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Robust output tracking control for the systems with uncertainties

Xinkai Cheny* and Chun-Yi Suz

A new robust tracking control is proposed for the minimum phase dynamical systems
with parameter uncertainties and unmatched disturbance, where only the input±output
measurement of the system is employed. The system parameters may vary slightly
around their corresponding nominal values. The disturbance is assumed to be bounded.
However, the upper and lower bounds are unknown. First, the frame of the control law
is presented. Then, a special bounded signal is generated by the disturbance and the
model uncertainties are estimated by a new non-linear method, where the upper and
lower bounds of the special signal are adaptively updated online. Finally, the robust
tracking control is synthesized by using the estimate of the special signal. The output
tracking error can be made as small as necessary by choosing the design parameters.
The attraction of the proposed method lies in its robustness to uncertainties and its ease
of implementation. Example and simulation results are presented to show the e� ective-
ness of the proposed algorithm.

1. Introduction

Robust output tracking control for minimum-phase

dynamical systems has been studied for many years.

Various robust design methodologies, which are usually

based on the Lyapunov’s direct method, have been pro-
posed in the robust control literature, such as by

Narendra and Annaswamy (1989), Sastry and Bodson
(1989) and Slotine (1991). In recent years, the robust

output tracking control for uncertain dynamical systems

has been a topic of considerable interest since all the
practical control systems are subjected to uncertainties.

Asymptotic stability for output tracking of linear

systems with constant disturbance has been shown in
Schmitendorf and Barmish (1986, 1987), where the

reference signal is composed of those functions gener-

ated from the unit step function of time by either inte-
gration or di� erentiation.

For the systems with much more general uncertain-

ties, one outstanding approach is developed by Qu and

Dawson (1992) and Zhu et al. (1995), where the input±
output information and the a priori knowledge of the
upper and lower bounds of the uncertainties are
employed. The formulation of Qu and Dawson is
based on the transfer function method, while the formu-
lation of Zhu et al. is based on the state space technique.
For the minimum-phase dynamical systems with relative
degree one, the overall systems can be guaranteed to be
exponentially stable. While for the systems with higher
relative degrees, the overall systems can be ensured to be
globally uniformly ultimately bounded (GUUB), which
can be made arbitrarily close to exponential stability if
the control energy permits.

Another typical approach for the systems with uncer-
tainties is to design a VSS-type switching controller to
stabilize the overall system. Only the output information
and a priori knowledge of the upper bound of the dis-
turbances are required in this kind of controller
(Walcott and Zak 1988, El-Khazali and DeCarlo 1992,
Spurgeon and Davies 1993, Zak and Hui 1993, Edwards
and Spurgeon 1995, 1996). These proposed formulations
are restricted to the minimum phase multi-input multi-
output dynamical systems with relative degree one.

To deal with the systems with unmatched disturb-
ances, a typical method (Rundell et al. 1996) based on
the sliding mode techniques is proposed by using the
state space approach. By estimating the states and at
least some of their derivatives from the input±output
information, the unmatched disturbances are estimated.
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The estimated disturbances and their derivatives are

then applied to the robust controller formulation. It

should be pointed out that the disturbance observer

formulation results in a very high order structure,

which is very complicated.
Corresponding to the above state space method, Chen

et al. (1997) proposed a new method based strictly on

the transfer function method in the frequency domain,

where the input±output information and a priori knowl-
edge of the upper and lower bounds of the disturbance

were employed. The disturbance is composed of the

model uncertainties, non-linearities, etc. First, a new

formulation, which can be regarded as a kind of `non-
linear di� erentiator’, is proposed to estimate the disturb-

ance based on the VSS equivalent control method.

Then, by using the estimate of a special signal generated

by the disturbance, the intermediate control, which is a
®lter of the real control input, is determined to cancel

the in¯uence generated by the disturbance. Finally, the

real control input is synthesized by using the proposed

non-linear di� erentiator. However, the a priori knowl-

edge of the upper and lower bounds of the disturbance
may not be easily obtained in practice. Further, the VSS

equivalent control method is not strict because, on the

sliding surface S…t† ˆ 0, it is not proved theoretically
that the derivative of S…t† is also zero.

This paper tries to consider the output tracking con-

trol for the minimum-phase dynamical systems with par-

ameter uncertainties and unmatched disturbance. The

system parameters may vary slightly around their corre-
sponding nominal values. The disturbance is assumed to

be bounded. However, the bound is unknown. A special

signal generated by the disturbance and model uncer-

tainties is estimated online by our new non-linear
method without using the equivalent control method,

where the bound of the special signal is adaptively

updated. The almost perfect output tracking control is

formulated by using the online estimate of the special
signal to cancel the in¯uence generated by the disturb-

ance and the model uncertainties. The uniform bound-

edness of all the signals in the loop is guaranteed. The

tracking error can be made as small as necessary by
choosing the design parameters. The attraction of the

proposed controller lies in the robustness to uncertain-

ties and the ease of implementation.

This paper is organized as follows. Section 2 gives the

problem formulation. In Section 3, the frame of the
output-tracking controller is constructed. In Section 4,

a special signal generated by the disturbance and model

uncertainties is estimated. Section 5 constructs the con-
crete robust control law and analyses the stability of the

closed-loop system. In Section 6, a design example and

simulations are presented to show the e� ectiveness of

the proposed algorithm. Section 7 concludes the paper.

2. Problem statement

Consider an uncertain system of the form

a 0…s†y…t† ˆ b 0…s†u…t† ‡ v…t†; …1†

where s is the di� erential operator; u…t† and y…t† are the
scalar input and output, respectively; v…t† is an unknown
signal composed of model uncertainties, non-linearities
and disturbances, etc.; and where a 0…s† and b 0…s† are
described by

a 0…s† ˆ sn ‡ a 0
1s

n¡1 ‡ ¢ ¢ ¢ ‡ a 0
n¡1s ‡ a 0

n; …2†

b 0…s† ˆ brs
n¡r ‡ b 0

r¡1sn¡r‡1 ‡ ¢ ¢ ¢ ‡ b 0
n¡1s ‡ b 0

n: …3†

For simplicity, the signal v…t† is called the `disturb-
ance’ of the system in the present paper.

We make the following assumptions :

Assumption A1: a 0…s† and b 0…s† are coprime; b 0…s† is a
Hurwitz polynomial.

Assumption A2: Indices n and r are known; further, it is
assumed that the parameter br…br 6ˆ 0) is known.

For the polynomials a 0…s† and b 0…s†, they are
expressed as

a 0…s† ˆ …sn ‡ a1s
n¡1 ‡ ¢ ¢ ¢ ‡ an¡1s ‡ an†

‡ …¢a1sn¡1 ‡ ¢ ¢ ¢ ‡ ¢an¡1s ‡ ¢an†

7 a…s† ‡ ¢a…s†; …4†

b 0…s† ˆ …br; sn¡r ‡ br¡1sn¡r‡1
¢¢¢ ‡ bn¡1s ‡ bn†

‡ …¢br¡1sn¡r‡1 ‡ ¢ ¢ ¢ ‡ ¢bn¡1s ‡ ¢bn†

7 b…s† ‡ ¢b…s†: …5†

If the parameters in ¢a…s† and ¢b…s† are very small, it
can be seen that b…s† is still a Hurwitz polynomial, and
a…s† and b…s† are coprime. Another assumption on the
polynomials a 0…s† and b 0…s† is made as follows.

Assumption A3: Parameters in a…s† and b…s† are known,
the parameters in ¢a…s† and ¢b…s† are very small, and
b…s† is a Hurwitz polynomial.

Now, rewrite (1) as

a…s†y…t† ˆ b…s†…u…t† ‡ ·vv…t††; …6†

where ·vv…t† is de®ned as

·vv…t† ˆ ¡ ¢a…s†
b…s†

y…t† ‡ ¢b…s†
b…s†

u…t† ‡ 1

b…s†
v…t†: …7†

The control purpose is to drive the output to track a
desired uniformly bounded signal yd…t† for the uncertain
systems (1) subjected to the assumptions (A1±3), where
yd…t† is di� erentiable to a necessary order and the
derivatives are also uniformly bounded. The controller
will be designed based on equation (6).
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Remark 1: For simplicity, the parameter br is assumed
known (Sastry and Bodson 1989). Further, it should be
noted that ¢b…s†=b…s† is a strictly proper polynomial.

Remark 2: Many motion control systems can be
described by equation (6), which is in the formulation
of a nominal system plus an additional uncertain signal
(Umeno et al. 1993, Casini et al. 1995, Chen et al. 2000,
Komada et al. 2000). Thus, it is important to deal with
the control problem for this class of uncertain systems
even though it is assumed that a…s† and b…s† are known.

3. Frame of the output tracking control

It is worth mentioning that the discussions here, as well
as those corresponding discussions in other sections, are
based on the transfer function method, which inherently
assumes zero initial conditions for all internal states of
the system. Fortunately, this treatment does not lose any
generality since, for a stable closed-loop linear system,
non-zero initial conditions only contribute to the sol-
ution of the state (or the system output) an additive
term which decays to zero exponentially. Thus, the
initial conditions of the ®ltered signals can be assumed
to be zero.

We now introduce monic Hurwitz polynomials d…s†
and h…s† of orders n and r, respectively. Consider the
following equation (Sastry and Bodson 1989):

d…s†h…s† ˆ ²…s†a…s† ‡ ·…s†; …8†

where ²…s† is a monic rth order polynomial, ·…s† is
a (n ¡ 1)-th order polynomial. It is very clear that the
solutions ²…s† and ·…s† exist uniquely.

Multiplying (8) by y…t† and applying equation (6)
yields:

d…s†h…s†y…t† ˆ ²…s†b…s†fu…t† ‡ ·vv…t†g ‡ ·…s†y…t†: …9†

By adding and subtracting the term brd…s†fu…t† ‡ ·vv…t†g
in the right-hand side of equation (9) and then dividing
the both sides by d…s†, it gives

h…s†y…t† ˆ brfu…t† ‡ ·vv…t†g

‡ ²…s†b…s† ¡ brd…s†
d…s†

fu…t† ‡ ·vv…t†g

‡ ·…s†
d…s†

y…t†: …10†

Since …²…s†b…s† ¡ brd…s††=d…s† is strictly proper, it can be
seen that ……²…s†b…s† ¡ brd…s††=d…s†† u…t† is a computable
signal if the control input u…t† is determined. The frame
of the control input will be determined based on
equation (10).

Here, the control input is considered in the following
form

u…t† ˆ ¡!…t† ¡ 1

br

²…s†b…s† ¡ brd…s†
d…s† fu…t† ‡ !…t†g

»

‡ ·…s†
d…s†

y…t† ¡ h…s†yd…t†
¼

; …11†

where !…t† is a bounded signal which will be generated
in the next section.

By multiplying the both sides of (11) with brd…s† and
rearranging it, it yields

·…s†y…t† ‡ ²…s†b…s†u…t† ˆ ¡²…s†b…s†!…t† ‡ d…s†h…s†yd…t†:
…12†

Thus, from (1) and (12), the closed-loop system can be
expressed as

a 0…s† ¡b 0…s†

·…s† ²…s†b…s†

" #
y…t†

u…t†

" #
ˆ

1

0

" #
v…t† ¡

0

²…s†b…s†

" #

!…t†

‡
0

d…s†h…s†

" #

yd…t†: …13†

Since

det
a 0…s† ¡b 0…s†

·…s† ²…s†b…s†

" #

ˆ d…s†h…s†b…s† ‡ ²…s†b…s†¢a…s†

‡ ·…s†¢b…s†

7 «…s†; …14†

it can be seen that «…s† is also a Hurwitz polynomial if
the parameters in ¢a…s† and ¢b…s† are very small (see
A3). Thus, from (13), it can be concluded that if the
disturbance v…t† is bounded, all the signals in the loop
remain bounded by observing that !…t† and yd…t† are
bounded signals.

So, it is reasonable to make the following assumption
about v…t†.

Assumption A4: The disturbance v…t† is bounded.
However, its upper and lower bounds are unknown.
Further, if r ˆ n, it is also assumed that the derivative
of v…t† is bounded.

Now, by combining (6) and (12), the closed-loop
system can also be expressed as

a…s† ¡b…s†

·…s† ²…s†b…s†

" #
y…t†

u…t†

" #
ˆ

b…s†

0

" #

·vv…t† ¡
0

²…s†b…s†

" #

!…t†

‡
0

d…s†h…s†

" #
yd…t†: …15†

By pre-multiplying the both sides of (15) with

adj
a…s† ¡b…s†
·…s† ²…s†b…s†

µ ¶
;
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it yields

d…s†h…s†b…s†
y…t†

u…t†

" #
ˆ b…s†

²…s†b…s†

¡·…s†

" #
·vv…t†

¡ ²…s†b…s†
b…s†

a…s†

" #

!…t†

‡ d…s†h…s†
b…s†

a…s†

" #
yd…t†: …16†

For the output y…t†, from (16), it gives

d…s†h…s†…y…t† ¡ yd…t†† ˆ ²…s†b…s†…·vv…t† ¡ !…t††: …17†

From (17), it can be argued that if !…t† is very close to
·vv…t†, the output tracking error can be controlled very
small. Thus, the remaining task is to estimate the
signal ·vv…t†.

4. Estimation of the signal ·vv…t†
Here, (1=…s ‡ ¶†r¡1†·vv…t† is estimated in the ®rst step. In
the second step, (1=…s ‡ ¶†r¡2†·vv…t† is estimated by using
the estimate of …1=…s ‡ ¶†r¡1†·vv…t†. In the ith step,
…1=…s ‡ ¶†r¡i†·vv…t† is estimated by using the estimates of
…1=…s ‡ ¶†r¡j†·vv…t† … j ˆ 1; . . . ; i ¡ 1). Finally, in the rth
step, the signal ·vv…t† is estimated by using the estimates
of …1=…s ‡ ¶†r¡j†·vv…t† … j ˆ 1; . . . ; r ¡ 1†.

First, the boundedness of the signal ·vv…t† is clari®ed by
the next lemma.

Lemma 1: The signal ·vv…t† and its ®rst-order derivative
are bounded in the closed-loop system.

Proof: See appendix A.

By Lemma 1, for any i ¶ 0, it is easy to see that the
®ltered signals …1=…s ‡ ¶†i†·vv…t† are also bounded, i.e.
there exist ®nite positive constants Ci such that

1

…s ‡ ¶†i
·vv…t†

­­­­­

­­­­­µ Ci …18†

for t ¶ t0, where t0 is the starting instant, ¶ is a positive
constant, Ci are unknown constants. In the proposed
formulation, the upper bounds Ci are also adaptively
updated online.

Motivated by the formulation of the state observer for
a possibly unstable system (Kreisselmeier 1977), we
introduce a monic nth order Hurwitz polynomial:

f …s† ˆ 1

br

b…s†…s ‡ ¶†r: …19†

Now, rewriting equation (6) as

y…t† ˆ f …s† ¡ a…s†
f …s† y…t† ‡ br

…s ‡ ¶†r u…t† ‡ br

…s ‡ ¶†r ·vv…t†:

…20†

Multiplying both sides of equation (20) with (s ‡ ¶)
yields

_yy…t† ‡ ¶y…t† ˆ br

f …s† ¡ a…s†
b…s†…s ‡ ¶†r¡1

y…t† ‡ br

…s ‡ ¶†r¡1
u…t†

‡ br

…s ‡ ¶†r¡1
·vv…t†: …21†

It is easy to know that

br…… f …s† ¡ a…s††=…b…s†…s ‡ ¶†r¡1††y…t†

is a signal that can be calculated.
The proposed formulation can be summarized in the

following.

Step 1. Based on equation (21), …1=…s ‡ ¶†r¡1†·vv…t† is
estimated.

Motivated by the formulation of the Luenberger-type
state observer, consider the dynamical system described
by

_̂yŷyy…t† ‡ ¶ŷy…t† ˆ br

f …s† ¡ a…s†
b…s†…s ‡ ¶†r¡1

y…t†

‡
br

…s ‡ ¶†r¡1
u…t† ‡ brw1…t†; ŷy…t0† ˆ y…t0†;

…22†

where w1…t† is a signal to be determined, ŷy…t† is the
solution of the di� erential equation in (22).

Combining (21) and (22) yields

_·yy·yy…t† ‡ ¶·yy…t† ˆ br

1

…s ‡ ¶†r¡1
·vv…t† ¡ w1…t†

( )

; …23†

where ·yy…t† ˆ y…t† ¡ ŷy…t†. It can be seen that, if the signal
w1…t† can be formulated such that ·yy…t† and _·yy·yy…t† are very
small, then w1…t† can be regarded as the approximate
estimate of …1=…s ‡ ¶†r¡1†·vv…t†.

Remark 3: If the upper bound of j…1=…s ‡ ¶†r¡1†·vv…t†j is
known, then w1…t† can be easily determined such that
·yy…t† is very small based on the variable structure control
method (Utkin 1992). However, the problem is that the
upper bound of j…1=…s ‡ ¶†r¡1†·vv…t†j is unknown and _·yy·yy…t†
also needs to be very small.

In this research, the formulation of w1…t† is motivated
by the variable structure method and the adaptive control
technique. By adaptively updating the upper bound Cr¡1

of j…1=…s ‡ ¶†r¡1†·vv…t†j, the signal w1…t† is considered as
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w1…t† ˆ brfy…t† ¡ ŷy…t†gĈCr¡1…t†
jbrfy…t† ¡ ŷytgj ‡ ¯1

; …24†

where ¯1 is a small positive constant, ĈCr¡1…t† is updated
by the following adaptive algorithm

_̂CĈCCr¡1…t† ˆ

¬r¡1jy…t† ¡ ŷy…t†j if jy…t† ¡ ŷy…t†j >

����������������
2¯1ĈCr¡1

¶

s

0 otherwise

; …25†

8
>><

>>:

ĈCr¡1…t0) can be chosen as any small positive constant,

¬r¡1 is a positive constant.
It can be proved that ·yy…t† and _·yy·yy…t† are uniformly

bounded and there exist ®1i…¯1† > 0 and T1 > 0 such
that

j·yy…t†j µ ®11…¯1† …26†

j _·yy·yy…t†j µ ®12…¯1†; …27†

as t > T1, where ®1i…¯1† ! 0 as ¯1 ! 0. The proofs of
(26) and (27) are given in appendices B and C, respect-
ively.

Therefore, by combining (23), (26) and (27), it is con-
cluded that there exists "1…¯1† > 0 such that

1

…s ‡ ¶†r¡1
·vv…t† ¡ w1…t†

­­­­­

­­­­­µ "1…¯1†; …28†

as t > T1, where "1…¯1† ! 0 as ¯1 ! 0. Thus, w1…t† is the
approximate estimate of …1=…s ‡ ¶†r¡1†·vv…t†.

Step 2. …1=…s ‡ ¶†r¡2†·vv…t† is estimated by using w1…t†
based on the next trivial equation:

d

dt

1

…s ‡ ¶†r¡1
·vv…t†

Á !
‡ ¶

…s ‡ ¶†r¡1
·vv…t† ˆ 1

…s ‡ ¶†r¡2
·vv…t†:

…29†

Corresponding to equation (29), the next di� erential
equation is considered

_̂wŵww1…t† ‡ ¶ŵw1…t† ˆ w2…t†; ŵw1…t0† ˆ 0; …30†

where w2…t† is a signal to be determined, ŵw1…t† is the
solution of the di� erential equation in (30).

Denote ·ww1…t† ˆ …1=…s ‡ ¶†r¡1†·vv…t† ¡ ŵw1…t†. Then,
from (29) and (30), it yields

_·ww·ww1…t† ‡ ¶ ·ww1…t† ˆ 1

…s ‡ ¶†r¡2
·vv…t† ¡ w2…t†: …31†

By mimicking the formulation of the ®rst step, w2…t† is
chosen as

w2…t† ˆ ĈCr¡2…t† w1…t† ¡ ŵw1…t†
jw1…t† ¡ ŵw1…t†j ‡ ¯2

; …32†

where ¯2 is a small positive constant, ĈCr¡2…t† is updated
by the following adaptive algorithm

_̂CĈCCr¡2…t† ˆ

¬r¡2jw1…t† ¡ ŵw1…t†j if jw1…t† ¡ ŵw1…t†j >

����������������
2¯2ĈCr¡2

¶

s

0 otherwise

8
>><

>>:
;

…33†

ĈCr¡2…t0† can be chosen as any small positive constant,

¬r¡2 is a positive constant.

Remark 4: Since …1=…s ‡ ¶†r¡1†·vv…t† is not an available
signal, its estimate w1…t† replaces it in the formulation of
w2…t† in (32).

It can be proved that ·ww1…t† and _·ww·ww1…t† are uniformly
bounded and

j ·ww1…t†j µ ®21…¯1; ¯2† …34†

j _·ww·ww1…t†j µ ®22…¯1; ¯2†; …35†

where ®2i…¯1; ¯2† ! 0 as
P2

jˆ1 ¯j ! 0. The proof of (34)
is given in appendix D. Relation (35) can be similarly
proved by referring the proof of (27).

Therefore, combining (31), (34) and (35) yields that
there exist "2…¯1; ¯2† > 0 and T2 > 0 such that

1

…s ‡ ¶†r¡2
·vv…t† ¡ w2…t†

­­­­­

­­­­­µ "2…¯1; ¯2†; …36†

as t > T2, where "2…¯1; ¯2† ! 0 as
P2

jˆ1 ¯j ! 0. Thus,
w2…t† is the approximate estimate of …1=…s ‡ ¶†r¡2†·vv…t†.

Step 3. ±…2 < ± < r†. …1=…s ‡ ¶†r¡&†·vv…t† is estimated
based on the next trivial equation

d

dt

1

…s ‡ ¶†r¡±‡1
·vv…t†

( )
‡ ¶

…s ‡ ¶†r¡±‡1
·vv…t†

ˆ
1

…s ‡ ¶†r¡±
·vv…t†: …37†

Consider the following di� erential equation

_̂wŵww±¡1…t† ‡ ¶ŵw±¡1…t† ˆ w±…t†;

w±…t† ˆ ĈCr¡±…t†
w±¡1…t† ¡ ŵw±¡1…t†

jw±¡1…t† ¡ ŵw±¡1…t†j ‡ ¯±

;

ŵw±¡1…t0† ˆ 0; …38†

where ŵw±¡1…t† is a signal which can be generated by
solving the di� erential equation in (38), ¯& is a small
positive constant, ĈCr¡&…t† is updated by the following
adaptive algorithm
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_̂CĈCCr¡&…t† ˆ
¬r¡& jw&¡1…t† ¡ ŵw&¡1…t†j

0

(

if jw&¡1…t† ¡ ŵw&¡1…t†j >

����������������
2¯&ĈCr¡&

¶

s

otherwise

; …39†

ĈCr¡&…t0† can be chosen as any small positive constant,

¬r¡& is a positive constant.
By applying the results in the above (± ¡ 1) steps, it

can be similarly proved that there exist T& > 0 and
"±…¯1; . . . ; ¯±† > 0 such that

1

…s ‡ ¶†r¡±
·vv…t† ¡ w±…t†

­­­­­

­­­­­µ "±…¯1; . . . ; ¯±†; …40†

as t > T& , where "±…¯1; . . . ; ¯±† ! 0 as
P±

jˆ1 ¯j ! 0.
By mathematical induction method, we get the next

theorem.

Theorem 1: For small positive constants ¯i > 0
…i ˆ 1; . . . ; r†, construct the dynamical systems described
by

_̂yŷyy…t† ‡ ¶ŷy…t† ˆ br

f …s† ¡ a…s†
b…s†…s ‡ ¶†r¡1

y…t† ‡ br

…s ‡ ¶†r¡1
u…t†

‡ brw1…t†;

ŷy…t0† ˆ y…t0† …22†

_̂wŵwwi¡1…t† ‡ ¶ŵwi¡1…t† ˆ wi…t†; ŵwi¡1…t0† ˆ 0; …i ˆ 2; . . . ; r†;
…41†

where wi…t† …i ˆ 1; . . . ; r† are given as

w1…t† ˆ brfy…t† ¡ ŷy…t†gĈCr¡1…t†
jbrfy…t† ¡ ŷy†…t†gj ‡ ¯1

…24†

and

wi…t† ˆ fwi¡1…t† ¡ ŵwi¡1…t†gĈCr¡i…t†
jwi¡1…t† ¡ ŵwi¡1…t†j ‡ ¯i

; …i ˆ 2; . . . ; r†

…42†

respectively; ĈCr¡i…t† is updated by the following adaptive
algorithm

_̂CĈCCr¡1…t† ˆ
¬r¡1jy…t† ¡ ŷy…t†j

0

(

if jy…t† ¡ ŷy…t†j >

����������������
2¯1ĈCr¡1

¶

s

otherwise

…25†

_̂CĈCCr¡i…t† ˆ
¬r¡ijwi¡1…t† ¡ ŵwi¡1…t†j

0

(

if jwi¡1…t† ¡ ŵwi¡1…t†j >

���������������
2¯iĈCr¡i

¶

s

;

otherwise

…i ˆ 2; . . . r†; …43†

where ĈCr¡i…t0† can be chosen as any small positive con-
stants, and ¬r¡i are positive constants for i ˆ 1; . . . ; r. It
can be concluded that, when

Pr
jˆ1 ¯j is very small, wi…t†

can be approximately regarded as the corresponding
estimates of …1=…s ‡ ¶†r¡i†·vv…t†, i.e. there exist

"i…¯1; . . . ; ¯i† > 0 and Ti > 0 such that

1

…s ‡ ¶†r¡i
·vv…t† ¡ wi…t†

­­­­­

­­­­­µ "i…¯1; . . . ; ¯i†; …44†

as t > Ti, where "i…¯1; . . . ; ¯i† ! 0 as
Pi

jˆ1 ¯j ! 0 for
i ˆ 1; . . . ; r. Particularly, wr…t† is the approximate esti-
mate of ·vv…t†.

Remark 5: By appendix C, it can be seen that the
boundedness of _·vv·vv…t† is necessary (which means that the
boundedness of _vv…t† is needed if r ˆ n) in order to assure
that Ár…t† (on the analogy of Á1…t† in the ®rst step) is
uniformly bounded in the last step.

Remark 6: The design parameter ¶ > 0 determines the
estimating speed. The estimating precision is dominated
by the parameters ¶ and ¯i (i ˆ 1; . . . ; r). The design
parameters ¯i > 0 (i ˆ 1; . . . ; r) should be chosen very
small. The parameters ¬r¡i > 0 …i ˆ 1; . . . ; r) should be
chosen large enough to adjust the estimated upper
bounds ĈCr¡i…t† rapidly.

5. Output tracking control and the closed-loop analysis

By choosing the signal !…t† as wr…t†, the next theorem
gives the stability of the control system.

Theorem 2. If u…t† is chosen as (11), where !…t† is
replaced by wr…t† generated in Theorem 1, then all the
signals in the closed-loop system remain bounded.
Further, there exist T > t0 and "…t; ¯1; . . . ; ¯r† > 0 such
that

jy…t† ¡ yd…t†j < "…t; ¯1; . . . ; ¯r† …45†

for all t > T, where "…t; ¯1; . . . ¯r† ! 0 as t ! 1 andPr
iˆ1 ¯i ! 0.

Proof: The uniform boundedness of all the signals in
the closed-loop system can be easily obtained by obser-
ving (13) and the discussions in Section 3. Further, by
the choice of !…t†, (17) becomes
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d…s†h…s†…y…t† ¡ yd…t†† ˆ ²…s†b…s†…·vv…t† ¡ wr…t††: …46†

By applying Theorem 1, the result is obvious.

Remark 7: It can be seen that the output tracking error
is eventually controlled by the parameters ¶ and ¯i

…i ˆ 1; . . . ; r†.

Remark 8: Even though ·vv…t† in (7) is not bounded in
the open-loop system, it is bounded in the closed-loop
system. The proposed robust controller can cope with a
wide-ranging class of uncertain systems, which may
include parameter uncertainties, unmodelled dynamics,
non-linearities, etc.

6. Example and simulation results

Consider the system described by

…s ‡ 2†…s ¡ 1†2y…t† ˆ …s ‡ 1†u…t† ‡ v…t†; y…0† ˆ 0; …47†

where the disturbance v…t† is governed by

v…t† ˆ …s ¡ 1† …sin t† _yy…t† ‡ 0:5u…t† ‡ 0:6y…t†
j _yy…t† ‡ 0:5u…t† ‡ 0:6y…t†j ‡ 1

y…t†
» ¼

:

…48†

The purpose of the control is to drive the output to
follow the signal yd…t† ˆ 2 cos t.

Now, we rewrite the system (47) as

…s ‡ 2†…s ¡ 1†2y…t† ˆ …s ‡ 1†…u…t† ‡ ·vv…t††; …49†

where

·vv…t† ˆ
1

s ‡ 1
v…t†: …50†

Choose the Hurwitz polynomial f …s† in (19) as

f …s† ˆ …s ‡ 1†…s ‡ 3†2; …51†

where ¶ is chosen as ¶ ˆ 3. Corresponding to (21), we
have

_yy…t† ‡ 3y…t† ˆ
7s2 ‡ 18s ‡ 7

…s ‡ 1†…s ‡ 3† y…t† ‡
1

s ‡ 3
u…t† ‡

1

s ‡ 3
·vv…t†:

…52†

From Theorem 1, we construct the following dynamical
systems:

_̂yŷyy…t† ‡ 3ŷy…t† ˆ 7s2 ‡ 18s ‡ 7

…s ‡ 1†…s ‡ 3† y…t† ‡ 1

s ‡ 3
u…t† ‡ w1…t†;

ŷy…0† ˆ y…0†; …53†

_̂wŵww1…t† ‡ 3ŵw1…t† ˆ w2…t†; ŵw1…0† ˆ 0; …54†

where w1…t† and w2…t† are respectively chosen as

w1…t† ˆ fy…t† ¡ ŷy…t†gĈC1…t†
jy…t† ¡ ŷy…t†j ‡ ¯1

; …55†

w2…t† ˆ fw1…t† ¡ ŵw1…t†gĈC0…t†
jw1…t† ¡ ŵw1…t†j ‡ ¯2

; …56†

ĈC1…t† and ĈC0…t† are respectively determined by

_̂CĈCC1…t† ˆ
¬1jy…t† ¡ ŷy…t†j

0

(

if jy…t† ¡ ŷy…t†j >

������������������
2

3
¯1ĈC1…t†

r
; ĈC1…0† ˆ 0:5

otherwise

…57†

_̂CĈCC0…t† ˆ
¬0jw1…t† ¡ ŵw1…t†j

0

(

if jw1…t† ¡ ŵw1…t†j >

������������������
2

3
¯2ĈC0…t†

r
; ĈC0…0† ˆ 0:5:

otherwise

…58†

Therefore, w2…t† can be regarded as the approximate
estimate of the disturbance ·vv…t†:

Choose the polynomials h…s† and d…s† in (8) as

h…s† ˆ …s ‡ 2†…s ‡ 3†; d…s† ˆ …s ‡ 3†3…s ‡ 1†: …59†

Solving equation (8) yields

²…s† ˆ s2 ‡ 12s ‡ 59; …60†

·…s† ˆ 160…s ¡ 0:2†…s ‡ 2†: …61†

Therefore, the control should be chosen as

u…t† ˆ ¡w2…t† ¡
6s ‡ 50

…s ‡ 3†2
fu…t† ‡ w2…t†g

(

‡ 160…s ¡ 0:2†…s ‡ 2†
…s ‡ 1†…s ‡ 3†2

y…t† ¡ 2…s ‡ 2†…s ‡ 3† cos t

)

:

…62†

In the simulation process, the sampling period is chosen
as 1 £ 10¡4 seconds. The parameters are chosen as

¯1 ˆ ¯2 ˆ 2 £ 10¡4, ¬1 ˆ ¬2 ˆ 10. The starting time is
t0 ˆ 0. Figure 1 shows the di� erence between the
signal ·vv…t† and its estimate w2…t†. It can be seen that a
very good estimation is obtained. Figure 2 shows the
output tracking control input. It can be seen the control
input remains uniformly bounded. Figure 3 shows the
di� erence between the controlled output and the desired
output. It can be seen that the proposed control works
very well. If the parameters ¯1 and ¯2 are chosen to be
much smaller, the output tracking performance may
become much better.
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Remark 9: When the signals are implemented by

digital computer, the design parameters ¯i should not

be chosen to be < 2T , where T is the sampling period.

Otherwise, as the variations of w1…t† will be too fast with
respect to the sampling frequency, the di� erential equa-

tions in (22) and (41) cannot be precisely solved.

7. Conclusions

In this paper, a new robust output tracking controller is
formulated for minimum-phase dynamical systems with
parameter uncertainties and disturbances by using only
the input±output information. The system parameters
may vary slightly around their corresponding nominal
values. The disturbance is assumed bounded but the
bound is unknown. First, the control frame is given.
Then, a special bounded signal generated by the disturb-
ance and the model uncertainties are estimated, where
the bound of the special signal is adaptively updated.
Finally, by using the estimate of the special signal, the
robust output tracking controller is formulated. All the
signals in the closed-loop system are bounded, and the
output tracking error can be controlled as small as
necessary by choosing the design parameters. The
attraction of the proposed formulation lies in its robust-
ness to uncertainties and easiness to be implemented.
Simulation results show the e� ectiveness of the pro-
posed method.
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Appendix A: Proof of Lemma 1

Pre-multiplying both sides of equation (13) with

adj
a 0…s† ¡b 0…s†
·…s† ²…s†b…s†

µ ¶

yields

«…s†
y…t†

u…t†

" #

ˆ
²…s†b…s†

¡·…s†

" #

v…t† ¡ ²…s†b…s†
b 0…s†

a 0…s†

" #

!…t†

‡ d…s†h…s†
b 0…s†

a 0…s†

" #

yd…t†; …63†

where «…s† is a 2nth order Hurwitz polynomial de®ned
in (14). Thus, by using the relation of y…t† in (63),
…¢a…s†=b…s††y…t† can be expressed as

¢a…s†
b…s† y…t† ˆ ¢a…s†²…s†

«…s† v…t† ¡ ¢a…s†²…s†b 0…s†
«…s† !…t†

‡ ¢a…s†d…s†h…s†b 0…s†
«…s†b…s†

yd…t†: …64†

Since ¢a…s†²…s†=«…s† and ¢a…s†²…s†b 0…s†=«…s† are
strictly proper, it can be easily seen that
…¢a…s†=b…s††y…t† and its derivative …s ¢ ¢a…s†=b…s††y…t†
are also bounded in the closed-loop system by observing
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Figure 1. Di� erence between the signal ·vv(t) and its estimate

w2(t).

Figure 2. Robust output tracking control input.

Figure 3. Di� erence between controlled system output and the

desired output.



the boundedness of v…t†, !…t†, yd…t† and the derivatives
of yd…t†.

As u…t† is bounded in the closed-loop system, it can be
seen that …¢b…s†=b…s††u…t† and …s ¢ ¢b…s†=b…s††u…t† are
also bounded in the closed-loop system by observing
that ¢b…s†=b…s† is strictly proper.

Therefore, by the de®nition of ·vv…t† in (7) and the
assumptions, it can be concluded that the signal ·vv…t†
and its ®rst-order derivative are bounded in the closed-
loop system.

Appendix B: Proof of relation (26)

Choose the Lyapunov candidate V1…t† as

V1…t† ˆ 1

2
…·yy…t††2 ‡ jbrj

2¬r¡1

…ĈCr¡1…t† ¡ Cr¡1†2: …65†

If ·yy…t† >

���������������������������
2¯1ĈCr¡1…t†=¶

q
, then di� erentiating V1…t†

yields

_VV1…t† ˆ ¡¶…·yy…t††2 ‡ ·yy…t†br

1

…s ‡ ¶†r¡1
·vv…t† ¡ w1…t†

( )

‡ …ĈCr¡1…t† ¡ Cr¡1†jbr·yy…t†j

ˆ ¡¶…·yy…t††2 ‡ ·yy…t† br

…s ‡ ¶†r¡1
·vv…t† ¡ jbr·yy…t†jCr¡1

( )

‡ ¯1jbr·yy…t†jĈCr¡1…t†
jbr·yy…t†j ‡ ¯

µ ¡¶…·yy…t††2 ‡ ¯1ĈCr¡1…t†

< ¡¯1ĈCr¡1…t†: …66†

Thus, V1…t† decreases monotonically. Further, from
(66), it can be seen that the condition

j·yy…t†j µ
���������������������������
2¯1ĈCr¡1…t†=¶

q
can be satis®ed in ®nite time.

Thus, there exists t1 > 0 such that

j·yy…t†j µ

���������������������
2¯1ĈCr¡1…t†

¶

s

…67†

for t > t1, and V…t† (i.e. j·yy…t†j and ĈCr¡1…t†† is uniformly
bounded for 0 µ t µ t1. By (25) it can be seen that
ĈCr¡1…t† ˆ ĈCr¡1…t1† for t > t1. Thus, it can be concluded
that ĈCr¡1…t† is uniformly bounded for all t ¶ 0.
Therefore, by (67), the conclusion (26) can be proved
for t > t1.

Appendix C: Proof of relation (27)

Di� erentiating the both sides of equation (23) yields

�·yy·yy…t† ‡ ¶ _·yy·yy…t† ˆ brÁ1…t†; …68†

where Á1…t† is de®ned as

Á1…t† ˆ s

…s ‡ ¶†r¡1
·vv…t† ¡ _̂CĈCCr¡1…t† br·yy…t†

jbr·yy…t†j ‡ ¯1

¡ brĈCr¡1…t†
br

_·yy·yy…t†¯1

…jbr·yy…t†j ‡ ¯1†2
: …69†

From Lemma 1, it can be seen that Á1…t† is uniformly

bounded. (The boundedness of the _·vv·vv…t† is employed for
the case r ˆ 1.) By the boundedness of _·yy·yy…t† (see 23), it

can be seen that �·yy·yy…t† is also bounded by observing (68).

Now, we divide the interval ‰t1; tŠ into the intervals

‰´i; ´i‡1Š …i ˆ 1; . . . ; p ¡ 1) such that _·yy·yy…t† is non-negative

or non-positive on the interval ‰´i; ´i‡1Š, where

t1 ˆ ´1 < ´2 < ¢ ¢ ¢ < ´p ˆ t. By the boundedness of �·yy·yy…t†,
it can be seen that there exists a constant ¡ such that
minif´i‡1 ¡ ´ig ¶ ¡.

From (68), di� erentiating … _·yy·yy…t††2 gives

d

dt
… _·yy·yy…t††2 ˆ ¡2¶… _·yy·yy…t††2 ‡ 2br

_·yy·yy…t†Á1…t†: …70†

Thus, we have

… _·yy·yy…t††2 ˆ e¡2¶…t¡t1†… _·yy·yy…t1††2 ‡ 2bre
¡2¶t

…t

t1

e2¶½ _·yy·yy…½†Á1…½† d½

ˆ e¡2¶…t¡t1†… _·yy·yy…t1††
2

‡ 2bre
¡2¶t

Xp¡1

iˆ1

Á1…·́́i†
…´i‡1

´i

e2¶½ _·yy·yy…½† d½

ˆ e¡2¶…t¡t1†… _·yy·yy…t1††2 ‡ 2bre
¡2¶t

Xp¡1

iˆ1

Á1…·́́i†

£ e2¶´i‡1 ·yy…´i‡1† ¡ e2¶´i ·yy…´i†
¡

¡ 2¶

…´i‡1

´i

e2¶½ ·yy…½† d½

´
; …71†

where the mean value theory is employed and

´i µ ·́́i µ ´i‡1.

Suppose jÁ1…t†j µ K . Then, (71) gives

… _·yy·yy…t††2 µ e¡2¶…t¡t1†… _·yy·yy…t1††
2

‡ 2jbrje¡2¶t
Xp¡1

iˆ1

jÁ1…·́́i†…e2¶´i‡1 ·yy…´i‡1† ¡ e2¶´i ·yy…´i††j

‡ 4jbrj¶e¡2¶t
Xp¡1

iˆ1

jÁ1…·́́i†j
…´i‡1

´i

e2¶½ j·yy…½†j d½

µ e¡2¶…t¡t1†… _·yy·yy…t1††2 ‡ 4K jbrje¡2¶t®11…¯1†
Xp¡1

iˆ1

e2¶´i‡1
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‡ 4K jbrj¶e¡2¶t®11…¯1†
Xp¡1

iˆ1

…´i‡1

´i

e2¶½ d½

ˆ e¡2¶…t¡t1†… _·yy·yy…t1††2 ‡ 4K jbrj®11…¯1†
Xp¡1

iˆ1

e¡2¶…t¡´i‡1†

‡ 4K jbrj¶e¡2¶t®11…¯1†
… t

t1

e2¶½ d½

µ e¡2¶…t¡t1†… _·yy·yy…t1††2 ‡ 4K jbrj®11…¯1†
Xp¡2

iˆ0

e¡2¶i¡

‡ 2K jbrj®11…¯1†…1 ¡ e¡2¶…t¡t1††

ˆ e2¶…t¡t1†… _·yy·yy…t1††2 ‡ 4K jbrj®11…¯1† 1 ¡ e¡2¶¡…p¡1†

1 ¡ e¡2¶¡

‡ 2K jbrj®11…¯1†…1 ¡ e¡2¶…t¡t1††; …72†

where (26) is employed. Therefore, by observing (72),

(27) can be proved.

Appendix D: Proof of relation (34)

From (28), it can be seen that relation (34) can be

proved if we can prove that w1…t† ¡ ŵw1…t† is very small
as t is su� ciently large. For this purpose, we consider

the following trivial di� erential equation:

_ww1…t† ‡ ¶w1…t† ˆ …s ‡ ¶†w1…t†: …73†

By deriving the derivative of w1…t†, it can be easily seen

that ŵw1…t† is bounded by employing equation (23) and

lemma 1. By considering the boundedness of w1…t†, it

can be concluded that …s ‡ ¶†w1…t† is also bounded.

Assume that

max
t¶t0

j…s ‡ ¶†w1…t†j ˆ Dr¡2; …74†

where Dr¡2 is an unknown constant.

Now, choose the Lyapunov candidate as

V2…t† ˆ 1

2
…w1…t† ¡ ŵw1…t††

2 ‡ 1

2¬r¡2

…ĈCr¡2…t† ¡ Dr¡2†2:

…75†

If jw1…t† ¡ ŵw1…t†j >

���������������������������
2¯2ĈCr¡2…t†=¶

q
, then di� erentiating

V2…t† yields

_VV2…t† ˆ ¡¶…w1…t† ¡ ŵw1…t††2

‡ …w1…t† ¡ ŵw1…t††f…s ‡ ¶†w1…t† ¡ w2…t†g

‡ …ĈCr¡2…t† ¡ Dr¡2†jw1…t† ¡ ŵw1…t†j

ˆ ¡¶…w1…t† ¡ ŵw1…t††2

‡ ……w1…t† ¡ ŵw1…t††f…s ‡ ¶†w1…t†g

¡ Dr¡2jw1…t† ¡ ŵw1…t†jg

‡ ¯2jw1…t† ¡ ŵw1…t†jĈCr¡2…t†
jw1…t† ¡ ŵw1…t† ‡ ¯2

µ ¡¶…w1…t† ¡ ŵw1…t††2 ‡ ¯2ĈCr¡2…t†

< ¡¯2ĈCr¡2…t†: …76†

By referring the proof in appendix B, it can be similarly
proved that ĈCr¡2…t† is uniformly bounded and there
exists t2 > 0 such that

jw1…t† ¡ ŵw1…t†j µ

���������������������
2¯2ĈCr¡2…t†

¶

s

: …77†

Therefore, combining (28) and (77) yields the relation
(34).
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