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Stable Adaptive Fuzzy Control of Nonlinear Systems
Preceded by Unknown Backlash-Like Hysteresis

Chun-Yi Sy Senior Member, IEEBMasahiro Oya, and Henry Hong

Abstract—This paper deals with adaptive control of nonlinear This paper will address the control of nonlinear systems
dynamic systems preceded by unknown backlash-like hysteresis preceded by unknown backlash hysteresis nonlinearities, for
nonlinearities, where the hysteresis is described by a dynamic \ynich an explicit linear parameterization of nonlinearities in

equation. By utilizing this dynamic model and by combining L . .
a fuzzy universal function approximator with adaptive control the system dynamics is either unknown or impossible. The

techniques, a stable adaptive fuzzy control algorithm is developed €Xistence of such nonlinearities impose a great challenge
without constructing a hysteresis inverse. The stability of the for the controller development when the controlled system
closed-loop system is shown using Lyapunov arguments. Thejs preceded by the hysteresis. To address such a challenge,
effectiveness of the proposed method is demonstrated through o fuzzy system will be adopted to model the plant and the
simulations. . .

_ _ controller is constructed based on this fuzzy model so that
st;rt;ﬁi?;/( Tﬁ;ggr—eégaprfgﬁ"rfggrﬁr&" Luozr?ﬁ’n :grpr‘s);g‘;;(;rsvtggz% fuzzy IF-THEN rules describing the plant can be incorporated
control,luncertainties. ' ’ into the e}daptlve fuzzy .contrcl)ller.. The fuzzy system, u;ed

to approximate the nonlinearities in the plant, together with
the dynamic hysteresis model given in [13], is adjusted by

I. INTRODUCTION adaptive laws based on a Lyapunov synthesis approach. The

OME industrial actuators exhibit a hysteresis in their chafl€veloped control law ensures global stability of the adaptive
cteristics. In a typical piezoelectric actuator, as one of efiZZy System. Simulations performed on a nonlinear system
amples, hysteresis behavior is fundamentally exhibited in its fiustrate and clarify the approach.
sponse to an applied electric field. The formation of hysteresis
loop of piezoelectirc actuators is a complicated procedure and Il. PROBLEM STATEMENT
physical explanation for hysteresis phenomenon from a macro-The controlled system consists of a nonlinear plant preceded
scopic viewpoint was given in [2]. If the hysteresis nonlinearitiyy 5 backlash-like hysteresis actuator, that is, the hysteresis is
in the piezoelectric actuator is not accounted for, it will répresent as an input of the nonlinear plant. It is a challenging
sult in the degradation of system performance, reducing pogisk of major practical interests to develop a control scheme
tioning accuracy and even may lead to instability [14]. GeRor hoth unknown system dynamics and unknown backlash-like
erally speaking, hysteresis characteristics are nondifferentiag{@teresis. The development of such a control scheme will now
nonlinearities for which traditional control techniques are insufe pursued.
ficient and control of a system preceded by a hysteresis is typ-p packlash-like hysteresis nonlinearity can be denoted as an
ically challenging. operator
The development of control techniques to mitigate effects o

hystereses has been addressed in several papers [1], [3], [4], [9], w(t) = P[v](t) (1)
[11], [15], [16]. A common feature of those schemes is that
the hysteresis is patterned by the backlash hysteresis and\it@ v(¢) as inputv(t) andw(t) as outputw(t). The notation
development of controllers relies on the construction of an ij(¢) represents the fact that the operatof-jris dependent on
verse hysteresis. These results, especially [14] and [15], ptRe trajectoryy € C°[0, t], not an instantaneous valug). The
vide a theoretic framework which can serve as a base for futwgeratorP(v(t)) will be discussed in details in the subsequent
research. Apart from these schemes, another control approggbtion. The nonlinear dynamic system being preceded by the
has recently been reported in [13], where a dynamic hysteregisove hysteresis is described in the canonical form
model is used to pattern a backlash hysteresis, which provides
certain advantages. ™ () + fla(t), @(t), ..., z"7V@) = bw(t)  (2)
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[1'7:1.:7 L 7x(n71)]T, to follow a specified desired trajec-show thatw(t) eventually satisfies the first and second condi-
. (n—1)]T . tions of (3). Furthermore, setting= 0 results inw = 0 which
tory, xg = |Tq,Tq,...,Ty , .., x — X4 ast — oo

) ; . ¢ ] satisfies the last condition of (3). This implies that the dynamic
The following assumption regarding the desired trajectaiy (4 can be used to model a class of backlash-like hystereses and
is required in the paper. , _ is an approximation of backlash hysteresis (3).

Assumption 1The desired trajectory, | et us use an example for specified initial data to show
Xq = [xd,:i‘d, ...,wfl"_l)] is continuous and available.the switching mechanism for the dynamic model (4) whien
changes direction. We note that wheén> 0 onw(0) = 0 and

T
Furthermore[xf,x&")} € Q4 C R™! with ©; a compact v(0) = 0, the solution (5) gives

set.
w(t)=co(t) — <= B (1 — e @) for v(t) > 0 ands > 0.
Ill. BACKLASH-LIKE HYSTERESISMODEL AND ITS PROPERTIES Q )
Traditionally, a backlash hysteresis nonlinearity can be deet v, be a positive value of and consider now a specimen
scribed by such that is increasing along the initial curve (8) until a time
t, at whichv reaches the level,. Suppose now that from the
w(t) =P[v](t) timet,, the signab is decreased. In this case,is given by
c(v(t) — B) if o(t) > 0andw(t) = c¢(v(t) — B B
=< c(v(t)+ B) if 9(t) < 0andw(t) = c(v(t) + B) w(t) = cv(t) + ¢ [1 — (2e7 — e—2avs)eav(t)]
w(t_) otherwise

forv <0. (9
3) )

wherec > 0 is the slope of the lines an® > 0 is the back-
lash distance. This model is itself discontinuous and may not
. . C

amenable to controller design for the nonlinear systems (2).
Instead of using the previous model, in this paper we use a
continuous-time dynamic model to describe a class of back-

wherev < ws. Equations (8) and (9) indeed show that
%Vé/itches exponentially from the linev(t) — (¢ — B1)/a to
v(t)+ (c — B1)/«a to generate backlash-like hysteresis curves.

IV. LYAPUNOV-BASED CONTROL STRUCTURE

lash-like hysteresis, as given by [13] From the solution structure (5) of the model (4) we see that
the signaku(¢) is expressed as a linear function of input signal
dw —a dv (cv —w) + Blﬁ ) v(t) plus a bounded term. Now it is ready for the controller de-

dt dt dt velopment. However, before we describe the control scheme,

wherea, ¢, andB; are constants, satisfying> By as will be given in Section _VI, it V\_/oulq be helpful to first de-
elop a control law for an ideal situation. Such a control law

Remark: Generally, modeling hysteresis noninearities is stilfS

a research topic and the reader may refer to [7] for a recgvn'{l outline the basic structure for the controller to be develop-

(EVIEW. ment. Therefore, in this section, assuming the parantedeard

We shall now review the solution properties of the dynam{?%vr\llgn\ll'vr;e;:;ﬁn?;'oigxétl)_) ;Su\:]vce)\lll-k?:xstgscr(])ynsttr?)rlesltsrua::rtirilz‘or
model (4) and explain the corresponding switching mechanis ' prop yap

o : . ants of the form described by (2), preceded by the hysteresis
which is crucial for design of the controller. The (4) can b . : .
solved explicitly forv piecewise monotone %escrlbed in (4). The proposed controller will lead to global sta-

bility and yields desired tracking.
w(t) =cv(t) + d(v) with Using the solution expression (5), (2) becomes

d(v) =[w, — cvo]e_a(’”—vo)sgm')

2@ + £ (2(t),3(0), ..,2 7)) = bev(t) + bd(v(1))
+ efavsgm')/ [Bl _ c]eaC(sgm})dC (5) (10)

Vo which results in a linear relation to the input signét). It is
very important to note that (6) or (7) imply that there exists a

for v constant andv(v,) = wg. Analyzing (5), we see thatit * .
Y (vo) = wo yzing (5) uniform boundp such that

is composed of a line with the slope together with a term

d(v). For d(v), it can be easily shown that if(v; v,,w,) is ()| < p. (11)

the solution of (5) with initial valuesu, w,), then, ifo > 0 -

(v < 0)andv — +oo (—00), one has In presenting the Lyapunov-based control structure, the fol-

c— B, lowing definition is required:
lim d(v) = lim [w(v;ve,w,) — f(v)] = — (6)
v—oo v—oo o % =x— x4 (12)
. . - D1
<rull>gloo dv) = lim_w(vive, wo) = fv)] = « ) " wherex represents the tracking error vector.

@) A filtered tracking error is defined as

It should be noted that the aforementioned convergence is ex- ) ( d
S =

(n-1)
ponential at the rate a@f. Solution (5) and properties (6) and (7) dt + /\> a(t) with A > 0. (13)
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Remarks: It has been shown in [10] that the equatign) = directly applied. Therefore, the challenge addressed in this
0 defines a time-varying hyperplaneki on which the tracking paper is the development of adaptive controllers to deal with

error vectork(t) decays exponentially to zero. unknown nonlinear functiorf(x(t)) as well as the unknown
Define a continuous function parameter$ andc.
sat(s) = L —exp (_TS) LER (14) V. FUNCTION APPROXIMATION USING GAUSSIAN Fuzzy
) —14exp (%) ifs<0 MEMBERSHIP FUNCTIONS

) . . In the case of unknown nonlinearitf(x(¢)) and constants
with -y being any small positive constant. As — 0, sat(s) j andc, the desired controlles* () given in (15) is not avail-
approaches a step transition frenl ats = 07 to 1 ats = 0" able. In order to develop a stable adaptive control law, a pa-
continuously. _ ~ rameterized approximator shall be used to approximate the un-

W|th_ this in mind, we have the following lemma to establislynqwn nonlinearityv; (x(t)) = (1/be)f(x(t). Here, it should
the existence of an ideal contraf}, that leads tax — x4 @ pg emphasized that in this paper we are addressing the situation
t — oo. ) ) ) where an explicit linear parameterization of the nonlinear func-

. Lemma 1: For the plant in (2) with the hysteresis (4) at thgjg, F(z(t),&(t),...,zm=1(t)) is either unknown or impos-
input, all the closed-loop signals are bounded and the sta{fje. Otherwise, there is no need to construct a parameterized
vectorx(t) — x4(t) ast — oo with a desired Lyapunov—based(,j‘pproximatOr [18].

controller In the literature, several function approximators can be ap-

. 1 plied for this purpose. In this paper, we used a fuzzy system as
vi(t) = —hs(t) + vp(x(8)) + Evfd(t) — kasat(s)  (15) o approximator. For the fuzzy systems, the theoretical ability
(n) _ to uniformly approximate continuous functions to a specified
W.heregf(x(t)) = (11/bc>f(x(t))’ ”f%(w =2y (1) = A, X(1) degree of accuracy has recently been demonstrated in [17] by
with A, = [07)‘<n__ )_7 (n = DA™ (n — 1)A] ks a using fuzzylF—THEN rules, which describe the behavior of an
constant, and,; satisfiesk; > p/ec.

_ - ) _— unknown plant.
_ Proof: Equation (13) can be rewritten a§) = A" x(1) The control design presented in this paper employs a fuzzy
with AT = [A(*=D (n — 1)A(>=2) . 1]. The derivative of

_ ’ . system to approximate the functiop(-) over a compact region
the error metric (13) can be written as of the state space. Such a fuzzy system is compossihgieton

) — () AT%(t) — fuzzifier, product inferencendGaussian membership function
5(t) Ta (1) + A %(0) = f(x(t)) and is of the form
+ bev™(£) + bd(0* (1))
* * N
=~ vpa(t) = f(x(t)) + bev™(t) + bd(v"(2) h(x(t)) =Y wi(t)g; (o;(B)Ix(H) = &@)  (19)
=be(—ks(t) — kqgsat(s)) + bd(v™(t)). (16) j=1
Define a Lyapunov function candidaté(t) = (1/2bc)s?. Dif- Wwhereh : U C R" — R, w;(t) is the connection weight;
ferentiatingV’ along (16) yields 95 (i OlIx(t) = &) = Tlizy pas (2i(t)) and pa: (i(t))

is the Gaussian membership functiatefined by
pas (2i(t)) = exp (= (05 (t)(zi(t) — &(1)))%) (20)

where o;(t) and £;(t) are real-valued parameters;(t) =
where the fact that-sat(s) > 0 has been used. This shows thal;1 (1) 52(1),....07(¢)]7 and &(t) = [¢1(t), €2(b),. ..

. . . 1 ] ’ ] J 7 Y] ’ ’
V'is a Lyapunov function which leads to global boundedness ?f(t)]T. Notice that contrary on the traditional notation, in this
s. To complete the proof and establish asymptotic convergensgoer, we usd /o (t) to represent the variance just for the
of the tracking error, it is necessary to show that> 0 s convenience of later development.

t — oo. This is accomplished by applying Barbalat's Lemma Then, the fuzzy system (19) can be rewritten as
[8] to the continuous, nonnegative function

V(t) = — ks — has - sat(s) + %d(fu*(t))s
< —ks? 17)

- | h(x(t)) = WT(t) - G (x(1),&(1), o (1)) (21)
Va(t) =V (t) - /0 (V(7) + ks(r))dr with whereW (£) = [w1 (£), wa(£), . .., wn (1)]T, G(x(1), £(), o(#)
V() = — ks?(t). @ag) = ln(a®lx() — &), g2(o2()[|x() — &I, - .,

an(on(Olx()=En (O], E() = [Ea(1), &(8), -, En (D],

It can easily be shown that every term in (16) is bounded, heneét) = [o1(t), o2(t), ..., on(t)]".

5. This implies thaﬁ71(t) is a uniformly continuous function of  The ability of (21) to uniformly approximate smooth func-

time. SinceV; is bounded below by 0, anfzfl(t) < 0 for all tions over compact set is well documented in the literature

t, use of Barbalat’'s lemma proves tH%it(t) — 0. Therefore, (see [17] and [18]). In particular, it has been shown that given

from (18) it can be demonstrated th&t) — 0 ast — co. The a smooth functiorv;(x(t)) : U — R, whereU € R" is

remark following (13) indicates thaf(t) — 0 ast — oo.JJO0 a compact set and;, > 0, there exists a Gaussuian func-
If the parameter$ andc¢ as well as the nonlinear functiontion vector G (x,£*,0*) and a weight vectof/* such that

f(x(t)) are unknown, the control law described above canneip, . vy (x(t)) — W*TG (x,£*,0%) | < ep.
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To construct} = W*'G (x,&*,0*), the values of the pa-  A3) The boundp for the relation||d(v)|| < p is known.
rameter vectord¥V*, o*, and¢{* are required. Unfortunately, Remarks: Assumption Al) is common for the nonlinear
they are usually unavailable. Normally, the unknown parametgfstem described by (2) [10]. Assumption A2) assumes the
vectorsiW*, 0%, and{* are replaced by their estimaté§, 5, slope range of a backlash hysteresis nonlinearity, which is
andé. Then, the estimation functiody = WwTa (x, é,& is reasonable. Assumption A3) requires knowledge in regards
used instead of to approximate the unknown functiary. to the upper bound of the hysteresis loop, which is quite
Using the estimation functiody of v}, the approximation error reasonable and practical. .
betweerv;(x(t)) andi;(x(t)) can be established as follows. In presenting the developed robust adaptive control law, the

Lemma 2: Define the estimation errors of the parameter veéollowing definition is required:

tors as . R
. o R p=¢—1¢ (25)
Wit)y=W*-W,; ¢t)=¢"—-¢ ot)=0"—05. (22) . ) o _ A
o _ _ whereg is an estimate op, which is defined ag=(bc) *.
The estimation error functionf () = vs(x(t)) — ¢ (x(t)) is Given the plant in (2), hysteresis model (4) in Section I,

. o A . R and the function approximation (23) in Section V, subject to
op(t) = W= (1) - (GA(t) - Gég(t} — Go6(1) the assumption previously described, the following control and
+WT(t) - (Geé(t) + GLa(t) + dg(t) (23) adaptation laws are presented:

whereG, € RNX(N™) and@!, € RN><(Nn)Aare derivatives of o(t) = — ks(t) + dvpa(t) + WIG (x,é’, &>
G(x(t),&*,0*) with respectt@™ ando™ at (¢(¢), 5(t)), respec- - .
tively, d(t) is a residual term. Moreovety (t) satisfies — (07 Yy + k%)sat(s) (26)
(n) T
t) =x t)— A, x(t 27
|df(t)| < G;T -Yf(t) (24) de(;) Ly ( ) Au X( ) A ( )
W = —Tys(t)(G — Gié — GL5) (28)
andf3 € R**! is an unknown constant vector, being com- . r
posed of optimal weight matrices and some bounded constants; {=—Tas(t)(W" Gy) (29)
andYy(t) = [1, 4GINEGID ||€7(t)||] is a known function o= Pas(t)(WTG,)" (30)
vector Oy =Tals(t)]Y (31)
Proof: See Appendix A . .
Remarks: ¢ =Proj(¢, —nvyas) (32)

1) The role of Lemma 2 is that through the first Taylor’%NhereA,T _ [0 A\(n=1) (n — 1))\(n—2) (- 1))\]. E* is

expansion Oﬁ’}k‘(x(f)) near €(1),6(1)), the function ap- a control gain, satisfying* > p/cmin, Whereby,p is defined
proximation errori;(t) in (23) has been expressed in g, (11). In addition, the parametersandT; (i = 1,...,4)

linearly parameterizable form with respectdcanda, 4re positive constants determining the rates of adaptations, and

which makes the updates af((), 5(¢)) possible. More- p,;(. .y is a projection operator, which is formulated as fol-
over, the residual term is bounded by a linear expregsys:

sion with a known function vector as in (24). Thus, adap-
tive control techniques can be applied to deal with thiBroj(¢, —nvyas)

residual term. We should mention that the similar tech- 0 if &
nigue has also been used in the reference [5], where the
approximator was constructed by the current neural net-
works and the hidden neurons are sigmoid functions.

= ¢max anNdnuvres < 0

—MNVfds if [@bAmin < QZAS < ¢max]
- Of [ = max @ANdnvsqs > 0] . (33)

2) It should be noted that no explicit expressionsdaro*, 9r[</’ = ¢min ANA7vsas < 0]
W=, 6% are required since these values can be learned by 0 if ¢ = ¢min @ndnvyas > 0
using the adaptive algorithm developed in the following Remarks:
section. '

1) In the aforementioned control law, a projection operator
has been introduced. It can be easily proved that the pro-

_ jection operator ford? has the following properties: i)
We are now ready to develop an adaptive control law to dt) € Qy if $(0) € Qy; i) |[Proj(p,y)| < [lyl; and

achieve the control objective for the plant described by (2), i) (p* — p)TAProj(p,y) > (p* — p)T Ay, whereA is a
preceded by the hysteresis described in (4) with unknown  positive—definite symmetric matrix.

nonlinear functiorf(x(t)) andb as well as:. Before proposing  2) The projection operator requires knowledge of the param-
an adaptive control law, the foIIOWing assumptions regarding eterS(,bmin and¢max- These represent the upper and lower

V1. ADAPTIVE CONTROLLER DESIGN

the plant and hysteresis are required. bounds ofp, respectively. Assumptions Al) and A2) are
Al) There exist known constants,;, andb.,., such that fundamental to this end. However, it should be noted that
the control gairb in (2) satisfied € [bumin, bmax]- these parameters are only used to specify the range of pa-
A2) There exist known constantg,;, andcy,.x such that rameter changes for the projection operator. With regards

the slopec in (3) satisfies: € [¢min, Cmax]- to this paper, such a range is not restricted as long as the
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estimated parameter is bounded (required for the stabilityEquation (37) can then be expressed as
proof); hence, one can always choose suitahlg, and

dmax, although such a choice may be conservative. V(t) = — ks + s[pvsa(t) — (0F Yy + k*)sat(s)]
The stability of the closed-loop system described by (2), (4) — s[WT(t) . (G(t) ff( ) — G 6(t))
and (26)—(33) is established in the following theorem. a7 = /-
Theorem 1:For the plant in (2) with the hysteresis (4) at + W) (Ged(t) + Go (1)) +dp (1)]
the input subject to assumptions A1)-A3), thq robust adaptive +s |:_(z>'de + C_l] _ l(qﬁ _ ¢)¢ WTF1 1W
controller specified by (26)—(33) ensures thapit,) € Q, c U]
all the closed-loop signals are bounded and the state vegtpr _ gTF2—1é 57T 5_ 9f iy 19f (39)

converges tx, ast — oo.
Proof: Using (10), the time derivative of the filtered errorslnce|df| < H*Tyf

(13) can be written as
$(t) = —ogalt) = Fx() +beo(t) + b(w). (@4 ¥ (DS TR A sldvsult) = OV )sat(s)]
= sWT(t)(G(t) — GL(t) — Goo(t))

Using the control law (26)—(33), the previous equation can be _ SWT(t)(G/ E(t) YA + |S|9*Tyf
rewritten as & 4 f

this becomes

. [—«zwfd 2] L= hd-wrrw

§ = —vga = F() + be [~k + dopa + WTG (X, €,6)
_ETrN — 4TI — BT, (40)

—(@TY; + k*)sat(s)} +bd(v). (35)

By using adaptive law (32) and the property(1 —
To establish global boundedness, WedeﬂneaLyapunovfura;%fproJ (/? nvfzS) < (¢ - ( ¢;va8 one opbta?nsM /@

tion candidate

V(t) <ks® + s[pva(t) — (07 Yy + k*)sat(s)]
—sWT(t) - (G(t) — GLé(t) — Glo(t)

+6 15 e + 07Ty 19}] - (36) — sWT(1)(GLE(t) + GLa(t)) + 15|67 Yy

o — svga+ 15| L= + (¢ = $vgas = WITT'W
The derivative oft” along (35) leads to Cmin

— &'y g—ar "6 - 07T lef

< — ks? —|s|0fyf+<—k*+ & >|s|

V(t) = % [is? + %(¢> — )+ WITTW + €757

be
—6TT5'6 — 07T 05

V(t) =55 — ~(¢— $)d— WITT'W — E1T5¢
! Cmin
, . - . —sWT(1) - (G(t) — GEé(t) — Go6(t)
=Tk [¢”fd<t>+W1G(X’f7”) ~ WHOGED + Cro0) + 1057y
—~(0F ¥y + K)sat(s) |+ 7 sl-va = £(x) + bd(v)] CWTTTUY - €T - 5Ty — T,
~ (9= B - WITT'W - Ty ¢ <k (4
- T 19 Equation (41) implies that is a Lyapunov function which leads
—5"T5'0 — 0] f to global boundedness efind (h— ¢), as well adV’, £, &, f;. It
=—ks’+s [qsvfd( Y+ WTa (X, é, (}) is easily shown that i&(0) is bounded, thef(¢) is also bounded
J for all ¢, and sincex,(¢) is bounded by desigx,(¢) must also be
_(éjfyf + k*)sat(s)} +s [_qﬁvfd —vp(x) + _} bounded. To complete the proof and establish asymptotic con-
¢ vergence of the tracking error, it is necessary to showsthat0

(¢ — ¢)¢ WTP 1W ETF 5 ast — oo. Thi§ is accomplished .by applyjng Barbalat's Lemma
[8] to the continuous, nonnegative function

SI’—‘

Tyle - 07T, 19f (37)

Qz

Vi(t) =V (t) — / t(V(r) + ks?(7))dr with
0
Vi(t) = — ks®(t). (42)

Using Lemma 2, one has

vp(x) — WTG(Xg, )

It can easily be shown that every term in (35) is bounded, hence,

= -wra (X ( JE, ) $ is bounded This implies thaf, () is a uniformly continuous
T N . function of time. Sincé’; is bounded below by 0, anid (1) <
:W ( )'( (t) - ( ) = Goa(t) 0 for all ¢, use of Barbalat's lemma proves thét(t) — 0.

+WT(t)- (Ggf( ) + GL5(t)) +ds(t). (38) Therefore, from (42) it can be demonstrated th@) — 0 as
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t — oo. The remark following (13) indicates th&t(¢) will
converge tak(t). ooo _

Remark: It is important to note that the backlash-like hys- 15
teresis model described by (4) can be extended for the gel [
eral hysteresis nonlinearities. However, the goal of this pape
is to show the controller design strategy using a dynamic hys
teresis model in a simple setting that reveals its essential fei
tures. This is the motivation for simply using backlash-like hys-
teresis model.

20 |

wit)

VII. SIMULATION STUDIES

In this section, we illustrate the aforementioned methodolog!
on a simple nonlinear system described as

1
'
|
|
1
'

1
1
'
1
'
|

o
1
'
'
1
'
1

1
|
|
1
'
'

a
'
1
'
|
|
Ly

1—e*®

T = a—l g

+ bw(t) (43)

where w(t) represents an output of hysteresis. The actua
parameter values are = 1 anda = 1. Without con-
trol, i.e.,, w(t) = 0, the system (43) is unstable, because v(t)
i = (1—e®®)/(14e*®) > 0 forz > 0, and
i=(1—e"®)/(1+e"®) < 0forz < 0. The objective is Fig. 1. Hysteresis curves given by (4) or (44) with= 1, c = 3.1635, and
to control the system stateto follow a desired trajectory;;, B: = 0.345 for v(t) = kitsin(2.3t) with k = 2.5, 3.5, 4.5, 5.5, 6.5.
which will be specified later.

The backlash-like hysteresis is described by i T

dw _ v
dt dt

[cv — w] + %Bl (a4) 06r 1

=«

with parametersx = 1, ¢ = 3.1635, andB; = 0.345. Using
input signalv(¢) = ksin(2.3t) with & = 2.5, 3.5, 4.5, 5.5,
6.5, the responses of this dynamic equation with the initi¢_ [

conditionw(0) = 0 are shown in Fig. 1. We should mention?-

that when using a variety of values for both initial value®) NWM
and frequencies, simulation studies show hysteresis shaj . . . . , . . . .
similar to those in Fig. 1. This confirms again that the dynami 10 20
model (44) can be used to describe the backlash-like hysteresis.

It also shows that the required shape of backlash hysteresi§'§s2- Tracking error of the state with backlash hysteresis.
dependent solely on the selection of a suitable parameter set

{a,c, B1}. adaptation laws, we choo$g|;=1,2,34 = {0.2,0.2,0.3,0.01}
To construct the fuzzy approximator approximator, the forndz = 0.5 and the initial parametef = 0.8/3. The initial
lowing linguistic descriptions are adopted: state is chosen aq0) = 1.05 and sample time is 0.005. In the

_ _ simulation the initial valuey(0), is required, which is selected
RY :IF zis neark, THEN is nearB; asv(0) = 0.

Choosing the desired trajectary(t) = 12.5sin(2.3t), sim-
ulation results are shown in Figs. 2 and 3. Fig. 2 shows the
tracking error for the desired trajectory and Fig. 3 shows the
input control signab(t). We see from Fig. 2 that the proposed
robust controller clearly demonstrates excellent tracking perfor-
mance. We should mention that it is desirable to compare the

However, the knowledge af; will be helpful in the choices control performance with and without considering the effects of

of '|n|t|al W(0), €<0)’. 6(0), andf(0) to. s_peed up the adap'rysteresis. Unfortunately, this comparison is not possible in this
tation process. In this example, these initial values are chosen

as W(O) = (1/3.16)[-0.8, 0.6, —0.4,0,0.4,0.6,0.8]T, caze as the control law (26)—(33) is designed for the entire cas-
£(0) = [=3,-1,-1,0,1,2,3]T, 4(0) = [2,2,2,2,2,2,2]T, Ccade system.
andf;(0) = [0.1,0.01,0.01, 0.01].

In the simulations, the robust adaptive control law (26)—(33)
was used, taking,; = 20. Since the backlash distance is around In this paper, a stable fuzzy adaptive control architecture is
2.5, we can choose the upper boynéh (11) asp = 4 and proposed for a class of continuous-time nonlinear dynamic sys-
we also choose,,;, = 3, which results ink* = 4/3. In the tems preceded by an unknown backlash-like hysteresis, where

where neak, k = -3, -2,-1,0, 1, 2, 3, is a fuzzy set with
membership functiongx (z) = exp(—o(z — k)?). By, are
obtained by evaluatingl/bc)f(x) at pointsz = -3, -2,
-1, 0, 1, 2, 3. The values aB;, are not required here since
the exactiW™, ¢*, ando* are not required in the control law.

VIII. CONCLUSION
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Using (48),0f(t) in (45) can be expressed as
Uf(t) =WT(Gel + Gl + o(x,¢,6))
+ WT(GLE+ GlLo + o(x,€,6)) + WIG + ¢,
=WT(G - G — GL&) + WT(GLE + GL&) + dy

(49)
where
I | dy = WI(GE" + GLo™) + WTo(x,€,6)) + eo.
_200 I I | | 1I0 | | | 20 Now, let us examind . First, using (48), the high-order term

Fig. 3. Control signab(t) acting as the input of backlash hysteresis. O(X’ & U) is bounded by

, . , _ lo(x,&,6)|| =I|G - Geé — G
the backlash-like hysteresis is modeled by a dynamic equation. <||C;|| e 5” ey
By showing the properties of the hysteresis model and by com- - _¢ ! i
bining a fuzzy universal function approximator with adaptive <eci + c2l[€]] + esl|a]] (50)
control techniques, an adaptive control scheme is develope
without constructing the hysteresis inverse. The proposed ad e{?ré;ﬁscszi’air}iﬁcfi‘giZong?tsgzgszgvzogii\rll\:\/sad l;ebfjoutnhdee?g
tive control law ensures global stability of the adaptive syste Anstants (the proof is omitted here to save s acZ) Second 'tys
and achieves the desired tracking. Simulations performed Oﬁﬁagious that thgre shlould (Iaxist constaﬁfs\é alfd* sa;tisfying 1t
nonlinear system illustrate and clarify the approach. = - g 7

y v PP W < W, ||£*]] < &, and||c*|] < &. Finally, based on the

facts:
APPENDIX
PROOF OFLEMMA 2 WL <IW [+ W] < W]+ W)
A. Proof IEIN<IE I+ 1€l < NEl + €]l
DenotingG = G (x,¢, &) and noticingy ; (x(t)) = v}(x) + ol <llo™| + o]l < llo]| + [l
e With [e,| < en, one has The termd; can be bounded as
0f () =vy(x(#)) — 05 (x(1)) | =W (Gee™ + Glo™) + WTo(x,£,6)) + &
ok _ wTA ~ * I *
=)W Ghe <IN |+ IS o |
e T e iae + Wl er + ol + esllol) + <
=W GRW Ghe S(W 4 [WlDeat + (W + [WDeso + Wey
S Ge W G WG WG e + Wea€ + [€]1) + Wea(o + ll61) + e
WG+ WG+ WG +ey (45) =26, WE + 2655 + 1 W + €5 + (26 + c30) | W
whereG = G* — G = G (x,£*,0%) - G (x, é, &). In order to + eW(Ell + csWllo |l
~ _p* * * * 7 ; ~ 11T
deal withG, the Taylor’s series expansion 6f is taken about =[071, 052, 055, 0] - [L WL 1IEN Mo ]]
& = ¢ ando* = 6. This produces =05"Y; (51)
667,07 = 6 (x.6.6) + 6L (€~ ahered}, = 2,0V + 21V 4 aW 424,07, = o £ 030
9;3 = coW, and9;4 =c3W. O0od

—|—G;_ - (O'* — (3') + O(Xvév &) (46)
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