
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 5, MAY 2004 757

[3] R. Kelly, “Comments on adaptive PD controller for robot manipulators,”
IEEE Trans. Robot. Automat., vol. 9, pp. 117–119, Feb. 1993.

[4] S. Arimoto, Control Theory of Nonlinear Mechanical Systems—A
Passivity-Based and Circuit-Theoretic Approach. Oxford, U.K.:
Clarendon, 1996.

[5] J. J. E. Slotine andW. Li, “Adaptive manipulator control: A case study,”
IEEE Trans. Automat. Contr., vol. 33, pp. 995–1003, Nov. 1988.

[6] C. C. Cheah and D. Wang, “Learning impedance control for robotic ma-
nipulator,” IEEE Trans. Robot. Automat., vol. 14, pp. 452–465, June
1998.

[7] F. Miyazaki and Y. Masutani, “Robustness of sensory feedback control
based on imperfect Jacobian,” in Proc. Robotic Research: 5th Int. Symp.,
1990, pp. 201–208.

[8] R. Kelly, “Global positioning of robot manipulator via pd control plus
a class of nonlinear integral actions,” IEEE Trans. Automat. Contr., vol.
43, pp. 934–938, July 1998.

[9] R. Kelly, “Regulation of manipulators in generic task space: An en-
ergy shaping plus damping injection approach,” IEEE Trans. Robot. Au-
tomat., vol. 15, pp. 381–386, Apr. 1999.

[10] R. Kelly, R. Carelli, O. Nasisi, B. Kuchen, and F. Reyes, “Stable vi-
sual servoing of camera-in-hand robotic systems,” IEEE/ASME Trans.
Mechatron., vol. 5, pp. 39–48, Jan. 2000.

[11] C. C. Cheah, S. Kawamura, and S. Arimoto, “Feedback control for
robotic manipulators with an uncertain jacobian matrix,” Int. J. Robot.
Syst., vol. 12, no. 2, pp. 119–134, 1999.

[12] C. C. Cheah, M. Hirano, S. Kawamura, and S. Arimoto, “Approximate
jacobian control for robots with kinematics and dynamics,” IEEE Trans.
Robot. Automat., vol. 19, pp. 692–702, Aug. 2003.

[13] H. Yazarel and C. C. Cheah, “Task-space adaptive control of robotic
manipulators with uncertainties in gravity regressor matrix and kine-
matics,” IEEE Trans. Automat. Contr., vol. 47, pp. 1580–1585, Sept.
2002.

[14] S. Arimoto, “Robotics research toward explication of everyday physics,”
Int. J. Robot. Res., vol. 18, no. 11, pp. 1056–1063, 1999.

[15] C. C. Cheah, K. Li, S. Kawamura, and S. Arimoto, “Approximate jaco-
bian control of robot and its passability at singular points,” in Proc. Int.
Conf. Control, Automation, Robotics, Vision, Singapore, 2000.

[16] Hamamatsu Photonics K.K. [Online]. Available: http://www.hama-
matsu.com/

Stabilization of Uncertain Nonholonomic Systems via
Time-Varying Sliding Mode Control

Yueming Hu, Shuzhi Sam Ge, and Chun-Yi Su

Abstract—This note addresses the robust stabilization problem for a
general class of nonholonomic systems in the presence of drift uncertain-
ties. The control approach developed is based on the combined applica-
tions of the sliding mode control technique and nonlinear time-varying sys-
tems theory. First, some properties of nonlinear time-varying systems are
introduced for the purpose of designing sliding mode controller. An ex-
plicit time-varying feedback form is provided to guarantee the existence
and uniqueness of periodic time-varying solution for the corresponding
linear periodic partial differential equation. Second, an explicit discontin-
uous feedback control law is presented to guarantee the existence of sliding
mode. The first integrals obtained by the previous periodic partial differ-
ential equation are then directly used to determine the switching function.
The uniform asymptotic stability of the closed loop system is proved via the
invariance principle of nonlinear time-varying systems. Finally, an example
is given to illustrate the proposed approach.

Index Terms—Nonholonomic systems, robustness, stabilization, time-
varying state feedback.

I. INTRODUCTION

Control of nonholonomic systems has been an active field of research
for a decade. Such systems can be found frequently in mechanical sys-
tems such aswheeledmobile robots, car-like vehicle, knife-edge, and so
on (see, for example, [4], [11], and [12]). It is well known that nonholo-
nomic systems, although controllable, cannot be stabilized by any time-
invariant continuous state feedback control law (see [11], and the ref-
erences therein). This fact makes the control of general nonholonomic
systems extremely challenging, and stimulates researchers to construct
time-varying or discontinuous feedback controllers for the control of
nonholonomic systems.Many elegant control strategies, such as smooth
time-varying strategies in [10], [12], [14], [16], [18], and [19], discon-
tinuous control laws in [1]–[3], and [10], and the combined strategies of
the two [20], time optimal control law in [17], iterative learning control
in [15], and feedback linearization [6] have been proposed for various
nonholonomic systems. However, most of current control approaches
are developed for driftless nonholonomic systems, especially for a spe-
cial class of systems in the so-called chained form, which was brought
to the literature in [14]. Furthermore, they need complete knowledge of
the systems.
An important issue for a practical system design is the robust-

ness consideration against possible modeling errors and external
disturbances, i.e., the systems with drift uncertainties. However, the
latter case has received relatively less attention. The design of robust
controllers for general nonholonomic systems with drift uncertainties
is thus emphasized in the recent survey [11] as well as in the paper [9].
It is therefore our belief that it is timely to address the control issue for
the systems with drift uncertainties by currently available controller
design techniques.
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Sliding mode control (SMC) is a special discontinuous control
technique applicable to a broad variety of practical systems (see,
for instance, [22]). This approach is mainly based on the design of
switching functions of state (or output) variables, which are used
to create a sliding manifold. When this manifold is attained, the
switching functions keep the trajectory on the manifold, thus yielding
desired system dynamics. Due to its easy implementation and good
robustness, SMC is considerably attractive for many highly nonlinear
uncertain systems. Generally speaking, if the classical Pfaffian
constraints generated by the input matrix are completely integrable,
then the sliding mode subsystem of a smooth nonlinear affine control
system can be easily reduced to a lower order system [22]. Thus,
the customary design methods can be used to determine the sliding
manifold. However, such design technique is no longer available for
nonholonomic control systems since the related Pfaffian equations in
this situation do not offer any nontrivial solutions, which have to be
used in the construction of the necessary state transformation.
Since any time-invariant continuous state feedback control law

cannot stabilize nonholonomic systems, the SMC technique becomes
appealing in the control of nonholonomic systems. So far, only a few
researchers have investigated the design of sliding mode controllers
for a class of nonholonomic systems, which heavily depend on the
existence of suitable Lyapunov functions and special structures of
the systems (see, for instance, [3], [7], [16], and [21]). Even if the
necessary Lyapunov function is constructed, the resulted sliding mode
motion is only locally ensured. Thus the problem of designing sliding
mode controllers for a general class of nonholonomic systems with
drift uncertainties is still a challenging task and remains a subject of
future research.
This note addresses the robust control problem for general nonholo-

nomic systems with drift uncertainties whiochmay not be limited to the
so-called chained form. Motivated by the fact that nonholonomic sys-
tems can be asymptotically stabilized by time-varying feedback laws
or discontinuous control laws, we develop a robust control approach
based on both SMC theory [22] and nonlinear time-varying systems
theory ([5] and [8]). Apart from the robustness against uncertainties,
one important feature of our approach is that only the solutions of pre-
scribed solvable initial value problem (IVP), which provides an explicit
time-varying feedback law, are required in the design of the sliding
mode controller.
The rest of the note is organized as follows. Section II presents the

preliminary concepts and some properties of nonlinear time-varying
systems involved in the design of sliding mode controllers. An explicit
time-varying feedback form is presented to guarantee the existence and
uniqueness of periodic time-varying solution for the IVP, or equiva-
lently, nth independent first integrals for the corresponding linear pe-
riodic partial differential equation (PDE). Section III focuses on the
design of time-varying sliding mode controllers. In the presence of un-
certainties, a time-varying SMC law is proposed to force the trajecto-
ries of a system attaining to a time-varying slidingmanifold. It is shown
that, under the matching condition, the sliding motion is invariant with
respect to uncertainties. The uniform asymptotic stability of the sliding
motion is proved by using the invariance principle [5]. Finally, the pro-
posed approach is applied to a hopping robot in flight phase to illustrate
the proposed method.

II. TECHNICAL PRELIMINARIES

Consider the following nonlinear control system:

_x = B(x)u+D(t; x) (1)

where x 2 Rn andu 2 Rm are the state and input vectors respectively;
B = (b1; . . . ; bm) 2 Rn�m with fbig being sufficiently smooth and

linearly independent vector fields defined on an open subset 
 � Rn

(the arguments of functions or distributions will be often suppressed for
simplicity in the following if no confusion is caused); D(t; x) repre-
sents drift uncertainties, which may include unmodeled dynamics and
parameter variations. Without D(t; x), the corresponding system be-
comes the so-called drift free system. System (1) can also be treated as
nonholonomic systems with drift uncertainties, which appears in many
mechanical plants such as mobile robots [12] and [15].
The aim of this note is to stabilize the system (1) at a desired point

xd 2 
 via time-varying SMC of the form

u = �(t; x) + �(t; x)sign (S(t; x)) (2)

where �(t; x) 2 Rm, �(t; x) 2 Rm�m, and sliding manifold
S(t; x) 2 Rm are proper time-varying smooth functions to be
determined in the subsequent sections and sign(:) denotes the signum
function vector. In the following development, we only consider the
case that xd = 0 2 
. If it is not the case, a transformation � = x�xd
is necessary to apply the developed method.
Let � = spanfb1; . . . ; bmg be the distribution associated with the

system (1), and define the iterative distributions �i as follows:

�1 = � �i = �i�1 + [�1;�i�1]; i = 2; 3; . . .

where [�1;�i�1] = spanf[f; g] : f 2 �1; g 2 �i�1g, and [.,.] is
the Lie bracket operator. We will assume the following.

A1) �i(x)(i = 2; 3; . . .) are regular for all x 2 
.
A2) rank �r+1 = n for all x 2 
, where r is the degree of

nonholonomy of the distribution �.
A3) There is a sufficiently smooth !-periodic function p(t; x) :

R� 
 ! Rm with p(t; 0) = 0 such that the IVP

_x = B(x)p(t; x)

x(t0) = x0
(3)

has a unique !-periodic solution x = x(t; t0; x0), which is
continuously differentiable with respect to all of its variables.

Assumptions A1) and A2) are essential to guarantee the controlla-
bility of (1). While Assumption A3) implies that (3) is completely in-
tegrable and its flow is periodic (see, [5] and [8]). Under certain con-
ditions an explicit form of p(t; x) was presented in [16]. Proposition 1
gives more general explicit conditions to satisfy Assumption A3).
Proposition 1: Let p(t; x) = "�(t; x); �(t; x): R � 
 ! Rm be

any smooth function such that �(t+ !; x) = �(t; x) and �(�t; x) =
��(t; x), for all (t; x) 2 R � 
.
Then, there exists "0 > 0 such that Assumption A3) is satisfied and

x(t0 � t; t0; x0) = x(t � t0; t0; x0) for all " 2 (0; "0] and for all
t 2 R.

Proof: See the Appendix.
The above proposition delineates the explicit time-varying feedback

form guaranteeing the existence of periodic solution with respect to
the IVP (3). It evidently generalizes the previous results in [16] since
any sufficiently smooth periodic odd function can generate the periodic
Lyapunov function needed in the design of feedback controller [16].
With this in mind, denote a gradient function for any smooth multi-

variable function �(� ) as r�� = (@�=@�), the following lemma can
be established.
Lemma 1: Under Assumption A3), the linear PDE

rtz + (rxz)B(x)p(t; x) = 0 (4)

has n sufficiently smooth solutions z = z(t; x) =
(z1(t; x); . . . ; zn(t; x))

T = x(t0; t; x0) such thatrxz is nonsingular
for all (t; x) 2 [0;1) � 
. Conversely, if the linear PDE (4)
has n sufficiently smooth solutions z = z(t; x) such that rxz is
nonsingular for all (t; x) 2 [0;1) � 
 and let x = x(t; z) be the
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inverse function of z = z(t; x), then x = x(t; z(t0; x0)), which is
differentiable with respect to all of its variables, is the unique solution
of (3). Furthermore, let �(t; x) be a differentiable function, then
�(t; x) is a first integral of (3) if and only if there is a differentiable
function K = K(z) such that �(t; x) = K(z(t; x)). Besides, for all
(t; x) 2 [0;1)� 
, the above first integrals z(t; x) of (3) satisfy

z(t+ !; x) = z(t; x) z(t0; x) = x (5)

V =
1

2
z
T (t; x)z(t; x) = 0; if and only if x = 0: (6)

Proof: The conclusion can be directly obtained by [8, Th. 12] and
is similar to the proof in [16].
Thus, the existence and uniqueness of sufficiently smooth periodic

solution of the IVP (3) are equivalent to that of n independent periodic
solutions of linear PDE (4).

Remark: Particularly, let �(t; x) be any sufficiently smooth !-pe-
riodic even function with respect to t such that (rx�B)�1rt� is
smooth enough and rank (rx�B) = m, then

�(t; x) = �"�1(rx�B)�1rt�; " > 0 (7)

is a !-periodic odd function satisfying the conditions in Proposition 1.
Hence, with the selection (7), the assigned �(t; x) should satisfy the
PDE (4), that is, �(t; x) is an independent m-dimensional solution
vector of (4). This fact shows that the linear PDE can easily be reduced
to find only n �m independent solutions of (4) since �(t; x) can be
properly assigned.
Since rankB = m, without loss of generality we assume that x, B

and S are represented as

B(x) =
B1(x1; x2)

B2(x1; x2)
x =

x1

x2
S = S(t; x1; x2) (8)

where x1 2 Rm, x2 2 Rn�m; B1 2 Rm�m with rank B1 = m;
and B2 2 R(n�m)�m. Let B0 = B2B

�1
1 2 R(n�m)�m be smooth

enough, then we have the following proposition.
Proposition 2: Let �(t) : R ! Rm�m be a smooth !-periodic

matrix function such that

�(t+ !) = �(t) and �(�t) = ��(t) 8t 2 R: (9)

Then, the IVP (3) can be reduced to the following (n�m)-dimensional
IVP

_x2 = "B0 (Q(t; t0)x10; x2)�(t)Q(t; t0)x10
x2(t0) = x20

(10)

and Assumption A3) is satisfied for " 2 (0; "0], where Q(t; t0) =
expf"

t

0
�(� )d�g is an even !-periodic matrix function, and "0 > 0

is sufficiently small.
Proof: See the Appendix.

The aforementioned propositions show that the first integrals used in
the design of switching function can be explicitly obtained for a wide
class of periodic feedback odd function p(t; x). Particularly, for the
decomposition (8) and p(t; x) = "�(t)x1, we only need to solve a
reduced order (actually (n�m)-dimensional) IVP.

III. CONTROLLER DESIGN VIA TIME-VARYING SLIDING
MODE TECHNIQUE

As indicated in [22], the design of controller via sliding mode tech-
nique consists of two steps. First, a switching manifold is determined
to ensure that the sliding motion does have a good dynamic response.
Second, a proper discontinuous feedback control law is designed to
achieve the desired sliding mode.

A. Switching Function Design Based on the First Integrals

We first design a proper switching function S(t; x) so that the re-
sulted sliding motion is asymptotically stable. Based on the results de-
veloped in [22], the solution can be obtained as follows.
Proposition 3: Under Assumptions A1)–A3), the sliding mode

system is locally uniformly asymptotically stable if S = S(t; x) is
chosen to be the form

S(t; x) = B
T (rxz)

T
z (11)

where z = z(t; x) are n independent first integrals of (4). The aux-
iliary smooth function p(t; x) vanishes only for x = 0 and satisfies
Assumption A3).

Proof: The proof of the proposition is given in the Appendix.
This method of designing a sliding mode controller only involves n

independent solutions of a prescribed first-order linear periodic PDE,
which is always solvable for a wide class of p(t; x) as indicated by the
Propositions 1 and 2.

B. Discontinuous Control Law

The next step is to choose �(t; x) 2 Rm and �(t; x) 2 Rm�m for
the control law (2) so that the trajectories of the closed-loop system (1)
with control (2) realize the sliding motion in finite time.
Proposition 4: IfC

def
= (rxS)B is designed to be nonsingular, and

the uncertainty D(t; x) in (1) is bounded by a known function d(t; x)
such that jD(t; x)j � d(t; x), then using the following discontinuous
control law:

u = �C�1 [rtS +K1S +K2sign(S)] (12)

the trajectories of the closed-loop system (1) will reach the slidingman-
ifold S(t; x) = 0 defined in (11) in finite time, where

Ki = diag(kij)m�m; i = 1; 2; j = 1; . . . ;m

k1j � 0; min1�j�mfk2jg

� jrxSjd(t; x) + k20; k20 = const > 0

(13)

with the norm j:j of vector or matrix defined by j(aij)p�qj =
p

i=1
q

j=1 jaij j.
Proof: From (1), (12), and (13), one can obtain

_S = rtS +rxS(Bu+D) = rxSD �K1S �K2sign(S) (14)

which by (14), implies that

S
T _S � � S

T
K1S � S

T
K2sign(S) + jSkrxSkD(t; x)j

� � S
T
K1S � k20jSj < 0: (15)

That is, the reaching conditionST _S < 0 of the slidingmode is satisfied
[22].
Therefore, the discontinuous control law (12) can easily be deter-

mined once the bounds of system uncertainties or parameter distur-
bances are known. The condition that C is nonsingular ensures the
system has the regular sliding mode, thus, the dynamic equation of
sliding motion can be directly derived by the equivalent control prin-
ciple [22]. While the purpose of the term �C�1K1S in the control
law (12) is to lessen the chattering phenomenon exhibited by high fre-
quency vibration of the controlled plant.
It is important to note that the discontinuous control law (12) is used

to force any trajectory of (1) to reach the sliding manifold, which is
just the invariant manifold discussed in [16], and thus guarantees uni-
form asymptotic stability of the closed-loop system. The global asymp-
totic stability can even be guaranteed if p(t; x) is chosen such that
the resulted matrix C is nonsingular globally, which will be illustrated
through an example in Section IV.
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C. Sliding Mode Equations

Once the sliding motion is attained, from (14) we can obtain the
equivalent control ueq as

ueq = �C�1 [rtS + (rxS)D] : (16)

Substituting (16) into (1) yields the following sliding mode equation:

S(t; x) = 0

_x = �BC�1rtS +D �BC�1(rxS)D
: (17)

From (17), it is obvious that the switching functions S(t; x) must be
time-varying; otherwise the stabilization cannot be achieved. Particu-
larly, if the uncertain partD(t; x) in (1) satisfies thematching condition
rank(B;D) = rankB, then the sliding mode equation (17) is reduced
to the form

S(t; x) = 0

_x = �BC�1rtS
(18)

that is, the sliding motion is invariant with respect to D(t; x). (18)
shows that only time-varying switching function can produce asymp-
totically stable sliding motion for (1).

IV. EXAMPLE

In this section, we will concentrate on the development of a sliding
mode controller for the hopping robot in the flight phase in [12]. The
configuration q = ( ; l; �) consists of the leg angle, the leg extension,
and the body angle of the robot. Let I and m represent, respectively,
the moment of inertia of the body and the mass of the leg concentrated
at the foot, let the upper leg length be taken as d, with l representing
the extension of the leg past this point.
Considering the conservative constraint of the angular momentum,

one can obtain the control equations as follows [12]:

_ = u1 _l = u2 _� = �
m(l+ d)2

[I +m(l+ d)2]
u1: (19)

Different approaches have been proposed by Taylor series expanding
about l = 0 and nonlinear state transformation [12]. However, due to
the uncertainties of the parameters I andm, one needs to consider the
robustness of the control against parameter uncertainties. LetM0 and
�M be the certain and uncertain parts of fm(l+d)2=[I+m(l+d)2]g,
then (19) can be rewritten as follows:

_ = u1 _l = u2 _� = �(M0 +�M)u1 (20)

which is in the form of (1), and the uncertain part does not sat-
isfy the invariance condition of sliding mode [22]. Let p(t; x) =
"sint(�; 0)T (" > 0) in A3), by technical calculations, we obtain the
periodic solution of the corresponding IVP (3) for the nominal part of
(20) as

 (t) = (t0) + �(t0) [1� exp f"(cost� cost0)g]

l(t) = l(t0); �(t) = �(t0)exp f"(cost� cost0)g (21)

which is 2�-periodic for any constant " > 0. The first integrals are
thus, by Lemma 1, given as

z1(t) =  + �(1� Y ) z2(t) = l z3(t) = Y � (22)

where Y = expf"�g, � = cost0 � cost. Thus, by (11), one obtain
the corresponding time-varying switching function

S =
s1
s2

=
[ + (1� 2Y )�]Y

l
(23)

and control law

u =
u1
u2

= �

1
2
Y �1"sint(� +  )� 2"sint�

+ 1
2
Y �2 [k11s1 + k21sign(s1)]

k12s2 + k22sign(s2)

(24)

with

C =(rxS)B =
2Y 2 0

0 1

@S

@t
=

"sintY (� +  )� 4"sintY 2�

0
(25)

where C is globally invertible. Since

_S =
_s1
_s2

=

"sintY (� +  )� 4"sintY 2�

+ 2Y 2 + (2Y � 1)Y�M u1

u2

: (26)

For any ki2 > 0 (i = 1; 2), with the controller (24), one has _s2 =
�k12s2 � k22sign(s2), which implies that the sliding motion s2 = 0
must occur in finite time [22].
Based on (15), ki1 (i = 1; 2) can be selected as

k11> 0

k21>
1

2(1�M̂)
j(2Y �1)["sint(�+ )�2"sint�]j M̂ (27)

it can be confirmed that the sliding motion s1 = 0 occurs in finite time
[22].
Finally, let us examine the robustness once the sliding mode is

achieved. In the sliding mode, the general solutions can be obtained
as follows:

 (t) = (tr)�
2+�M

(1+�M) [2Y +(2Y �1)�M ]
�(tr) (28)

�(t) =
(2+�M)

[2Y +(2Y �1)�M ]
�(tr) (29)

where tr is the reaching time of the sliding mode, which implies that
�(tr) = 0 and (tr) = 0. Therefore, once the sliding mode is realized,
the motion is independent of uncertainty�M . This example shows the
robustness of the proposed approach against mismatched uncertainty.

V. CONCLUSION

In this note, a sliding mode controller design technique has been de-
veloped for a general class of nonholonomic systems with drift un-
certainties. Explicit approaches have been developed for designing the
switching functions from the solutions of prescribed linear PDE. The
proposed control law can be determined from the possible bounds of
the uncertainties.

APPENDIX
PROOF OF PROPOSITION 1

First, we consider the following periodic system:

_x = g(t) (30)

where g(t) : R ! 
 � Rn is a continuous and !-periodic function.
Define the subspace

P!=fg2C(R;
)jg(t+!)=g(t)g ; kgk=supt2[0;!]jg(t)j
(31)

and the mapping P : P! ! P! as follows:

(Pg)(t) =
1

!

!

0

g(� )d�; g 2 P!: (32)
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Then

kPgk � kgk; i:e:; kPk � 1: (33)

Hence, there exists a unique !-periodic solution for (30) if and only
if (Pg)(t) = 0. Once (Pg)(t) = 0, then the solution x(t) of (30)
must satisfy (Px)(t) = 0. Denote the unique !-periodic solution as
x(t) = (Kg)(t), then

(Kg)(t) = (I � P )

t

0

g(� )d�

(I is the identity maping); kKgk � 2!kgk: (34)

Besides, if g(�t) = �g(t), then (Kg)(�t) = (Kg)(t).
Let f(t; x) = B(x)�(t; x), then the IVP (3) in this case is equivalent

to

_x = "f(t; x)

x(t0) = x0
(35)

where f(t + !; x) = f(t; x) and f(�t; x) = �f(t; x), 8(t; x) 2
R � 
 since �(t; x) is an odd periodic function by the assumptions.
Only t0 = 0 will be considered in the following due to the periodicity
of (35).
Consider g(t) = f(t; x(t)) in (30), it is not difficult to prove that

(35) exists periodic solution x(t) if and only if

x(t) = x0 + "K(I � P )f (t; x(t))

Pf (t; x(t)) = 0
: (36)

To prove the solution of (35) is!-periodic, wewill use the fixed point
theorem of contraction mapping. For any � > 0, define the following
set

B(�) = fy 2 P!jy(�t) = y(t); kyk � �; (Py) = 0g : (37)

Then, B(�) is a closed convex subset of P! .
Consider the mapping Q : B(�) ! P! defined as follows:

(Qy)(t) = "K(I � P )f (t; y(t) + x0)

y 2 B(�); x0 2 B� = fx 2 
kxj � �g : (38)

Let

F1 = supt2[0;!];jxj��+� jf(t; x)j

F2 = supt2[0;!];jxj��+�
@f(t; x)

@x

and select "0 > 0 such that

4"0!F1 < �; 4"0!F2 <
1

2
(39)

i.e., 0 < "0 < minf�=4!F1; 1=8!F2g. Then, we have

(Qy)(�t) = (Qy)(t) kQyk � � P (Qy)(t) = 0

8" 2 (0; "0]; x0 2 B�; y 2 B(�): (40)

Since f(t; x) is an odd function with respect to t, (39) implies that
Qy 2 B(�).
Furthermore, from (38) it follows that

j(Qy1)(t)� (Qy2)(t)j = j"K(I � P )[f (t; y1(t) + x0)

�f (t; y2(t) + x0)j ; y1; y2 2 B(�): (41)

Based on the norm bounds (33) and (34) for the mapping K and P ,
(41) implies that

kQy1 �Qy2k � 4"!F2 ky1 � y2k �
1

2
ky1 � y2k : (42)

That is,Q is a contractionmapping fromB(�) toP! . By thewell-know
fixed point theorem [6], [10], there exists unique fixed point y� =
y�(x0; ") 2 B(�) for x0 2 B� and " 2 (0; "0].
Finally, letx� = x�(x0; ") = y�+x0, thenx� is the solution of (35),

satisfying x�(�t) = x�(t) due to y� 2 B(�). To prove the periodicity
of the solution, we only need to prove that Pf(t; x�(t)) = 0 by the
condition (36). Since x�(�t) = x�(t) and f(t; x�) is a !-periodic
odd function with respect to t, we have

Pf (t; x�(t)) =
1

!

!

0

f (t; x�(t))dt

=
1

!

!

0

f (t; x�(�t))dt

= �
1

!

!

0

f (�t; x�(�t))dt

= �
1

!

!

0

f (�t+ !; x�(�t+ !))dt

�=�t+!
= �

1

!

!

0

f (�; x�(� ))d�

which implies Pf(t; x�(t)) = 0. This completes the proof of Propo-
sition 1.

PROOF OF PROPOSITION 2

In fact, let p(t; x) = "�(t)x1, then the IVP can be decomposed into
the following form:

_x1 = "�(t)x1
_x2 = "B0(x1; x2)�(t)x1
x1(t0) = x10; x2(t0) = x20

: (43)

Obviously, the solution of the first IVP with respect to x1 is given by
x1 = x1(t; t0; x10) = Q(t; t0)x10. The corresponding IVP with re-
spect to x2 in (43) is thus reduced to (9) in this case.
Under (9), one has

Q(�t; t0) = exp "

�t

t

�(�)d�

�=��
= exp �"

t

�t

�(��)d�

=exp "

t

�t

�(�)d�

=exp "

t

�t

�(�)d� Q(t; t0)

= exp "

t

0

�(�)d�+"

0

�t

�(�)d� Q(t; t0)

�=��
= exp "

t

0

�(�)d��"

0

t

�(��)d� Q(t; t0)

=Q(t; t0):
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That is, the solution x1 = x1(t; t0; x10) is an even function. Fur-
thermore, we also have

Q(t+ !; t0)�Q(t; t0)

= Q(t; t0) exp "

t+!

t

�(� )d� � I

�=�+!
= Q(t; t0) exp "

t

t�!

�(�)d� � I

= Q(t; t0) exp �"

�t

�t+!

�(��)d� � I

Q(t; t0) exp "

�t

�t+!

�(�)d� � I

= Q(t; t0) exp �"

�t+!

�t

�(�)d� � I

�=��
= Q(t; t0) exp "

t+!

t

�(��)d� � I

= Q(t; t0) exp �"

t+!

t

�(�)d� � I

= � [Q(t+ !; t0)�Q(t; t0)] exp �"

t+!

t

�(�)d� :

It implies that Q(t + !; t0) = Q(t; t0), i.e., the solution
x1 = x1(t; t0; x10) is !-periodic. Let the right-hand side of
(9) be denoted by q(t; x2), then q(t + !; x2) = q(t; x2) and
q(�t; x2) = �q(t; x2) for all t 2 R. Therefore, the solution of (9)
is also !-periodic by Proposition 1. This completes the proof of the
proposition.

PROOF OF PROPOSITION 3

In fact, under the conditions, there exists a periodic function z(t; x)
such that (4)–(6) are satisfied. Let the switching function S(t; x) be
given by (11). Then, we have

@S

@t
=BT @2z

@t@x

T

z +
@z

@x

T
@z

@t

=�BT @

@x

@z

@x
Bp

T

z +
@z

@x

T
@z

@x
Bp

=�BT

m

j=1

bj
@pj
@x

+pj
@bj
@x

T
@z

@x

T

z

+ zT
@2z

@xl@xk
Bp+

@z

@x

T
@z

@x
Bp (44)

@S

@x
B =BT @z

@x

T
@z

@x
B

+BT zT
@2z

@xl@xk
B + zT

@z

@x

@bi
@x

bj (45)

where partial derivative symbol is used to avoid confusion. Hence,
(@S=@x)B is at least locally nonsingular since (@z=@x) and B are

full rank. Besides, from (44) and (45) one immediately obtains the fol-
lowing relation:

@S

@t
+
@S

@x
Bp = zT

@z

@x
[bj ; bi] p�BT @p

@x

T

BT @z

@x

T

z: (46)

The sliding mode equation is thus given as follows:

S = BT @z

@x

T
z = 0

_x = Bp+B @S

@x
B
�1

zT @z

@x
[bi; bj ] p

: (47)

Let the Lyapunov function V (t; x) be defined in (6), then V (t; x) is
periodic as indicated in [16] and

_V (t; x) = 0 (48)

which implies that the sliding state satisfies V (t; x) = constant.
For any solution of (33) starting from the set

M = (t; x) : _V (t; x) = 0 = f(t; x) : S = 0g (49)

which remains also in M for all t � tr (tr denotes the initial time
when the sliding motion occurs) must be x = 0. In fact, since z(t; x) =
constant, if S = 0, differentiating z(t; x) and using both (44) and (47)
we then obtain

@z

@x
B zT

@z

@x
[bi; bj ] p = 0:

Since (@z=@x)B is full rank, it also implies

zT
@z

@x
[bi; bj ] p = 0:

Using Assumption A2) and similar method to [16], further differenti-
ation of S = 0 will yield the higher order Lie brackets. Since p(t; x)
only vanishes for x = 0, therefore, the setM does not contain a com-
plete positive integral curve. The solution x = 0 is thus uniformly
asymptotically stable by the Barbashin–Krasovskij theorem in [5].
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New Limit Power Function Spaces

Chuanyi Zhang

Abstract—To answer an open question, we propose two function spaces:
One is Banach and another is Hilbert. It is shown that the Hilbert space
is the largest one among those Hilbert spaces in limit power function set
whose members have associated Fourier series (in sense of a new basis) and
satisfy Parseval’s equality.

Index Terms—Almost-periodic functions, Fourier series, limit power
functions, mean.

I. INTRODUCTION

As in [14], a function f is called limit power if the limit

lim
T!1

1

2T

T

�T

jf(t)j2 dt

exists. Denote by H2 the set of all such functions.
One important subset ofH2 isAP( ), the space of almost periodic

functions (e.g., [4], [5], [8], [10], and [17]) and so is the Besicovitch
space B2 [3], the completion of AP( ) in H2.
An example in [13] shows thatH2 is not closed under addition. The

lack of closedness under addition caused some difficulties in such areas
as Robust Control (e.g., see [11]). [13] opens the question: except for
some subsets ofH2 which are already known to be vector spaces (e.g.,
L2(( )); ff 2 L1(( )) : limjtj!1 f(t)existsg;AP( )), it is not
clear whether a “nice” (e.g., Hilbert), large vector space could be de-
fined. The background of [13] and related problems being pointed out
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by some authors (e.g., [11], [12], [14], and the references therein) show
that new, larger, nice spaces are needed. The purpose of the paper is to
define such spaces. Thus, we answer the open question affirmatively.

II. UNIFORM LIMIT POWER FUNCTIONS

By direct calculation, one can show that

lim
T!1

1

T

T

0

(ei�t � e�i�t )dt =
1; � = � � = �

0; otherwise

where �; � are positive numbers and �; � 2 . That is, the set fei�t g
is orthonormal.
When � > 1, the functions ei�t have important applications. We

refer the readers to [1], [2], [7], [9], [15], and [16] for details.
Remark 2.1: Since the domain of the function ei�t in general is
+, we consider + only in the paper. For special numbers of �, for
example, �’s are positive integers, the domain will be . In this case,
all the results will hold for . For example, the limit will be

lim
T!1

1

2T

T

�T

(ei�t � e�i�t )dt =
1; � = � � = �

0; otherwise:

In general, � > 0 one can also deal with � or by using jtj� rather
than t�.
We call the functions

n

k=1

ake
i� t

�-trigonometric polynomials. As these functions are in AP( ), we
have the following.
Definition 2.2: Let� > 0 be fixed. A function on + is said to have

uniform limit power if for each � > 0 there exists an �-trigonometric
polynomial P� such that

kf � P�k = supfjf(t)� P�(t)j : t 2 ( +)g < �: (2.1)

Denote by ULP�(
+), the space of all such functions.

One sees that ULP�(
+) = AP( +) when � = 1.

It follows from Definition 2.2 that ULP�(
+) is the completion of

�-trigonometric polynomials in C( +), the space of bounded, contin-
uous, complex-valued functions on ( +) with supremum norm. Since
the set of �-trigonometric polynomials is closed under addition, multi-
plication and conjugation, so is the completion ULP�(

+). Thus, we
have shown the following result.
Theorem 2.3: ULP�(

+) is aC�-subalgebra of C( +) containing
the constant functions.
We point out that there is a Fourier analysis theory for ULP�(

+)
analogical to that ofAP( +). That is, for each f 2 ULP�(

+) there
exists a unique Fourier series 1

n=1
Ane

i� t and Parseval’s equality
limT!1(1=T )

T

0
jf(t)j2dt = 1

n=1
jAnj

2 holds. To show this, we
only need to set up some correspondence between ULP�(

+) and
AP( +). For the �-trigonometric polynomial P� in Definition 2.2, let
s = t�. Then, P� becomes trigonometric polynomial of s. That is

P�(s) =

n

k=1

ake
i� s:
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