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From (12) we obtain 

0 

0 - 1 - X z - X 3  

Then the observer is 

i 1  = X l Z l  

Robust MotiodForce Control of Mechanical 
Systems with Classical Nonholonomic Constraints 

Chun-Yi Su and Yury Stepanenko 

Abstrucf-The positiodforce control of mechanical systems subject to 
a set of classical nonholonomic constraints represents an important class 
of control problems. In this note, a reduced dynamic model, suitable for 
simultaneous independent motion and force control, is developed. Some 
properties of the dynamic model are exploited to facilitate the controller 
design. Based on the theory of guaranteed stability of uncertain systems, 
a robust control algorithm is derived, which guarantees the uniform ulti- 
mate boundedness of the tracking errors. A detailed numerical example 
is presented to illustrate the developed method. 

23 = -22 + (A2 + X3)z3’- (1 + A2 + X3)y* 

and 
I. INTRODUCTION 

The control of mechanical systems with kinematic constraints has 
received increasing attention and is a topic of great interest. A lot of 
papers have been published in recent years to deal with the control 
problem when the kinematic constraints are holonomic constraints 
[1]-[4]. In contrast, if the kinematic constraints are nonholonomic, 
control laws developed for holonomic constraints are not applicable; 
only a few papers have been proposed to address these control 
issues. In this note, our discussions are focused on the classical 
nonholomonic case, and analyses are given from the Lagrangian 
point of view. As for the HamiltoNan case. with other forms of 
nonholonomic constraints, the reader may refer to [12]. 

It is well known that in rolling or cutting motions the kinematic 

21 = y1 + 21 

2 2  = 22 

23 = z3. 

This observer Can be reduced to a second-order one, since 
Re(X1) < 0. 

constraint equations ax classical nonholonomic [lo], and the dy- 
namics of such systems is well understood (see, e.g. [lo]). However, 

IV. CONCLUSION 
In this we have presented a simp1e method to design a full- 

Order Observer for a linear system with unknown inputs. This method 
reduces the procedure Of Observers with unknown 

the literame on control with classical nonholonomic constraints is 
quite recent [5] ,  [7], [8], and the discussion mainly focuses on some 
special examples [ I l l ,  [13]-[15]. Earlier work that deals with control 

inputs to a standard one where the inputs are known. The existence 
conditions are given$ and it was shown that these conditions are 
generally adopted for unknown inputs observer problem. 

of nonholonomic system is described in [9]. Bloch and McClamroch 
[5] ,  Bloch et al. [7], and Campion et al.  [8] demonstrated that systems 
with nonholonomic constraints are always controllable, but cannot be 
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feedback stabilized to a single point with smooth feedback. By using 
a decomposition transformation and nonlinear feedback, conditions 
for smooth asymptotic stabilization to an equilibrium manifold are 
established. d’hdrea-Novel et al. [ll] and Yun et al. [13] showed 
that the system is linearizable by choosing a proper set of output 
equations, and then applied, respectively, their results to the control 
of wheeled mobile robots and multiple arms. Researchers have also 
offered both nonsmooth feedback laws [6], [7], [14] and time-varying 
feedback laws [15] for stabilizing the system to a point. However, it 
is fair to say that the last two approaches are not yet fully general. 

The above mentioned approaches, e.g. [51, [71, and [81, indeed 
provide a theoretic framework which can serve as a basis for the study 
of mechanical systems with nonholonomic constraints; however, all 
of those results are based on the method of a diffeomorphism and 
nonlinear feedback (for details, see [16]), which requires a detailed 
dynamic model and may be sensitive to parametric uncertainties. 

In this note, a different control approach is proposed, in which 
the control of the constraint force due to the existence of classical 
constraints is also included. By assuming complete knowledge of 
the constraint manifold, and recognizing that the degree of freedom 
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of mechanical systems decrease due to nonholonomic constraints, 
a reduced-form equation suitable for motion and force control is 
derived. Then, by exploiting the particular structure of the reduced 
dynamics, several fundamental properties are obtained to facilitate 
the controller design. Finally, with the specification of a desired 
manifold, a smooth robust control algorithm is derived, using only 
the measurements of joint position, velocity, and constraint force. 
Stability analysis shows the stabilization of the manifold in the sense 
that tracking errors are uniformly ultimately bounded. 

II. MODEL OF ROBOTIC SYSTEM WITH 
CLASSICAL NONHOLONOMIC CONSTRAINTS 

In this section, we are concemed with mechanical systems whose 
configuration space is an n-dimensional simply connected manifold 
R, and whose dynamics are described, in local coordinates (termed 
generalized coordinates), by so called Euler-Lagrangian formulation 
as [81, ill1 

where q denotes the n-vector of generalized coordinates; U denotes 
the r-vector of generalized control input force; f denotes the n-vector 
of constraint forces; D(q)  is the (n xn)  symmetric, bounded, positive 
definite inertia matrix; C(q, g)Ij presents the n-vector of centripetal 
and Coriolis torques; G(q) is the n-vector of gravitational torques, 
B(q) is an (n x r) input transformation matrix. 

Two simplifying properties should be noted about this dynamic 
structure. 

Property 1: There exists a p-vector Q with components depending 
on mechanical parameters (masses, moments of inertia, etc.), such 
that [17] 

where 0 is an n x p matrix of known functions of q, q, v ,  6; and cr 
is the p-vector of inertia parameters [18]. 

Property 2: A suitable definition of C(q, q )  makes the matrix 
(h - 2C) skew-symmetric [17]. In particular, this is true if the 
elements of C(q, q )  are defined as in [8]. 

It should be noted that the first property says that the Lagrangian 
dynamic equation are linearly parameterizable and the second prop- 
erty is related to the passivity of the mechanical dynamics. 

Let consider the situation where kinematic constraints are imposed, 
which are described by 151, [71, [81, [lo], 1111, and [131 

where J(q )  is an (m x n) constraint matrix which is assumed to 
have full rankm. 

The constraint equations (4) are assumed to be classical nonholo- 
nomic constraints. Such constraints can arise in many cases, including 
the case when two surfaces roll against each other [lo], [13]. 
The classical constraints are assumed not integrable. Nonintegrable 
constrains cannot be reduced to geometric constraints while integrable 
constraints are essentially geometric constraints (see [lo] for the 
detailed explanation). 

The effect of the constraints can be reviewed as restricting the 
dynamics to the manifold 0 defined by 

It should be noted that since the constraints are nonintegrable, there 
is, in fact, no explicit restriction on the values of the variables q. 

When the nonholonomic constraints (4) are imposed on the me- 
chanical systems (l), the constraint (generalized reaction) forces are 
given by 

f = J T  (QP (5)  

where X E R“ is the associated Lagrangian multipliers [5], [7], [8], 
[IO]. 

In the following, we denote the constraint matrix J ( q )  as 

where J1,. . , J ,  are smooth n-dimensional covector fields on R. 
Then, the annihilator of the codistribution spanned by the covector 
fields J1,. . . , J ,  is an (n - m)-dimensional smooth nonsingular 
distribution A on R. This distribution A is spanned by a set of 
(n - m) smooth vector fields rl,...,rn-,: 

which satisfy, in local coordinates, the following relations [8] 

where the full rank matrix R(q) is made up of the vector function 
ri(q): 

R(q) = [rl(q),”’irn-m(!?)I. 

The constraints (4) and (6) imply the existence of an (n  - m)-vector 
i such that 

I j  = R(q)i .  (7) 

It should be noted that the (n - m)-vector i represents internal 
states, so that (q, i )  is sufficient to describe the constrained motion. 

Differentiating (7), we obtain 

q =  R i + R i .  (8) 

Therefore, the dynamic equation (l), when satisfying the nonholo- 
nomic constraint (4), can be rewritten in terms of the internal state 
variables t as 

where c1(q7 4) = D(q)k(q) + C(q7 i ) R ( q ) *  
It should be noted that reduced state space is 2n - m dimensional. 

The system is described by the n-vector of variables q and the 
(n - m)-vector of variables 2. 

Remark: Equation (9) is suitable for control purposes and forms 
the basis for the subsequent development. This is because the equality 
constraint equation (4) are embedded into the dynamic equation, 
resulting in an affine nonlinear system without constraints. 
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By exploiting the structure of the equation (9), three properties are 
obtained. 

Property 3: The generalized inertia matrix RT D(q) R is symmet- 
ric and positive definite. 

Property 4: Define 0 1 ( q )  = RTD(q)R. If C(q, q) is defined as 
that Property 2 is verified, (01 -2RTC1) is a skew-symmetric matrix. 

Pro03 Directly, by using the definition of D1 and C1 and by 
considering the skew symmetry of ( D  - 2C) in property 2. 

Property5:  The dynamic structure (9) is linear in terms of the 
same suitably selected set of inertia parameters as used in Property 1 

where @I is an (n x p) regressor matrix; a is the p-vector of inertia 
parameters. 

Property 5 may be easily understood by observing that the transfor- 
mations do not change the linearity in terms of constant parameters 
a, established for model (1) by Property 1. 

The aforementioned properties are fundamental for designing the 
robust forcdmotion control law. 

m. CONTROLLER DESIGN FOR MOTION/FORCE m C K I N G  

It has been proved (see [5] ,  [7], and [SI) that the nonholonomic 
system (1) and (4) cannot be stabilized to a single point using smooth 
state feedback. It can only be stabilized to a manifold of dimension m 
due to the existence of m nonholonomic constraints. The objective of 
stabilizing these systems to a point has been achieved by nonsmooth 
feedback law [6], 171, 1141, and time-varying feedback laws [IS]. 
However, it is fair to say that these approaches are not yet fully 
general. It is worth mentioning that different control objectives may 
also be pursued, such as stabilization to manifolds of equilibrium 
points (as opposed to a single equilibrium position) or to trajectories 
(as long as they do not converge to a point). 

By appropriately selecting a set of (n - m)-vector of variables 
z(q) and t ( q ) ,  the objective of the control can be specified as: given 
a desired Z d ,  i d ,  and desired constraint A d ,  determine a control law 
such that for any (q(O),  q(0)) E fl then z(q), q, and X asymptotically 
converge to a manifold fld specified as 

The variables z(q) can be thought as n - m “output equations” of 
the nonholonomic system. The choice of z(q) is, as an example, 
illustrated in the next section. 

Remark: If Z d ,  z d  are zero and Ad free, then fld = { (q ,  q) lz(q) = 
0, q = :}Tis the equilibrium manifold defined in (7). If q = 
[q l )T ,  ( q  ) ] is a partition, where q1 E R”-”, q2 E R”, and 

0,  4’ = 0,  q2 = 0 )  is the equilibrium manifold in [5]. If z(q) = 

invariant set in [81. Therefore, compared to [5] ,  [71, and [81, we 
extend the stabilization problem to the tracking problem, including 
tracking of the contact force A. 

In the following, we define 

Z ( q )  = ql,  Zd = i d  = 0, and A d  free, then fld = { ( q ,  q)lq’ = 

RTq, i d  = 0,  and Ad free, then !& = { (q ,  i ) lRTq = 0 )  is the 

where A is a positive definite matrix whose eigenvalues are strictly 
in the right-hand complex plane. 

Defining a as a p-vector, containing the unknown elements in the 
suitably selected set of equivalent dynamic parameters, then the linear 
parameterizability of the dynamics (Property 5) leads to 

where @1 is the (n  x p) regressor matrix. 
A robust control law is defined as 

where @I is defined in (14); R is defined in (6); K is an n x n 
positive-definite matrix, p E R+ used in (16) is the upper bounds 
of inertia parameter a, i.e., llall 5 p, which is assumed known; E 

is an constant; the vector s, which can be thought of as a sliding 
surface. is defined as 

s = e ,  + ne,; 
the force term A, is defined as 

where K A  is a constant matrix of force control feedback gains. 
The above controller consists of two parts. The first part provides 

the input torques for achieving desired “output” and internal state 
tracking. The second part provides the desired force tracking. 

The following theorem can be stated 
Theorem: Consider the mechanical system described by (1) and 

(4), using the control law (15) and (16), then the following holds for 
any ( Q ( O ) ,  i ( 0 ) )  E 0: 

i. e, and e ,  are uniformly ultimately bounded. 
ii. ex is uniformly ultimately bounded and inversely proportional 

to the norm of the matrix Kx + I. 
Proo$ Based on (17), using (9), (14), and (15), and after some 

calculations, the following is obtained: 

DRi = @1(p - @la - K R s  - Cls - J T ( X ,  - A). (19) 

According to (6), the above equation becomes 

D l i  = RT@l’p - R T @ l a  - RTKRP - RTCls. (20) 

Let us consider the generalized Lyapunov function 

A simple calculation shows that along solutions of (20) 

V = aT(RT@1(p - RT@la - RTKRs) +sT 

= -sT RT KRs + sT RT @I (‘p - a )  (22) 
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where we have used Property 6 to eliminate the term sT(1/2D1 - 
C1)s. Using an argument similar to [18], if Il@TRsll > E, the second 
term in (22) is 

from the Cauchy-Schwartz inequality and our assumption on IIaII. 
If II@TRsll 5 E, we have 

The last term achieves a maximum value of ~ / 2 p  when Il@TRsll = 
€12. Thus we have that 

where 7 = X,;,(RTKR), 6 = € 1 2 ~ .  From the above we obtain an 
upper bound of s as 

where 7j = ~ / X Z ,  and XI and XZ are positive scalars with property 
A 1 1  5 D1 5 X Z I .  Therefore, s is uniformly ultimately bounded. By 
standard arguments and the definition of s in (17), it can be shown 
that e,, and e,  are also uniformly ultimately bounded. 

Since s, e, and e, are bounded, it follows that i, i,, and 2,. are all 
bounded. Therefore, all signals on the right side of (20) are bounded 
and we can conclude that i and therefore I are bounded. Substituting 
the control (15) and (16) into reduced order dynamic model (9) yields 

where U is a bounded function. Thus 

JTex = (Kh + 1)-10 

and therefore the force tracking error (f -fd) are bounded and can 
be adjusted by changing the feedback gain K A .  Thus, the theorem is 

Remarks: 1) The control law is, in a simple fashion, related to the 
bounds of the inertia parameters a so that the parameter variations 
in the plant can be taken into account easily. 

2) From (26), it is shown how E affects the size of the ball within 
which ((sll is ultimately confined. If E + 0, then s + 0 and therefore 
e, + 0 and e, + 0, (q ,  4, A) + % exponentially. In such a 
case, y in (15) becomes y = sgn(@TRs), which is a typical sliding 
mode control law. As a matter of fact, the control law (16) is just a 
smoothing realization of the switch function y = sgn ((a: Rs) so as 
to overcome chattering, which is undesirable in practice. 

3) If the ineltia parameters a is known, we can simply take 
y = a in control law (15). In this case, it can be easily shown 
that v 5 -sTRTKR8; therefore, (q ,  q, A) + f i d  as t + 03. 

proved. V 
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Fig. 1 .  Position trajectoq of y. 
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Fig. 2. Position trajectory of 8. 

4) Suppose y in control law (15) is replaced by &, represent- 
ing estimation of a, and & is updated by & = -I'@TRs. With 
this algorithm, the closed loop system is globally convergent, i.e., 
(q, q, A) + !& as t + CO. Following the argument of [18], the 
question of whether to use robust control or adaptive control does 
not have an obvious answer. Clearly the adaptive control is easier 
to design and would be expected to work better if the uncertainty is 
large. However, it is known that adaptive control performs poorly in 
the presence of external disturbance and unmodeled dynamics unless 
the algorithm is modified. Such modification will result in a more 
complicated design comparable to the present robust design. 

IV. SIMULATED EXAMPLE 

A simplified model of a mobile wheeled robot moving on a 
horizontal plane, constituted by a rigid trolley equipped with non- 
deformable wheels, as given in details in [8], is used to verify the 
validity of the control approach outlined in this note. 

The dynamic model can be expressed as [8] 

1 
my=Xsin8+-(u l+u2)cosb '  P 

*- L 
P 1,e = -(U1 - u2) 
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where x, y are coordinates in an inertial frame, 6 is an orientation [cos8 sin6 OITX. The “outputs” are chosen as 
of the wheel with respect to the inertial frame, m is the mass of the 
robot, and 1, is its inertial moment around the vertical axis, P is 
the radius of the wheels and 2L the length of the axis of the front 
wheels, and ut is the torques provided by the motors. For simplicity, 
we set L = P = 1. 

The nonholonomic constraint is written as 
The matrix R(q) defined in (6) is chosen as: 

kcos8 + y sin8 = 0 (29) R =  [$“ 81 
The matrix J ( q )  is therefore defined as J ( q )  = [cos8 sin6 01, 

where q = [z y elT. The constraint forces are f = so the relation q = R(q) t  is satisfied. 
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The desired manifold i& is chosen as 

The robust control law (15) with (16) is used so that q = [zyBIT, 

The unknown parameters Q in (14) is chosen as Q = [m, 
and A approach f&. 

then, the regressor matrix defined in (14) can be written as 

The true values of m and I ,  are m = 0.5 and I ,  = 0.5. Thus, 
we choose p = 1 in the control law (15) with (16). The two tunable 
parameters A1 and A2 are chosen as 111 = 5 ,  A2 = 5, and E is 
chosen as E = 5. The control gain K and the force control gain K A  
are chosen as K = diag(1, 1, l), K A  = 0.8. 

The initial positions and velocities of robot are chosen as 

z(o) = 0, y(o) = 4, q o )  = 450 

k(0)  = 0, Y(0) = 0, i ( 0 )  = 0. 

Using the controller (15) with (16), the results of the simulation 
are shown in Figs 1-8. Fig. 1 shows the trajectory of y, Fig. 2 shows 
the trajectory of B ,  Figs. 3-5 show the trajectories of x, $, 0,  Fig. 6 
shows the tracking error of A, Figs. 7 and 8 show the torques exerted 
at the mobile robot. These results verify the validity of the proposed 
algorithm. 

V. CONCLUSION 
In this note, the issue of appropriate control of position and 

constraint force is addressed for a class of nonholonomic mechan- 
ical systems. By specifying an “output” function vector, a reduced 
dynamic model, suitable for simultaneous force and motion control, 
is established. A robust smooth control formulation is then proposed, 
ensuring that a system with m nonholonomic constraints can be 
stabilized to an m-dimensional desired manifold. However, the 
definition of the desired manifold depends on the specific choice of 
“output” function vector, which is related to the form of the constraint 
equations and the dynamic system. One choice is demonstrated via a 
simple simulation example. It should be noticed that the “output” 
function vector may or may not be physically motivated. Given 
the “output equations,” the proposed control law indeed provides 
a convenient solution for the robust force and motion control of 
nonholonomic systems. A simplified mobile robot has been used 
to illustrate the methodology developed in this note, and simulation 
results are satisfactory. 
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Stabilizing 1-0 Receding Horizon 
Control of CARMA Plants 

L. Chisci and E. Mosca 

AhbaetStabilizing input-output receding horizon control (SIORHC) 
yields dynamic feedback compensators capable of stabilizing any stabi- 
liable hear plant under sharp conditions. The guaranteed stabilizing 
property is insured by using output terminal constraints in addition to 
input tenninal constraints. This note extends previous SIORHC results 
to CARMA plants. 
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