X)= Z;V:l é_,—Y,—(X ).

As the approximation error only occurs on the parameters éj, adaptive methods can be used to adjust the
parameters 9_,- to achieve the control objective. The challenge addressed in this paper is the development of
adaptive controllers when an explicit linear parameterization of the function f(X) is either unknown or im-
possible. In the following section, it will be shown that using fuzzy IF-THEN rules, the unknown function
f(X) can be approximated by a parameterized fuzzy approximator. The parameters in this parameterized fuzzy
approximator can then be stably tuned to provide an effective tracking control architecture.
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Fig. 1. Basic configuration of fuzzy logic system.

3. Fuzzy systems

Consider a fuzzy system whose basic configuration is shown in Fig. 1 [7]. There are four principal elements
in such a fuzzy system: fuzzifier, fuzzy rule base, fuzzy inference engine, and defuzzifier. Let input space
X €R" be a compact product space. Assume that there are N rules in the rule base and each of which has
the following form:

Rj: IF xy is A} and x, is A; and---and x, is A}, THEN z is B,

where j=1,2,...,N, x; (i=1,2,...,n) are the input variables to the fuzzy system, z is the output variable
of the fuzzy system, and A; and B; are linguistic terms characterized by fuzzy membership functions uAj,_(x,-)
and pp (z), respectively.

As in [3,7], we consider a subset of the fuzzy systems with singleton fuzzifier, product inference, and
Gaussian membership function. In this case, such a fuzzy system can be written as

N n
hX) =Y o (H m;(m)) : )
Jj=1 i=1

where h:U C R"— R, X =(x1,x2,...,%,) €EU; w; is the point in R at which ug(w;)=1, named as the
connection weight; ,uAjz;(x,«) is the Gaussian membership function, defined by

fq (xi) = exp[— (a(xi — €N, (3)
where &, o] are real-valued parameters.

Remark. Contrary to the traditional notation, in this paper 1 /q} is used to represent the variance for the
convenience of later development.

Definition 1. Define fuzzy basis functions (FBFs) as

n
gi(aillX = &I = [ [ ), j=1.2.....N, (4)
i=1
where MAJ((X[) are the Gaussian membership functions defined in (3), &;=( },g’f,...,é;’) and oy:(ajl,ajz,...,

0/'). Then, the fuzzy system (2) is equivalent to a FBF expansion

N
hX) =" w;9/(0,X = &l (5)

j=1
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Lemma 1 (Su and Stepanenko [3], Wang and Mendel [7]). For any given real continuous function f on the
compact set U € R" and arbitrary &,>0, there exists optimal FBF expansion 4*(X) € A such that

sup | f(X) — 1*(X)| <& (6)
XeU

This theorem states that the FBF expansion (5) is a universal approximator on a compact set. Since the

fuzzy universal approximator is characterized by the parameters w;, g; and ¢;, the optimal 4*(X') contains the
optimal parameters w;, ¢ and {;.
Remarks. (1) It is important to note that since the fuzzy approximator (5) is constructed from the fuzzy
IF-THEN rules, linguistic information describing the plant from a human expert can be directly incorporated
to estimate the unknown function f. In this case, one may synthesize the controllers assuming that the fuzzy
logic system represents (approximately) the true plant.

(2) We should note that the above membership function could also be selected as other forms such as
sigmoidal functions [8] or triangular functions. However, it is shown in [9,10] that Gaussian basis functions
do have the best approximation property. This is the principal reason being the selection of the Guassian
function to characterize this membership function.

4. Adaptive fuzzy control system

When an explicit linear parameterization of the function f(X) is either unknown or impossible, by applying
Lemma 1, unknown function f(X) in (1) is approximated by a fuzzy approximator f*(X),

N N
X)) =" 0igiar|X =& =D wigie)), (7)

j=1 j=1
where the centers ¢; are placed on a regular mesh, and w; €R and O';TZ(O'/]*,O']Z*,...,GJM) are optimal

parameters for approximating the unknown function f(X) in (1). The approximation error ¢ can then be
expressed as

e= f(X)— f*(X). (8)

To construct f*(X), the values of the optimal parameters ; and ¢* are required. However, Lemma 1 does

not provide any insight on how to find the optimal parameters o and ¢* for a given number of fuzzy

IF-THEN rules. Normally the unknown parameters values w; and o/ are replaced by their estimates @; and

6;. Then the estimation function fxX)= Ejy:l ®;9;(6;|1X — &)= Zyil ®;g;(6;) is used instead of f*(X)
to approximate the unknown function f(X). The parameters in the estimated f(X) should then be stably
tuned to provide effective tracking control architecture. However, in recent adaptive fuzzy controllers [3,7,14],
only parameter vector @; which appears linearly in the estimation function, is tuned. This implies that the
shape of the fuzzy member function is fixed. As shown in [10], when centers are placed on a regular mesh,
the approximation error of the RBF expansion relies crucially on the choices of the weights and variances.
Without any doubt, the desirable approach is to tune the weights and variances simultaneously to achieve the
best approximation. Since the parameter 6; appears nonlinearly in the FBF expansion, it is a nontrivial task for
the adjustment of nonlinearly parameterized systems [23]. Though the gradient approaches were used [11—-13],
the way of fusing this approach with the adaptive fuzzy control schemes to generate global stability, is still
an open problem. The challenge addressed here to develop a method that can adaptively adjust the shape of
the fuzzy member function to achieve the best approximation. To accomplish such an objective, based on a
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min—-max optimization technique [15], a new adaptive controller, which tunes ®; and 6; simultaneously as
described below, is proposed that leads to global stability.
To develop the controller, as in [3,17], an error metric is defined as

n—1
s(t) = (i +z) (1) with 2>0, )

which can be rewritten as s(¢) = ATX(¢), with AT=[1""1,(n—1)/""2,...,1]. The equation s(¢)=0 defines a
time-varying hyperplane in R” on which the tracking error vector decays exponentially to zero, so that perfect
tracking can be asymptotically obtained by maintaining this condition [17]. In this case the control objective
becomes the design of a controller to force s(¢)=0. The time derivative of the error metric can be written as

$(t) = —xV(0) + ALX () +u— f(X), (10)

where A} =[0,4""!,(n — 1)A""2,...,(n — 1)A].
The structure of the plant in Eq. (10) suggests that when f(X') is known, a control input of form

u(t) = — kas(2) + x(t) — ALX (1) + f(X)

leads to a closed-loop system s$(¢)= — kqs(z), and hence, X(#)— 0 as t— oco. The question is how u(¢) can
be determined when f(X) is unknown. Before answering this question, it is reasonable to assume that there
exists a known constant ¢,>0, so that the approximation error ¢, defined as in (8), satisfies |¢| <e.

Inspired by the above control structure, using the fuzzy approximator f(X)= E;V:l ;g (6,|1X — &) =
Z?’:l ®;g;(6;) a natural choice for the adaptive control law is

N

u(t) = — kas(t) +x§(0) = ALX () + Y 9,65 1IX — &) — (@ + &) sgns), (n
Jj=1

(1) = = 4s(1)g,(6)), (12)

where 2; and f§; € R"*" are rates of adaptation, a* € R and x; € R"*! are time functions which are determined
as follows.
Before giving a* €R and «;} € R"™!, we should note that Egs. (12) and (13) are used to adjust &; and 6;

in the fuzzy approximator f (X). The role of the term (a* +¢&,)sgn(s) overcomes the effects of approximation
error due to the estimations of @; and 6; as well as uncertain nonlinearities such as unmodeled dynamics.
Now, consider Lyapunov function candidate

N N
1 Cia T el
Vi =5 SO+> ater+> 6pe | (14)
j=1 j=1

where the estimation errors of the parameters are defined as

~ ok



28 H. Han, C.-Y. Sul Fuzzy Sets and Systems 125 (2002) 23-38

Time derivative of V is given by

N N
V() =ss0) — S A ad, - > 66716

J=1 J=1

= —kas” (1) + (O (X) = f(X) = (a" + &7) sgn(s)]

N N
+5(0)Y @igi(6) +5(1)> K778

J=1 J=1

N N N N
= — kas?(t) +s(t) Z d)jg.,-(éj)—z w}‘g,-(a}‘)—e—(a*—|—£f)sgn(s)—|—z d)jgj(&j)—FZ K;T&J-
j=1

j=1 j=1 J=1

= —kas*(t) — es(t) — es|s(2)|

N N N N
+5() | 09,6 =D wigi(a)) —a sgn(s)+ Y digi(6)+ Y k16
j=1

j=1 Jj=1 J=1

[~ N N
= —kas* (1) — &s(t) — e/ [s(D] + () | Y 07g;(6) = > wigi(a}) —a*sgn(s)+ > 1}
Jj=1 j=1 J=1

N N
= — kas* (1) — es(t) — e/ [s()] — () | Y 07(g;(a7) = 9;(6)) + > _ &7(6; — 07) + a” sgn(s)
=1 j=1

N
= — kas™(t) = &s(t) — e7[s(D)] — 5(t) | D (@] (g;(07) — 9,(6))) + kT(6; — 67)) + a" sgn(s)

J=1

(16)

We now consider two distinct cases, (a) s(z) <0 and (b) s(#)>0, and show that ¥ (¢)<0 with proper choices
of a* €R and x € R"*' in both cases.

(a) s(¢)<0:

It follows that V(z)<0 if

N
a =Y (0](gi(0]) = g:(6))) + k(6 — a7)). (17)
j=1

Therefore, we can choose

N
a" =max Y ((9(0}) = 9;(6))) + 1" (6, = 77). (18)
" j=1
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Since the form of the controller in Eq. (11) suggests that the quantity a* is like a gain, we seek to find an

K/ so that ¢* is minimized. Hence our goal is to choose «; as

a**lgnel}ra},géagZ(w (9/(07) — 9/(6)) + K7 (6; — o7)). (19)

At this stage, we need to perform a min-max optimization to find ¢* and x to complete the controller
design. For the above optimization problem, several algorithms [20,21] have been proposed to obtain the
values of ¢ and «;. However, they generally involve a numerical search over the feasible set of solutions
with complicated computing procedures. To simplify the problem, we notice that the nonlinear function g,(-)
is a convex and — g;(-) is concave with respect to ¢;. In this case, the concave/convex optimization technique
developed by Annaswamy et al. [15] can be utilized to obtain an analytic solution for a* and ;. The detailed
description of the concave/convex optimization technique is listed in the appendix. However, we should note
that, the concave/convex optimization technique could not be applied directly. To determine whether the
function ®;g;(0;) is convex or concave, the sign of w; must be known, because g;(g;) is convex on 6, so
w;g;(o;) will be convex when w; >0, and concave when w; <0.

S1nce o} is the optimal we1ghts in (6), it is reasonable to assume that the range of w; is known, ie.,
a) € [0} Dmax]- Now, we define a new parameter p; € [ pmin, Pmax], the boundaries pin and Pmax are positive
constants which can be chosen by the designer. To deal with the problem of sign of w;, we introduce the
following one-to-one mapping:

w; =m+np;, p;>0, (20)
where
m = a):;lin _ DOmax — wmm Prmins (21)
Pmax — Pmin
p = Zmax — Omin (50, (22)
Pmax — Pmin

Substituting (20)—(22) into (19), we have

* 1 * ~ *T/ A~ *
a” = min max Z; ((m +1p;X9(57) = 95(6))) + 157 (6; = 77)
p=

kaj ER" 6 €O

N
= min max > (O — npwin +1p1)9;(07) = 9;(67) + 157(6; = 07)
' "=l
=aj +4a;, (23)
where
af = min max > (@hin(9,(0)) = 9,(6)) + 1] (6; = 7)), (24)
, ra
* ~ *T/ A *
a; = min maxZ (n(p; = Pain)9;(07) — 9;(6/)) + 137 (6; — 7). (25)
=1
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Remark. The either convex or concave of wy: g;(g;) and n(p; — pmin)g;(g;) could be determined in both (24)

and (25) via the one-to-one mapping, since the sign of wj..

is known by the assumption and n(p; — pmin)>0.

Now applying the concave/convex optimization results described in the appendix, we can get the solutions

for a},a3,x7; and «j; that lead to V(1) <0.
N

> dp i ofy, =0,

j=1

*
a, =

0 if oy, <O,

min

* . *
" wminAj2 if wpi, =0,
K=

* : *
wmianj@ if WDpyip < 0,

where 4; =[4;1,4]" = Gj_lbj, Aj is a scalar, 4 € R",

N T ~
=1 o5in(6; — aj1) w;:lin(gj — gjst)
~ T N
-1 w;in(aj - stz) w;in(gj - gsz)
G = ) ) , b= i s Yisi = 9j(0si)
~ T A
—1 6Ury;in(o'j = Ojsn+1) w:‘lin(gj — Gjsnt1)

and

N

*

ay = E Bj,
Jj=1

K;j = n(pj — Pmin )sz,

where B; =[B;1,B;]" = Gj_lb_,-, Bj is a scalar, B €R",

1 n(p; — pmin)(6; — 0j1)" n(p; — pmin)d; — gjs1)
-1 n(pj - pmin)(&j - stZ)T ”(pj - pmin)(j/ - g_;sz)
G = : » b= .
-1 n(pj - pmin)(éj - O-janrl)T ”(P; - Pmin)(éj - gjan)
(b) s(t)>0: '
Similar to the argument in (a), it follows that V' (¢)<0 if
N
a* = min max > _ [ (] (g,(0}) — g;(6))) + K{](6; = 0)))]
ER" 0€0O =

=aj +a;,

(26)

(27)

(28)

(29)

(30)

(€29)

(32)
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where
N
ai = i, max 3 [~ (0hn(95(0]) = 95(6))) + K7 (6 = o} ], (33)
kijER" 6EO; £ - min\JJ\*j Jj\Yj J Jj j
=
N
a3 = min max > [~ (n(p; — puin)(9/(7}) — 4,(6)) + K31 (é; — 7}))). (34)
j o s =1

The solutions of af, a3, x}; and «3; are given as follows:

* N
“ 35
) YA i o<, (35)
=1
—0nin Ve, if o, =0,
Kl = " (36)
—onipdp i o, <0,
where 4;=[d;1,Ap]" =G 'b;, A; is a scalar, 45 €R",
—1 =06 — i)’ — 0nin(d; — gjs1)
-1 — 0hin(6; — 0j2)" — 0nin(d; — 9js2)
G, = . J J , b= . 37)
*(h T
-1 - Dpmin (Uj — 0jsN+1) _ w;l;lm(g'\] o gjsn+1)
and
a, =0, G38)
K;j =—n(p; — Pmin)ng@j. (39)

The above shows that V(¢)<0. Therefore, all signals in the system are bounded. Since s(¢) is uniformly
bounded, it is easily shown that, if X(0) is bounded, then X(¢) is also bounded for all 7, and since Xy(¢)
is bounded by design, X(z) is as well. To complete the proof and establish asymptotic convergence of the
tracking error, it is necessary to show that s(¢) — 0 as t — co. This can be accomplished by applying Barbalat’s
lemma to the continuous, nonnegative function:

Vi(t) = V(t) — /Ot(V(T)-i—kdsz(r))dr with V(1) = —kas?(2). (40)

It can easily be shown that every term in (10) is bounded, hence s(¢) is bounded, which implies that V;(¢)
is a uniformly continuous function of time. Since ¥, is bounded below by 0, and V;(¢)<0 for all ¢, use
of Barbalat’s lemma proves that Vj(¢) — 0 and hence from (40) that s(¢) — 0 as ¢ — co. The stability of the
closed-loop system described by (1), (11)—(13), (26)—(31) and (35)—(39) is thus established in the following
theorem.
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Theorem 1. If the robust adaptive control laws (11)—(13), (26)—(31) and (35)—(39) are applied 1o the
nonlinear plant (1), then all closed-loop signals are bounded and X(t)— 0 as t — oc.

Remarks. (1) Thanks to the concave/convex property of the nonlinear function g;(-) for o;, it makes use of
the optimization technique [15] possible. In this case, a globally stable adaptive system can be established. This
is possible mainly due to the analytic solution for ¢* and «;' as a min—max optimization problem. The main
feature of the new adaptive controller is that both parameters @; that occur linear in the fuzzy approximator
and parameters 6; that occur nonlinearly can be tuned, simultaneously.

(2) Continuity with respect to switches of g;(-) between concavity and convexity in (11)—(13) can easily
be proved [15]. However, the control law (11)—(13) is discontinuous along the surface s(¢) = 0 due to the
existence of sgn(e). It can lead to control chatter. Chattering is undesirable in practice because it involves
high control activity and further may excite high frequency unmodelled dynamics. This can be remedied by
approximating these discontinuous control laws by continuous ones inside a boundary layer [17]. To do this,
sgn(e) in (11) is replaced by sat(e/c), where ¢ is the boundary layer thickness. This leads to tracking within
a guaranteed precision.

5. Simulation examples

To illustrate and clarify the proposed design procedure, we apply the adaptive fuzzy controller developed
in Section 4 to control an unstable nonlinear system (Example 1) and a chaotic system (Example 2).

Example 1. A nonlinear system is described as [2,3]

. 1 —e™*®

Without the control and disturbance, i.e., u(¢) =0, it can be easily seen that the system is unstable, because of
¥(t)=(1—eD)/(1 +e*D)>0 for x(¢t)>0, and X(¢) = (1 — e *")/(1 +e D) <0 for x(¢)<0. The control
objective is to force the system state x(¢) to the origin; i.e., x4 =0. The simulation is conducted with the
following linguistic descriptions:

RI}: IF x is near k, THEN f is near By

where near k, k= —3,-2,—1,0,1,2,3, is a fuzzy set with membership functions w(x)= exp(— (a(x —
k))?), which are shown in Fig. 2 with initial variances ¢ =1. B, are obtained by evaluating f at points
x=-3,-2,—-1,0,1,2,3. The values of B; and ¢ are not required here since the exact W* and ¢* are not
required in the control law. However, with the knowledge about the FBF expansion it will be helpful for
the choice of initial J7(0) and &(0) to speed up the adaptation process. In this example, those initial values
W(O), and 6(0) are selected as W(O) =[-08,—0.6,—0.4,0,0.4,0.6,0.8]" and 6(0)=[1,1,1,1,1,1,1]".

Control law (11) was used with k4 = 10. The rates of the adaptation (12) and (13) are selected as 4; =0.1
and f;=0.8 where j=1,2,...,7. Referring to the nonlinearity f being uniformly upper bounded, namely
(1 —e™M)/(1 + e ™)<, the upper bound &, in (11) is thus selected as ¢, =1. To avoid the control
chatter, as mentioned in Remark (2) in Section 4, we adopted the saturation function saz(-) with a boundary
layer ¢ =0.05 instead of the sign function sgn(-). The initial state and sampling time are chosen as x(0)=2
and ¢#=0.005.

Since the parameter ¢ in each Guassian function is a scalar, the hypercube, ® and the simplex, O;
coincide. In this case, we choose @ = Oy =[0G nin, Omax]. For this simulation example, o, are chosen as
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Fig. 2. Initial membership functions in antecedent.
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Fig. 3. Closed-loop state x(¢) using the controller law (11)—(13).

Omin=[—0.9,—0.7,— 0.5,—0.1,0.3,0.5,0.7]T, and omax are chosen as O =[—0.7,—0.5,—0.3,0.1,0.5,
0.7,0.9]".

Simulation results are shown in Figs. 3-5. Fig. 3 shows the evolution x(¢). A dramatic improvement on the
system performance is observed, if compared with the result in [2]. Therefore, tuning all the parameters in FBF
expansion clearly results in a superior tracking performance. The amount of control effort required to achieve
the above level of performance is illustrated in Fig. 4, which confirms the smoothness of the control signal.
The final tuned membership functions in antecedent are shown in Fig. 5. Comparing the initial membership
function in Fig. 2, it is obvious that the variances in FBF expansion have been changed. Since the state x
has an initial value x(0)=2 (>0) and speedily converged to the origin x4 =0 without any overshoots, the
variances in positive region are tuned and the others in negative region are not tuned.

To show the robustness of the control scheme, an unknown disturbance or unmodeled dynamics d(¢) is
added to the system model. The corresponding system becomes

0.5 04 ,

<t<06
+d(t)+u(t) with d(t)y={ —05 07<¢<009, (42)

. 1 —e*®
xX(t)= TFe®

0 otherwise.
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u(t)
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-25

Fig. 4. Control signal u(¢) using the controller law (11)—(13).
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Fig. 6. Closed-loop state x(¢) using the controller law (11)—(13) with disturbance d(¢).

Without the change of the controller parameters and fuzzy descriptions described above, simulation results
are shown in Figs. 6 and 7. It is obvious that the proposed control scheme has strong robustness over the
unknown disturbance or unmodeled dynamics.
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Fig. 7. Control signal u(¢) using the controller law (11)—(13) with disturbance d(¢).

10

Fig. 8. Unforced trajectories (x, x).

Example 2. In this example, we consider the Duffing forced-oscillation system:
¥(t) = — ax(t) — bx>(t) + ccos(t) + u, (43)

which is chaotic in unforced case, i.e., u=0. The unforced trajectory of the system is shown in Fig. 8 in
phase plane (x,x) for x(0) =x(0)=2, a=0.11, b=1, c=12 and time period # =0 to ¢, = 60. Now, we use
the control algorithm proposed in the previous section to force the state x(¢) to follow a desired trajectory
x4(¢)=sin(¢). In the phase plane, the desired trajectory is a unit circle: x4(¢) + x4(¢) = 1. In this simulation,
we choose the initial membership functions as shown in Fig. 2 for both x(¢) and x(¢). Clearly, the two input
variables can set up 7 X 7=49 fuzzy rules as follows:

Rj: IF x is PBj and X is NZ;, THEN f is w;.

To verify the control scheme, suppose that we have no knowledge regarding the function f = —ax(t) —
bx3(t) + ccos(t), so the initial consequent variables, for example, w;, are selected randomly. To find ¢* and
;cj?k, the construction of a simples @, is needed. Since in each fuzzy rule there are two variances in antecedent
that have to be tuned by adaptive law (13), the simplex is chosen by Fig. 9.

As mentioned before, because we do not have any knowledge about function f, it is impossible to give
a suitable range, [0i min, 0ji max], Of €ach variance oj; on specifics. Hence, the only thing we can do is to
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Fig. 9. Simplex 0.

d/dt x(t)

Fig. 10. Closed-loop trajectories (x, x) using the controller law (11)—(13).

choose a large range [Gmin, Omax], and suppose that this is a common range for every ;. In this simulation,
we take omin =0.01 and oy = 2. The closed-loop trajectory is shown in Fig. 10, where the initial conditions
are x(0) =x(0) =2. We see that our control scheme can control the system with some unknown time-variable
facts such as cos(#) to track the desired trajectory well.

6. Conclusion

In this paper a new adaptive fuzzy control law is presented. The main feature of the proposed method lies
in the fact that the parameters, which appear nonlinearly in the fuzzy approximator, can stably be tuned. In
this case the approximation error can be reduced and control performance can, therefore, be improved. The
developed controller guarantees the global stability of the resulting closed-loop system. Simulation results for
different nonlinear systems confirmed the theoretic analysis.
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Appendix A solution for min—-max problem [15]

Definition. A function f(0) is said to be (i) convex on @ if it satisfies the following inequality:

JGOL+ (1 =D)b) < 2f(00)+ A =24)f(62), V01,0, €0 (A.1)

and (ii) concave if it satisfies the inequality

J(201 + (1 = 2)02) = 2f(01) + (1 = ) f(02), V01,6, € O, (A.2)

where VA€ [0, 1].

Let us consider a scalar function f(¢(¢), ), which is continuous and bounded with respect to its arguments.
0 is a parameter vector and belongs to a known hypercube ® C R", ¢p(¢) € R" is a known bounded function of
X, and for any ¢(t), f(¢(2),0) is either convex or concave on Oy, where O is a simplex in R" such that
O; D 0. Suppose that vertices of O, are denoted as 0 (i=1,2,...,n). Then O, may be expressed as

0, - {es

n+1

> w=1. (A.4)
i=1

Lemma. Let

n+1

0, = Zoc,ﬁs,}, 0<o <1, (A.3)
i=1

J(@,0) = f(,0) = f($,0) + (0 - 0), (A5)
at = wnéilg (r)lé%)f BJ(w,0), (A.6)
K* = arg ur)réann gréa@)i BJ(w,0), (A.7)

where 0 € @, and p is a known non-zero constant. Then

Ay if Bf is convex on O,

S R if .
0 if Bf is concave on O,
A g is convex on Oy,

L[4 i 9 .
Vfo if Bf is concave on O,
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where Vfy=0f/®, A=[A1,4]' =G~ 'b, A, is a scalar, A, € R™,

—1 PO —0)" Bf — fa1)

1 B0 —0u)" B — )

G= , b= (A.10)

-1 ﬂ(é - Hstrl)T ﬁ(f - fsm+1)
and fsi= f(¢,04).
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