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Stable Adaptive Fuzzy Control of Nonlinear Systems
Preceded by Unknown Backlash-Like Hysteresis

Chun-Yi Su, Senior Member, IEEE, Masahiro Oya, and Henry Hong

Abstract—This paper deals with adaptive control of nonlinear
dynamic systems preceded by unknown backlash-like hysteresis
nonlinearities, where the hysteresis is described by a dynamic
equation. By utilizing this dynamic model and by combining
a fuzzy universal function approximator with adaptive control
techniques, a stable adaptive fuzzy control algorithm is developed
without constructing a hysteresis inverse. The stability of the
closed-loop system is shown using Lyapunov arguments. The
effectiveness of the proposed method is demonstrated through
simulations.

Index Terms—Adaptive control, fuzzy approximators, global
stability, hysteresis nonlinearity, nonlinear systems, tracking
control, uncertainties.

I. INTRODUCTION

SOME industrial actuators exhibit a hysteresis in their char-
acteristics. In a typical piezoelectric actuator, as one of ex-

amples, hysteresis behavior is fundamentally exhibited in its re-
sponse to an applied electric field. The formation of hysteresis
loop of piezoelectirc actuators is a complicated procedure and
physical explanation for hysteresis phenomenon from a macro-
scopic viewpoint was given in [2]. If the hysteresis nonlinearity
in the piezoelectric actuator is not accounted for, it will re-
sult in the degradation of system performance, reducing posi-
tioning accuracy and even may lead to instability [14]. Gen-
erally speaking, hysteresis characteristics are nondifferentiable
nonlinearities for which traditional control techniques are insuf-
ficient and control of a system preceded by a hysteresis is typ-
ically challenging.

The development of control techniques to mitigate effects of
hystereses has been addressed in several papers [1], [3], [4], [9],
[11], [15], [16]. A common feature of those schemes is that
the hysteresis is patterned by the backlash hysteresis and the
development of controllers relies on the construction of an in-
verse hysteresis. These results, especially [14] and [15], pro-
vide a theoretic framework which can serve as a base for future
research. Apart from these schemes, another control approach
has recently been reported in [13], where a dynamic hysteresis
model is used to pattern a backlash hysteresis, which provides
certain advantages.
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This paper will address the control of nonlinear systems
preceded by unknown backlash hysteresis nonlinearities, for
which an explicit linear parameterization of nonlinearities in
the system dynamics is either unknown or impossible. The
existence of such nonlinearities impose a great challenge
for the controller development when the controlled system
is preceded by the hysteresis. To address such a challenge,
the fuzzy system will be adopted to model the plant and the
controller is constructed based on this fuzzy model so that
fuzzy IF–THEN rules describing the plant can be incorporated
into the adaptive fuzzy controller. The fuzzy system, used
to approximate the nonlinearities in the plant, together with
the dynamic hysteresis model given in [13], is adjusted by
adaptive laws based on a Lyapunov synthesis approach. The
developed control law ensures global stability of the adaptive
fuzzy system. Simulations performed on a nonlinear system
illustrate and clarify the approach.

II. PROBLEM STATEMENT

The controlled system consists of a nonlinear plant preceded
by a backlash-like hysteresis actuator, that is, the hysteresis is
present as an input of the nonlinear plant. It is a challenging
task of major practical interests to develop a control scheme
for both unknown system dynamics and unknown backlash-like
hysteresis. The development of such a control scheme will now
be pursued.

A backlash-like hysteresis nonlinearity can be denoted as an
operator

(1)

with as input and as output . The notation
represents the fact that the operator inis dependent on

the trajectory, , not an instantaneous value . The
operator will be discussed in details in the subsequent
section. The nonlinear dynamic system being preceded by the
above hysteresis is described in the canonical form

(2)

where is an unknown continuous nonlinear function, and con-
trol gain is unknown but constant. It is a common assumption
that the sign of is known. From this point onward, without
losing generality, we shall assume . It should be noted that
more general classes of nonlinear systems can be transformed
into this structure [6].

The control objective is to design a control law
for in (1), to force the plant state vector,
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, to follow a specified desired trajec-

tory, , i.e., as .
The following assumption regarding the desired trajectory
is required in the paper.

Assumption 1:The desired trajectory,

is continuous and available.

Furthermore with a compact
set.

III. B ACKLASH-LIKE HYSTERESISMODEL AND ITS PROPERTIES

Traditionally, a backlash hysteresis nonlinearity can be de-
scribed by

if and
if and
otherwise

(3)

where is the slope of the lines and is the back-
lash distance. This model is itself discontinuous and may not be
amenable to controller design for the nonlinear systems (2).

Instead of using the previous model, in this paper we use a
continuous-time dynamic model to describe a class of back-
lash-like hysteresis, as given by [13]

(4)

where , , and are constants, satisfying .
Remark: Generally, modeling hysteresis noninearities is still

a research topic and the reader may refer to [7] for a recent
review.

We shall now review the solution properties of the dynamic
model (4) and explain the corresponding switching mechanism,
which is crucial for design of the controller. The (4) can be
solved explicitly for piecewise monotone

with

(5)

for constant and . Analyzing (5), we see that it
is composed of a line with the slope, together with a term

. For , it can be easily shown that if is
the solution of (5) with initial values ( ), then, if
( ) and , one has

(6)

(7)

It should be noted that the aforementioned convergence is ex-
ponential at the rate of. Solution (5) and properties (6) and (7)

show that eventually satisfies the first and second condi-
tions of (3). Furthermore, setting results in which
satisfies the last condition of (3). This implies that the dynamic
(4) can be used to model a class of backlash-like hystereses and
is an approximation of backlash hysteresis (3).

Let us use an example for specified initial data to show
the switching mechanism for the dynamic model (4) when
changes direction. We note that when on and

, the solution (5) gives

for and
(8)

Let be a positive value of and consider now a specimen
such that is increasing along the initial curve (8) until a time

at which reaches the level . Suppose now that from the
time , the signal is decreased. In this case,is given by

for (9)

where . Equations (8) and (9) indeed show that
switches exponentially from the line to

to generate backlash-like hysteresis curves.

IV. L YAPUNOV-BASED CONTROL STRUCTURE

From the solution structure (5) of the model (4) we see that
the signal is expressed as a linear function of input signal

plus a bounded term. Now it is ready for the controller de-
velopment. However, before we describe the control scheme,
as will be given in Section VI, it would be helpful to first de-
velop a control law for an ideal situation. Such a control law
will outline the basic structure for the controller to be develop-
ment. Therefore, in this section, assuming the parameterand
the nonlinear function as well as the hystereis are all
known, we shall propose a Lyapunov-based control structure for
plants of the form described by (2), preceded by the hysteresis
described in (4). The proposed controller will lead to global sta-
bility and yields desired tracking.

Using the solution expression (5), (2) becomes

(10)
which results in a linear relation to the input signal . It is
very important to note that (6) or (7) imply that there exists a
uniform bound such that

(11)

In presenting the Lyapunov-based control structure, the fol-
lowing definition is required:

(12)

where represents the tracking error vector.
A filtered tracking error is defined as

with (13)
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Remarks: It has been shown in [10] that the equation
defines a time-varying hyperplane in on which the tracking

error vector decays exponentially to zero.
Define a continuous function

if

if
(14)

with being any small positive constant. As ,
approaches a step transition from1 at 0 to 1 at 0
continuously.

With this in mind, we have the following lemma to establish
the existence of an ideal control, , that leads to as

.
Lemma 1: For the plant in (2) with the hysteresis (4) at the

input, all the closed-loop signals are bounded and the state
vector as with a desired Lyapunov-based
controller

(15)

where ,
with , is a
constant, and satisfies .

Proof: Equation (13) can be rewritten as
with . The derivative of
the error metric (13) can be written as

(16)

Define a Lyapunov function candidate . Dif-
ferentiating along (16) yields

(17)

where the fact that has been used. This shows that
is a Lyapunov function which leads to global boundedness of

. To complete the proof and establish asymptotic convergence
of the tracking error, it is necessary to show that as

. This is accomplished by applying Barbalat’s Lemma
[8] to the continuous, nonnegative function

with

(18)

It can easily be shown that every term in (16) is bounded, hence,
. This implies that is a uniformly continuous function of

time. Since is bounded below by 0, and for all
, use of Barbalat’s lemma proves that . Therefore,

from (18) it can be demonstrated that as . The
remark following (13) indicates that as .

If the parameters and as well as the nonlinear function
are unknown, the control law described above cannot

directly applied. Therefore, the challenge addressed in this
paper is the development of adaptive controllers to deal with
unknown nonlinear function as well as the unknown
parameters and .

V. FUNCTION APPROXIMATION USING GAUSSIAN FUZZY

MEMBERSHIPFUNCTIONS

In the case of unknown nonlinearity and constants
and , the desired controller given in (15) is not avail-

able. In order to develop a stable adaptive control law, a pa-
rameterized approximator shall be used to approximate the un-
known nonlinearity . Here, it should
be emphasized that in this paper we are addressing the situation
where an explicit linear parameterization of the nonlinear func-
tion is either unknown or impos-
sible. Otherwise, there is no need to construct a parameterized
approximator [18].

In the literature, several function approximators can be ap-
plied for this purpose. In this paper, we used a fuzzy system as
an approximator. For the fuzzy systems, the theoretical ability
to uniformly approximate continuous functions to a specified
degree of accuracy has recently been demonstrated in [17] by
using fuzzyIF–THEN rules, which describe the behavior of an
unknown plant.

The control design presented in this paper employs a fuzzy
system to approximate the function over a compact region
of the state space. Such a fuzzy system is composed bysingleton
fuzzifier, product inference,andGaussian membership function
and is of the form

(19)

where , is the connection weight;
and

is theGaussian membership function, defined by

(20)

where and are real-valued parameters,
and

. Notice that contrary on the traditional notation, in this
paper, we use to represent the variance just for the
convenience of later development.

Then, the fuzzy system (19) can be rewritten as

(21)

where ,
,

, ,
.

The ability of (21) to uniformly approximate smooth func-
tions over compact set is well documented in the literature
(see [17] and [18]). In particular, it has been shown that given
a smooth function , where is
a compact set and , there exists a Gaussuian func-
tion vector and a weight vector such that

.
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To construct , the values of the pa-
rameter vectors , , and are required. Unfortunately,
they are usually unavailable. Normally, the unknown parameter
vectors , , and are replaced by their estimates, ,
and . Then, the estimation function is
used instead of to approximate the unknown function .
Using the estimation function of , the approximation error
between and can be established as follows.

Lemma 2: Define the estimation errors of the parameter vec-
tors as

(22)

The estimation error function is

(23)

where and are derivatives of
with respect to and at ( ), respec-

tively, is a residual term. Moreover, satisfies

(24)

and is an unknown constant vector, being com-
posed of optimal weight matrices and some bounded constants;

and is a known function
vector.

Proof: See Appendix A
Remarks:

1) The role of Lemma 2 is that through the first Taylor’s
expansion of near ( ), the function ap-
proximation error in (23) has been expressed in a
linearly parameterizable form with respect toand ,
which makes the updates of ( ) possible. More-
over, the residual term is bounded by a linear expres-
sion with a known function vector as in (24). Thus, adap-
tive control techniques can be applied to deal with this
residual term. We should mention that the similar tech-
nique has also been used in the reference [5], where the
approximator was constructed by the current neural net-
works and the hidden neurons are sigmoid functions.

2) It should be noted that no explicit expressions for, ,
, are required since these values can be learned by

using the adaptive algorithm developed in the following
section.

VI. A DAPTIVE CONTROLLER DESIGN

We are now ready to develop an adaptive control law to
achieve the control objective for the plant described by (2),
preceded by the hysteresis described in (4) with unknown
nonlinear function and as well as . Before proposing
an adaptive control law, the following assumptions regarding
the plant and hysteresis are required.

A1) There exist known constants and such that
the control gain in (2) satisfies .

A2) There exist known constants and such that
the slope in (3) satisfies .

A3) The bound for the relation is known.
Remarks: Assumption A1) is common for the nonlinear

system described by (2) [10]. Assumption A2) assumes the
slope range of a backlash hysteresis nonlinearity, which is
reasonable. Assumption A3) requires knowledge in regards
to the upper bound of the hysteresis loop, which is quite
reasonable and practical.

In presenting the developed robust adaptive control law, the
following definition is required:

(25)

where is an estimate of , which is defined as .
Given the plant in (2), hysteresis model (4) in Section III,

and the function approximation (23) in Section V, subject to
the assumption previously described, the following control and
adaptation laws are presented:

(26)

(27)

(28)

(29)

(30)

(31)

(32)

where ; is
a control gain, satisfying , whereby, is defined
in (11). In addition, the parametersand ( )
are positive constants determining the rates of adaptations, and

is a projection operator, which is formulated as fol-
lows:

if and
if
or and
or and
if and

(33)

Remarks:

1) In the aforementioned control law, a projection operator
has been introduced. It can be easily proved that the pro-
jection operator for has the following properties: i)

if ; ii) ; and
iii) , where is a
positive–definite symmetric matrix.

2) The projection operator requires knowledge of the param-
eters and . These represent the upper and lower
bounds of , respectively. Assumptions A1) and A2) are
fundamental to this end. However, it should be noted that
these parameters are only used to specify the range of pa-
rameter changes for the projection operator. With regards
to this paper, such a range is not restricted as long as the
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estimated parameter is bounded (required for the stability
proof); hence, one can always choose suitable and

, although such a choice may be conservative.
The stability of the closed-loop system described by (2), (4)

and (26)–(33) is established in the following theorem.
Theorem 1: For the plant in (2) with the hysteresis (4) at

the input subject to assumptions A1)–A3), the robust adaptive
controller specified by (26)–(33) ensures that if ,
all the closed-loop signals are bounded and the state vector
converges to as .

Proof: Using (10), the time derivative of the filtered error
(13) can be written as

(34)

Using the control law (26)–(33), the previous equation can be
rewritten as

(35)

To establish global boundedness, we define a Lyapunov func-
tion candidate

(36)

The derivative of along (35) leads to

(37)

Using Lemma 2, one has

(38)

Equation (37) can then be expressed as

(39)

Since , this becomes

(40)

By using adaptive law (32) and the property
, one obtains

(41)

Equation (41) implies that is a Lyapunov function which leads
to global boundedness ofand ( ), as well as , , , . It
is easily shown that if is bounded, then is also bounded
for all , and since is bounded by design, must also be
bounded. To complete the proof and establish asymptotic con-
vergence of the tracking error, it is necessary to show that
as . This is accomplished by applying Barbalat’s Lemma
[8] to the continuous, nonnegative function

with

(42)

It can easily be shown that every term in (35) is bounded, hence,
is bounded This implies that is a uniformly continuous

function of time. Since is bounded below by 0, and
for all , use of Barbalat’s lemma proves that .

Therefore, from (42) it can be demonstrated that as
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. The remark following (13) indicates that will
converge to .

Remark: It is important to note that the backlash-like hys-
teresis model described by (4) can be extended for the gen-
eral hysteresis nonlinearities. However, the goal of this paper
is to show the controller design strategy using a dynamic hys-
teresis model in a simple setting that reveals its essential fea-
tures. This is the motivation for simply using backlash-like hys-
teresis model.

VII. SIMULATION STUDIES

In this section, we illustrate the aforementioned methodology
on a simple nonlinear system described as

(43)

where represents an output of hysteresis. The actual
parameter values are and . Without con-
trol, i.e., , the system (43) is unstable, because

for , and
for . The objective is

to control the system stateto follow a desired trajectory ,
which will be specified later.

The backlash-like hysteresis is described by

(44)

with parameters , , and . Using
input signal with , 3.5, 4.5, 5.5,
6.5, the responses of this dynamic equation with the initial
condition are shown in Fig. 1. We should mention
that when using a variety of values for both initial values
and frequencies, simulation studies show hysteresis shapes
similar to those in Fig. 1. This confirms again that the dynamic
model (44) can be used to describe the backlash-like hysteresis.
It also shows that the required shape of backlash hysteresis is
dependent solely on the selection of a suitable parameter set
{ }.

To construct the fuzzy approximator approximator, the fol-
lowing linguistic descriptions are adopted:

IF is near THEN is near

where near , , 2, 1, 0, 1, 2, 3, is a fuzzy set with
membership functions . are
obtained by evaluating at points , 2,

1, 0, 1, 2, 3. The values of are not required here since
the exact , , and are not required in the control law.
However, the knowledge of will be helpful in the choices
of initial , , , and to speed up the adap-
tation process. In this example, these initial values are chosen
as ,

, ,
and .

In the simulations, the robust adaptive control law (26)–(33)
was used, taking . Since the backlash distance is around
2.5, we can choose the upper boundin (11) as and
we also choose , which results in . In the

Fig. 1. Hysteresis curves given by (4) or (44) with� = 1, c = 3:1635, and
B = 0:345 for v(t) = kitsin(2:3t) with k = 2:5, 3.5, 4.5, 5.5, 6.5.

Fig. 2. Tracking error of the state with backlash hysteresis.

adaptation laws, we choose
and and the initial parameter . The initial
state is chosen as and sample time is 0.005. In the
simulation the initial value, , is required, which is selected
as .

Choosing the desired trajectory , sim-
ulation results are shown in Figs. 2 and 3. Fig. 2 shows the
tracking error for the desired trajectory and Fig. 3 shows the
input control signal . We see from Fig. 2 that the proposed
robust controller clearly demonstrates excellent tracking perfor-
mance. We should mention that it is desirable to compare the
control performance with and without considering the effects of
hysteresis. Unfortunately, this comparison is not possible in this
case as the control law (26)–(33) is designed for the entire cas-
cade system.

VIII. C ONCLUSION

In this paper, a stable fuzzy adaptive control architecture is
proposed for a class of continuous-time nonlinear dynamic sys-
tems preceded by an unknown backlash-like hysteresis, where
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Fig. 3. Control signalv(t) acting as the input of backlash hysteresis.

the backlash-like hysteresis is modeled by a dynamic equation.
By showing the properties of the hysteresis model and by com-
bining a fuzzy universal function approximator with adaptive
control techniques, an adaptive control scheme is developed
without constructing the hysteresis inverse. The proposed adap-
tive control law ensures global stability of the adaptive system
and achieves the desired tracking. Simulations performed on a
nonlinear system illustrate and clarify the approach.

APPENDIX

PROOF OFLEMMA 2

A. Proof

Denoting and noticing

with , one has

(45)

where . In order to

deal with , the Taylor’s series expansion of is taken about
and . This produces

(46)

where denotes the sum of high-order arguments in
a Taylor’s serious expansion, and and are derivatives
of with respect to and at ( ). They are
expressed as

(47)

Equation (46) can then be written as

(48)

Using (48), in (45) can be expressed as

(49)

where

Now, let us examine . First, using (48), the high-order term
is bounded by

(50)

where , , and are some bounded constants due to the fact
that Gaussian function and its derivative are always bounded by
constants (the proof is omitted here to save space). Second, it is
obvious that there should exist constants, , and satisfying

, , and . Finally, based on the
facts:

The term can be bounded as

(51)

where , ,
, and .
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