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SUMMARY

Dynamic behaviour of a system in sliding mode is entirely defined by the sliding surface. Customarily, the
surface is selected as a hyperplane in the system’s state-space resulting in a PD-type sliding surface. This is
not the only possible structure, and other designs with more complex or time-varying surfaces may provide
definite advantages. Slotine and Spong1 included an integral term in the sliding surface expression that
resulted in a type of PID sliding surface. However, the advantages of such a design were not elaborated in
following publications of these or other researchers. In this paper we present a new design procedure and
stability analysis for robotic variable structure controllers with PID-like sliding surfaces. Two versions of the
controller are presented: regular and adaptive. The former is very simple and can operate with an unknown
dynamic model; the only information required is a bound on one parameter. The latter provides an on-line
estimation for this bound. Both controllers are robust with respect to bounded external disturbances and
some unmodelled dynamic effects. The simulation results have demonstrated stability, with minimum
transient responses that may be significantly faster than responses of traditional PD-manifold controllers
under the same conditions. ( 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Variable structure control (VSC) of robotic manipulators has been receiving more and more
attention recently. The variable structure system (VSS) has several interesting and important
properties that cannot be easily obtained by other approaches. When a system is in a sliding
mode, it emulates a prescribed reduced-order system and is insensitive to parameter variations
and disturbance. Precise dynamic models are not required and the control algorithms are easy
to implement. All these properties make the VSC an ideal candidate for robot manipulator
control.

Young2 first proposed the hierarchy approach to the control of robotic manipulators. Slotine
and Sastry3 developed a methodology of feedback control to achieve accurate tracking of
manipulators. Yeung and Chen,4 and Chen, Mita and Wakui5 proposed some control algorithms
where the inverse of inertia matrix was not required. Young6 presented a variable structure model



following control (VSMFC) design for robotic applications. Leung, Zhou and Su7 provided an
adaptive VSMFC design for robot manipulators which did not require knowledge of nonlinear
robotic systems.

In the above-mentioned work, the sliding surfaces were merely chosen as linear hyperplanes
that resulted in a PD-type sliding surface. Other types of sliding surfaces are also possible and
could provide potential advantages. Slotine and Sponge1 included an integral term in the sliding
surface definition, that resulted in a PID-like sliding surface. But the advantages of such design
have not been investigated. Other works employing this type of sliding surface8—10 have not
exploited the advantages either.

In this paper, we present a new design procedure and stability analysis for robotic variable
structure controllers with PID-like sliding surfaces. Two versions of the controller are presented:
regular and adaptive. The former is very simple and can operate with an unknown dynamic
model; the only information required is a bound on one parameter. The latter provides an on-line
estimation for this bound. Both controllers are robust with respect to bounded external distur-
bances and some unmodelled dynamic effects. Compared with Reference 7, our control law and
adaptation law are much simpler. To prevent overshoot and obtain a fast system response,
a strategy of switching sliding surfaces is also proposed. A planar two link robot is used to show
the feasibility of the control schemes presented.

2. VSC OF ROBOTIC MANIPULATORS WITH PID SLIDING SURFACE

The dynamics of robotic manipulators can be represented by

H(q )q̈#C(q, qR )qR #g (q)"q#d (1)

where q3Rn is the vector of joint angles, q3Rn is the vector of joint torque, H (q)3RnCn is the
inertia matrix, C(q, qR )qR 3Rn is the vector of Coriolis and centripetal torque, g (q)3Rn is the vector
of gravitational torque, and d3Rn includes disturbances and unmodelled dynamics.

Define a sliding surface s"0 with

s"K
P
qJ #K

I P
t

0

qJ dt#qJQ (2)

where qJ "q!q
d
is the tracking error, and q

d
is the desired trajectory. K

I
and K

P
are designed

such that the sliding mode on s"0 is stable, i.e., the convergence of s to zero in turn guarantees
that qJ and qJQ also converge to zero. Any positive definite K

I
and K

P
will satisfy this condition.

Introduce

qR
r
"qR !s (3)

From the definition of s, we have

qR
r
"qR

d
!K

P
qJ !K

I P
t

0

qJ dt (4)

which does not depend on qR . By rearranging the equation (1), we obtain the dynamics as follows:

HsR#Cs#g"q#d!(Hq̈
r
#CqR

r
) (5)
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The following assumption is required in the development of our control algorithms.

Assumption A

There exist positive constant scalars a
1
, a

2
and a

3
such that

EdE
p
(a

1
#a

2
EqE

p
#a

3
EqR E

p
(6)

for all t3R`, where E · E
p
: RnPR is an l

p
norm defined by

ExE
p
"G

n
+
i/1

Dx
i
DpH

1@p
(7)

Remark

The Assumption A is held for a number of unmodelled dynamics effects, including, for example,
friction.11

The standard properties below are also used in our controller designs.

Property P1

The inertia matrix H is symmetric and uniformly positive definite, and with a proper definition
of the matrix C the matrix (HQ !2C) is skew-symmetric.

Property P2

There always exist some constant scalars c
1
, c

2
, a

4
'0 such that the following inequalities

EHE
p
)c

1

ECE
p
)c

2
EqR E

p
(8)

EgE
p
)a

4

are satisfied, where EHE
p

and ECE
p

are the corresponding induced norms.

The Property P2 together with the Assumption A indicate that

Eg!dE
p
)c

3
EqR E

p
#c

4
EqE

p
#c

5
(9)

where c
3
"a

3
, c

4
"a

2
, and c

5
"a

1
#a

4
.

Let E · E
p

and E · E
q

be any two norms on Rn of the type (7). Then the following inequality is
satisfied.12

n~1@pExE
p
)ExE

q
)n1@qExE

p
, ∀x3Rn (10)

Specifically, we have

n~1@pExE
p
)ExE

2
)n1@2ExE

p
, ∀x3Rn (11)
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This inequality will be used later to prove stability of two control schemes. Denote

½T"[Eq̈
r
!jsE

p
, EqR E

p
· EqR

r
E
p
, EqR E

p
, EqE

p
, 1] (12)

hT"[c
1
, c

2
, c

3
, c

4
, c

5
]

where j'0 is a given constant to specify the speed of convergence of the system. We have the
following theorem.

Theorem 1

Consider the robotic system (1) with the switching surface (2), the tracking error qJ will be
globally asymptotically stable by applying the following control law

q"!Ks!a
E½E

p
EsE

p

s (13)

where K3RnCn is a positive definite matrix, and a'n2@pEhE
p

is a positive constant.

Proof. Defining a Lyapunov function candidate »"1
2
sTHs, we have

»Q "sTHsR#1
2
sTHQ s

"sT[q#d!(Hq̈
r
#CqR #g)]#1

2
sT(HQ !2C)s

Note that HQ !2C is a skew-symmetric matrix, the above equation can be simplified to

»Q "!2j»#sT[q!g] (14)

where

g"H (q̈
r
!js)#CqR

r
#g!d (15)

From the properties (8) and (9), we have

EgE
p
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p
· Eq̈
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p
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Applying the control law (13) we have

»Q )!2j»!sTKs!n~2@pEsE
p
· E½E

p
(a!n2@pEhE

p
) (16)

)!2j»!sTKs

»(t))»(0)e~2jt and therefore the switching variable s will converge to zero exponentially.
According to the definition of the switching surface, we can conclude that the tracking errors
qJ and qJQ will also converge to zero exponentially. K

Remark

The condition a'n2@pEhE
p

is only a sufficient condition for the theorem to validate. If p"2,
the Euclidean norm is used, we can see from the derivation of the theorem that the sufficient
condition in this case is a'EhE

2
.
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The developed algorithms are computationally simple, and only one parameter needs to be
estimated. If the robotic dynamic model is known, a can easily be evaluated or obtained by
computer simulation.

The control law (13) is discontinuous across the switching surface s"0, which may lead to
chattering. The chatter is normally undesirable in practice, since it may excite unmodelled
high-frequency dynamics, which could result in unforeseen instabilities and may cause damage to
actuator mechanisms. This problem can be alleviated by introducing a so-called boundary layer
around the switching surface. The stability of the corresponding control law is given in the
following theorem.

Theorem 2

The robotic system (1) with the switching surface (2) is uniformly ultimately bounded (u.u.b.) by
applying the following control law

q"G
!Ks!a

E½E
p

EsE
p

s, if EsE
p
E½E

p
'e

!Ks!a
E½E2

p
e

s, if EsE
p
E½E

p
)e

(17)

where e'0 is a constant, K3RnCn is a positive definite matrix, and a'â"n2@pEhE
p
is a positive

constant.

Proof. Using the same Lyapunov function candidate »"1
2
sTHs. If EsE

p
E½E

p
'e, the proof is

exactly the same as in Theorem 1. Therefore we have

»Q )!2j»!sTKs(0 (18)

If EsE
p
E½E

p
)e we have

»Q "!2j»!sTKs!sTC!a
E½E2

p
e

s!gD
)!2j»!sTKs!

an~2@p

e CE½E2
p
EsE2

p
!

aL
a

eE½E
p
EsE

pD (19)

The last term achieves a maximum value of eâEhE
p
/4a when E½E

p
EsE

p
"eaL /2a. Thus we have

»Q )!2j»!sTKs#
eaL EhE

p
4a

(20)

Uniform ultimate boundedness of the switching variable s thus follows using the results of
Reference 13. Owing to the fact that the subsystem governed by (2) is a stable and strictly proper
system as defined, the ultimate boundedness of the tracking error qJ can also be concluded. K

To verify our control algorithms and to show the advantages of the PID sliding surface,
a planar two-link robot arm is utilized. The detailed description of the simulation is given in the
Appendix. For the desired trajectory shown in Figure 1, the time responses for PID and PD
sliding surfaces are demonstrated in Figure 2, and the corresponding control torques are given in
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Figure 1. Desired transient response of joint one

Figure 2. Tracking errors with a PD and PID sliding surface, respectively

Figure 3. Torque applied with a PD sliding surface

Figures 3 and 4, respectively. The initial error and PD gains are the same in both cases.
A comparison of these two figures suggests that the PID sliding surface provides faster response.
However, Figure 2 indicates an overshoot in time response of the controller with the PID sliding
surface, which is undesirable in practice. Obviously the overshoot is caused by the ‘energy’
conserved by the integration term. To reduce the overshoot, the ‘energy’ must be released, i.e., the
integration should be initiated. This may be done by changing the sliding surface when the
tracking error becomes sufficiently small. The procedure can be described in more detail as
follows.
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Figure 4. Torque applied with a PID sliding surface

Define a region G
i
"MqJ

i
: DqJ

i
D)d

i
N, where d

i
'0 for i"1, 2,2, n. When the state of the

system is outside G
i
, we apply the control law with the original sliding parameter

s
i
"K

1Pi
qJ
i
#K

1Ii P
t

0

qJ
i
dt#qJQ

i
for DqJ

i
D'd

i
(i"1, 2,2 , n) (21)

The sliding motion starts at a point and the tracking error then approaches the origin by a spiral
trajectory. When the states enter the region G

i
, we switch to another definition to initiate the

integration.

s
i
"K

2Pi
qJ
i
#K

2Ii P
t

0

qJ
i
dt#qJQ

i
for DqJ

i
D)d

i
(i"1, 2,2 , n) (22)

where K
2Pi

is selected so that K
2Pi

qJ
i
(t
i
)#qJQ

i
(t
i
)"0, which leads to

K
2Pi

"K
qJQ
i
(t
i
)

d
i
K (23)

Here t
i
is the time when the trajectory enters the region G

i
. To ensure s

i
(t
i
#)"s

i
(t
i
!) so that the

switching variables are continuous at time t
i
, the integral term is initiated as

P
ti`

0

qJ
i
dt"

s
i
(t
i
!)

K
2Ii

for i"1, 2,2 , n (24)

This approach ensures that integration is initiated only when the tracking error enters into the
region G

i
. Hence, large overshoots due to the large initial errors can be avoided. The transient

error resulting from such ‘composite’ sliding surface control is shown in Figure 5. The graph
demonstrates a fast response with little overshoot. Figure 6 shows the corresponding control
torque.

Remark

Figures 2 and 5 also demonstrate another advantage of the PID sliding surface. When
a boundary layer is inserted into the discontinuous control law in order to alleviate the
chattering, the controller with an ordinary PD sliding surface will have steady-state tracking
error. With an integration term, however, the steady-state tracking error may be ultimately
filtered out.
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Figure 5. Tracking error with a switching sliding surface

Figure 6. Torque applied with a switching sliding surface

3. ADAPTIVE VSC SCHEME

The control law (13) requires the parameter a to satisfy a*n2@pEhE
p
. It is very desirable to

estimate this parameter on-line so that none of the knowledge of the robotic system is required for
trajectory tracking. The result is given by the following theorem.

Theorem 3

Consider the robotic system (1) with the switching surface (2), the tracking error qJ will be
globally asymptotically stable by applying the following control law

q"!Ks!aJ
E½E

p
EsE

p

s (25)

and the adaptation law

a80 "!b2a8 #cE½E
p
· EsE

p
(26)

bQ "!Kbb (27)

where K3RnCn is a positive definite matrix, c and Kb are arbitrary positive constants.
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Proof. Consider a Lyapunov function candidate

»"

1

2 CsTHs#n~2@p c~1A/2#
K~1b

4
â2b2BD (28)

where

/"a8 !â

is the parameter estimation error, and â"n2@pEhE
p

is a constant scalar, defined as before.
We have, with reference to (14)

»Q )!jsTHs!sTKs!n~2@pEsE
p
· E½E

p
(aJ !n2@pEhE

p
)#n~2@pc~1/(aJQ !cE½E

p
· EsE

p
)

#n~2@pc~1
K~1b

4
â2bbQ

"!jsTHs!sTKs#n~2@pc~1/[!b2(/#aL )]#n~2@pc~1
K~1b

4
â2(!Kbb2 )

"!jsTHs!sTKs#n~2@pc~1b2(/2#/aL )!n~2@pc~1
aL 2
4

b2 (29)

"!jsTHs!sTKs!n~2@p c~1b2A/#

aL
2B

2

)!jsTHs!sTKs

therefore, all variables are bounded, and the switching variable s will converge to zero, and
the stability of the switching surface guarantees that the tracking error will also converge to
zero. K

Remark

The control law (25) does not require bounds on unknown parameters. The parameter a8 is
estimated on-line using the adaptive algorithm (26) starting from any initial value (for example,
zero). The low-pass-filter form of the parameter update law, which makes suitable corrections
when the parameter is overestimated, ensures that the parameter a8 is bounded.

Similar to the VSC case, the control law (25) is also discontinuous, leading to control
chattering. The chatter can be eliminated by using the boundary layer tecnique. The result is
stated in the following theorem.

Theorem 4

The robotic system (1) with the switching surface (2) is uniformly ultimately bounded (u.u.b.) by
applying the control law

q"G
!Ks!aJ

E½E
p

EsE
p

s, if EsE
p
E½E

p
'e

!Ks!aJ
E½E2

p
e

s, if EsE
p
E½E

p
)e

(30)
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and the adaptation law

a80 "!cpa8 #cEsE
p
E½E

p
(31)

where K3RnCn is a positive definite matrix, c and p are arbitrary positive constants.

Proof. Choose the Lyapunov function candidate as

»"1
2

[sTHs#n~2@p c~1/2]

where / is defined in equation (28).
If E½E

p
EsE

p
'e, one has

»Q )!jsTHs!sTKs#sTA!aJ
E½E

p
EsE

p

sB#EsE
p
· E½E

p
EhE

p
#n~2@pc~1/aJQ

"!jsTHs!sTKs!n~2@p p/aJ

"!jsTHs!sTKs!n~2@pp/2!n~2@pp/aL (32)

"!jsTHs!sTKs!1
2
n~2@pp/2!1

2
n~2@pp (/!a)2#1

2
n~2@p paL 2

)!jsTHs!sTKs!1
2
n~2@p p/2#f

where f"1
2
n~2@ppa2.

If E½E
p
EsE

p
)e, one has

»Q )!jsTHs!sTKs#sTA!aJ
E½E2

p
e

sB#EsE
p
· E½E

p
EhE

p
#n~2@pc~1/aJQ

(33)

"!jsTHs!sTKs!n~2@p aJ
E½E2

p
e

EsE2
p
#n~2@pEsE

p
· E½E

p
aJ !n~2@pp/aJ

when EsE
p
· E½E

p
"e/2, the term !n~2@paJ (E½E2

p
/e)EsE2

p
#n~2@pEsE

p
· E½E

p
aJ reaches a max-

imum value of (e/2) n~2@paJ . Then, we can write as follows:

»Q )!jsTHs!sTKs#e
2

n~2@paJ !n~2@pp/aJ

"!jsTHs!sTKs#e
2

n~2@paJ !n~2@pp/2!n~2@pp/aJ
(34)

"!jsTHs!sTKs!1
2

n~2@pp/2!1
2

n~2@p pCAaJ !
e
2pB

2
!

e2
4p2

!aL 2D
)!jsTHs!sTKs!1

2
n~2@pp/2#m

where m"1
2
n~2@pp(e2/4p2#aL 2).

Based on (32) and (34), the uniform ultimately boundedness of the closed-loop system thus
follows using the results and terminology in Reference 13. K

It should be noted that we also simulated for the adaptive VSC laws (25) and (30), and the
results confirmed that the PID sliding surface results in a fast response and a small tracking error;
we do not show them for compactness of the paper.
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4. CONCLUSION

Variable structure controllers reduce the system dynamics to the motion along the sliding
surfaces. Linear sliding surfaces, used in most current designs, are only one possible choice;
nonlinear or time-varying surfaces may also be successfully used, and may provide more
favourable dynamics. One such possibility, with PID sliding surfaces, is investigated in this paper.
We have demonstrated that to include an integral term in the definition of the sliding surface can
lead to definite advantages. With a proper definition of the control law, a PID sliding surface can
provide faster transient response with little steady-state error. VSC laws developed in the paper
are simple, stable and robust with respect to a class of state dependent uncertainties. The
algorithms are also simple and suitable for parallel implementation. In the regular version of the
controller, only one control parameter should be preselected, while in the adaptive version, the
value of this parameter is settled automatically.

APPENDIX: SIMULATION EXAMPLE

A planar two-link robot arm is used in this paper to illustrate the feasibility of the control algorithms. The
model of the robotic manipulator is given by2

H(q ) q̈#C(q, qR )qR #g (q )"q (35)

where

q"[h /]T

H
11
"(m

1
#m

2
)r2

1
#m

2
r2
2
#2m

2
r
1
r
2
cos/#J

1

H
12
"H

21
"m

2
r2
2
#m

2
r
1
r
2
cos/

H
22
"m

2
r2
2
#J

2

C"C
!m

2
r
1
r
2
sin//Q

m
2
r
1
r
2
sin/hQ

!m
2
r
1
r
2
sin/ (/Q #hQ )
0 D

g1"[(m
1
#m

2
)r

1
cos h#m

2
r
2
cos(h#/)g]

g2"[m
2
r
2
cos(h#/)g]

For comparison, the parameter values of the robotic model are chosen as follows:

r
1
"1 m, r

2
"0·8 m

J
1
"5 kgm2, J

2
"5 kgm2

m
1
"0·5 kg, m

2
"6·25 kg

which are the same as those in Reference 7.
A reference model is chosen to specify the desired behaviour of the robot motion. The reference model is

described by

q̈
d
#A

1
qR
d
#A

2
q
d
"Br (36)

where

A
1
"C

a
11
0

0

a
12
D , A

2
"C

a
21
0

0

a
22
D , B"C

b
1

b
2
D
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The parameters used in the simulation are as follows:

a
11
"a

12
"a

21
"a

22
"1

b
1
"b

2
"1

rT"[1 1]

For this example, we pick the initial displacements and velocities to be

h
d
(0)"!1·57, h (0)"!1·47, /

d
(0)"/ (0)"0

hQ
d
(0)"hQ (0)"/Q

d
(0)"/Q (0)"0

Figure 1 shows the desired trajectory. The following figures relate to motions in joint one; the corresponding
graphs for joint two are similar and are therefore omitted.

From Figure 2 to Figure 6, we use the VSC law (17), where K"10I, a"60, j"10, e"0·05, and I3R2C2
is an identity matrix.

Figure 2 illustrates the tracking error with PD and PID sliding surfaces (2), where K
P
"5I and K

I
"10I.

Figure 3 and Figure 4 show the corresponding torque.
Figure 5 illustrates the tracking error with PID sliding surfaces (18) and (19) switching at an appropriate

time, where K
1P
"5I, K

1I
"K

2I
"10I, d

1
"d

2
"0·001. Figure 6 shows the corresponding torque.
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