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Persistence of Solutions

Newton’s method for solving a nonlinear equation [B83]!
G(u) = 0, G(-),u € R",

may not converge if the “initial guess” is not close to a solution.

e However, one can put a homotopy parameter in the equation.

Actually, most equations already have parameters.

We will discuss persistence of solutions to such equations.

1 See Page 83T of the Background Notes on Elementary Numerical Methods.



The Implicit Function Theorem

Let G : R*" xR — R"” satisfy

(1) G(llo,)\o) =0, u eR”", XeR.
(ii) Gu(ug, Ag) is nonsingular (i.e., ug is an isolated solution) ,

(i) G and G, are smooth near ug .

Then there exists a unique, smooth solution family u(A) such that
e G(ul\),N) =0, for all A near \g ,

e u()) = ug.

NOTE : The IFT also holds in more general spaces ---



EXAMPLE : A Simple Homotopy .

( Course demo : Simple-Homotopy?)

Let
g, A) = W—1) W>—4) + Au?ei”.

When A\ =0 the equation

9(u,0) = 0,
has four solutions , namely,
u = =+1, and u = 2.
We have p
(U, A = —(u,\ = 4u®—10u .
gulw, N)| 2N, u u

2 http://users.encs.concordia.ca/ doedel/



Since

Gu(u,0) = 4u® —10u ,
we have
gu(—l,()) = 6 5 gu( ]"O) = —06 )
9u(=2,0) =-12, 9u( 2,0) = 12,

which are all nonzero .

Thus each of the four solutions when A =0 is isolated .

Hence each of these solutions persists as A becomes nonzero,

(at least for “small” values of | A | --- ).
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Solution families of g(u,A\) = 0. Note the fold .



NOTE :

Each of the four solutions at A =0 1is isolated .

Thus each of these solutions persists as A becomes nonzero.

Only two of the four homotopies reach A =1 .

The other two homotopies meet at a fold .

IFT condition (ii) is not satisfied at the fold. (Why not? )



In the equation
G(u,\) = 0, u, G(,)eR", NeR,
let

Then the equation can be written

G(x) = 0, G : R — R".
DEFINITION :
A solution x¢ of G(x) = 0 is regular if the matrix
G = Gy(x0), (with n rows and n + 1 columns)

has maximal rank , i.e., if

Rank(GY) = n .



In the parameter formulation ,

we have

( (i) G is nonsingular,

o . o or
Rank(Gx) = Rank(Gu | G)\) =n < dim N(G?l) =1,
(ii) and

G ¢ R(GY) -

Here N(G?) denotes the null space of G? |
and

R(GY) denotes the range of G2 |

i.e., R(GY) is the linear space spanned by the n columns of GY .



COROLLARY (to the IFT) : Let
Xy = ( Uy , /\0 )

be a regular solution of

Gx) =0.

Then, near xg , there exists a unique one-dimensional solution family

x(s) with x(0) = xq .

PROOF : Since Rank( G2 ) = Rank( G? | G} ) = n, we have that
(i) either GY is nonsingular and by the IFT we have
u = u(A) near xg,

(ii) or else we can interchange colums in the Jacobian GY to see that the
solution can locally be parametrized by one of the components of u .

Thus a (locally) unique solution family passes through xq . QED !



NOTE :

Such a solution family is sometimes called a solution branch .

e Case (i) is where the IFT applies directly .

e Case (ii) is that of a simple fold .

Thus even near a simple fold there is a unique solution family .

e However, near such a fold, the family cannot be parametrized by .
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More Examples of IFT Application

e We give examples where the IFT shows that a given solution persists

(at least locally ) when a problem parameter is changed.

e We also consider cases where the conditions of the IFT are not satisfied .
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EXAMPLE : The A — B — (C Reaction .

( Course demo : Chemical-Reactions/ABC-Reaction/Stationary )

uy = —u; + D(1—wup)e™,
uy = —uz + D(1—wup)e" — Douge™ |
uy = —uz — Pus + DB(l —wup)e™ + DBaougse™ |
where
1 — wuy is the concentration of A, wuy is the concentration of B ,
us is the temperature, a=1, =004, B=8§,
D is the Damkohler number B > 0 is the heat transfer coefficient .

NOTE : The zero stationary solution at D = 0 persists (locally), because

the Jacobian is nonsingular there, having eigenvalues —1, —1, and —(1 + f3) .
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Families of stationary solutions of the A — B — (' reaction.
(From left to right : [ =

11,1.3,15,16,1.7,18.)
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NOTE :

In the preceding bifurcation diagram:
o lull = Vui+ui+ui.

e Solid/dashed curves denote stable/unstable solutions.

e The red squares are Hopf bifurcations .

From the basic theory of ODEs:

e u, isa stationary solution of u'(t) =f(u(t)) if f(ug) =0.

e ug is stable if all eigenvalues of f,(ug) are in the negative half-plane.
e Uy is unstable if one or more eigenvalues are in the positive half-plane.
e At a fold there is zero eigenvalue.

e At a Hopf bifurcation there is a pair of purely imaginary eigenvalues.
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EXAMPLE (of IFT application) : The Gelfand-Bratu Problem .

( Course demo : Gelfand-Bratu/Original )

The boundary value problem

u'(z) + Net® = 0, Vxel01],

u(0) = u(l) = 0,

defines the stationary states of a solid fuel ignition model.
If A=0 then u(z) =0 is a solution.
This problem can be thought of as an operator equation G(u;\) =0 .

We can use (a generalized) IFT to prove that there is a solution family

u = u(A), for |A| small.
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The linearization of G(u;\) acting on v, i.e., Gy(u;A\)v , leads to

the homogeneous equation

which for the solution u(z) =0 at A =0 becomes

v'(x) = 0,

Since this equation only has the zero solution v(z) =0 , the IFT applies.

Thus (locally) a unique solution family passes through u(z)=0 , A=0.

16



In Course demo : Gelfand-Bratu/Original the BVP is implemented

as a first order system :

uh(t) = — Xenl®
with boundary conditions
Ul(O) =0 s

A convenient solution measure in the bifurcation diagram is the value of
1
/ uy(x) dz .
0

17
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Bifurcation diagram of the Gelfand-Bratu equation.
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Some solutions of the Gelfand-Bratu equation.

(The solution at the fold is colored red ).
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EXAMPLE : A Boundary Value Problem with Bifurcations .

( Course demo : Basic-BVP/Nonlinear-Eigenvalue )
W+ Au(l — ) = 0,

u(0) = u(l) = 0,

has u(x) = 0 as a solution for all A

QUESTION : Are there more solutions ?

~

Again, this problem corresponds to an operator equation G(u;\) =0 .

~

Its linearization acting on v leads to the equation G,(u;\)v =0, i.e.,

v+ A(1=2uw = 0,



In particular, the linearization about the zero solution family u =0 is
V" + Av = 0,
v(0) = v(l) = 0,

which for most values of A only has the zero solution v(z)=0 .

However, when
A=\, = kn?,

then there are nonzero solutions , namely,

v(xz) = sin(knz)

Thus the IFT does not apply at A\, = k272 .

(We will see that these solutions are bifurcation points .)
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In the implementation we write the BVP as a first order system .

We also use a scaled version of .

The equations are then

uy = N2y (1—uy),

with A\ = A\272 .

A convenient solution measure in the bifurcation diagram is

v = w(0) = w0).
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Hopf Bifurcation

THEOREM : Suppose that along a stationary solution family (u(A),\), of
u = f(u, ),

a complex conjugate pair of eigenvalues
a(A) £ 1 B(A),

of fu(u(X),\) crosses the imaginary axis transversally , i.e., for some g ,

a(h) = 0, B(Xo) # 0, and &(Ny) # 0.
Also assume that there are no other eigenvalues on the imaginary axis .

Then there is a Hopf bifurcation, that is, a family of periodic solutions bifurcates

from the stationary solution at (up, Ag) .

NOTE : The assumptions imply that f0 is nonsingular, so that the stationary
solution family is indeed (locally) a function of X .
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EXAMPLE : The A — B — C reaction .

( Course demo : Chemical-Reactions/ABC-Reaction/Homoclinic )

7
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D

A stationary (blue) and a periodic (red) family of the A — B — C reaction for
(8 = 1.2 . The periodic orbits are stable and terminate in a homoclinic orbit .
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The periodic family orbit family approaching a homoclinic orbit (black). The
red dot is the Hopf point; the blue dot is the saddle point on the homoclinic.
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Course demo : Chemical-Reactions/ABC-Reaction/Periodic

010 015 020 02 030 035 040 045

Bifurcation diagram for ¢ =1.1, 1.3, 1.5, 1.6, 1.7, 1.8 .
(For periodic solutions || u ||= %fOT Vu? 4+ u3 + ui dt , where T is the period.)
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EXAMPLE : A Predator-Prey Model .

( Course demo : Predator-Prey/0DE/2D )
W, = Buy(l—uy) —uuy — AM1—e ),
Uy = —Uzy + 3ujusg .
Here u; may be thought of as “fish 7 and us as “sharks ”, while the term

A(1—e ),

represents “fishing”, with “fishing-quota ” X .

When )\ =0 the stationary solutions are

Bur(l —wuy) —wug =0 1
= (u,u2) = (0,0), (1,0), (=,2) .

—Ugy + 3U1U2 =0 3

29



The Jacobian matrix is

3 — 6uy — ug — He —Uy
3U2 —1 + 3u1

Gu(ulau2; )\) = (

so that

Gu(0,0; 0) = (g _(1) >; real eigenvalues 3 , -1 (unstable)

Gu(1,0; 0) = ( 0 2 ); real eigenvalues -3 , 2 (unstable)

1 -1 -1
Gu(§,2; 0) = ( 61 8 ); complex eigenvalues — —j: ﬁz (stable)

All three Jacobians at A =0 are nonsingular .

Thus, by the IFT, all three stationary points persist for (small) A # 0 .
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In this problem we can explicitly find all solutions:

Family 1 : (u,uz) = (0, 0)
Family 2 :
. 3u1(1 — Ul)
Uy = O s )\ = 1 6_5“1
( Note that u1h§ A= mhg e = )
Family 3 :
_ L2 L iy — 9 3\(l—e
u = g, 3~ 3 Uz A1=e77) =0 = uy = 2-3A\(1—¢e"7)

These solution families intersect at two bifurcation points , one of which is

(ul,UQ,)\) = (0, O, 3/5) .

31
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Stationary solution families of the predator-prey model.
Solid/dashed curves denote stable/unstable solutions.
Note the bifurcations and Hopf bifurcation (red square).
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Stability of Family 1 :

3—5X 0

Gu(0,0; ) = ( 0 1 ) ; eigenvalues 3 — 5\, —1.

Hence the zero solution is :

unstable if A <3/5,
and
stable if A > 3/5 .

Stability of Family 2 :

This family has no stable positive solutions.

34



e Stability of Family 3 :

At Ay ~ 0.67 the complex eigenvalues cross the imaginary axis:

— This crossing is a Hopf bifurcation ,

— Beyond Ay there are stable periodic solutions .

— Their period T increases as A increases.

— The period becomes infinite at A = A ~ 0.70 .

This final orbit is a heteroclinic cycle .
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Stationary (blue) and periodic (red) solution families of the predator-prey model.
( For the periodic solution family both the maximum and minimum are shown. )
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Periodic solutions of the predator-prey model.
The largest orbits are close to a heteroclinic cycle.

37



The bifurcation diagram shows the solution behavior for (slowly) increasing A :

e Family 3 is followed until Ay ~ 0.67 .

e  Periodic solutions of increasing period until A = A, &= 0.70 .

e  Collapse to trivial solution (Family 1).

38



Continuation of Solutions

Parameter Continuation

Suppose we have a solution (ug, \g) of
G(u,\) = 0,
as well as the derivative g .

Here

We want to compute the solution u; at \y = A\g + AX.

39



Graphical interpretation of parameter-continuation.
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To solve the equation

G(ll1 s /\1) = O,
for u; (with A=\, fixed) we use Newton’s method
Gu(ugy)a)\l) Augl/) = = G(ugy)a)\l) )

vo= 01,2, .
ugl/-i-l) _ ugu) + Au(lu)

As initial approximation use

If
Gu(ug, A1) is nonsingular ,

and A\ sufficiently small then this iteration will converge [B55].

41



After convergence, the new derivative 1y is computed by solving

Gu(uh)\l) u = - GA(ub/\l) .

This equation is obtained by differentiating

with respect to A at A = Ay .

Repeat the procedure to find uy , uz, --- .

NOTE :

e 1; can be computed without another LU-factorization of Gy(ug, A1) .

e Thus the extra work to compute u; is negligible .
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EXAMPLE : The Gelfand-Bratu Problem .

() + Xe'® =0 for x€[0,1], wu(0) =0, wul) =
We know that if A =0 then u(z) =0 isan isolated solution .
Discretize by introducing a mesh ,
0 =290 < 21 < < xzy =1,
SL']—QJj,l—h, (1<j§N), hzl/N
The discrete equations are :
P Y .
Uj+1 hl;]+u31+)\e“j:0, j=1- N—1,
with ug = uy = 0.
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Let
Uy

U2

Then we can write the discrete equations as

G(u, ) =0,

where

G :RV'IxR — RN,

44



Parameter-continuation :

Suppose we have \g , ug , and 1y . Set \; = Ag + AX.

Newton’s method :
Gu(u!”,A) Aul” = —Gc@”,\),
ugqul) _ ugu) + Allgy),
for v = 0,1,2,---, with

ugo) = ug + A ﬂo.

After convergence compute 1, from
Gu(up, M) 1 = — Gy(ug, \y) .

Repeat the procedure to find uy , us, ---
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Here

Aett

T
T+

%
—2Z 4 ew2 %
Gu(u, \)

Bk o+ e

Thus we must solve a tridiagonal system for each Newton iteration.

NOTE :
e The solution family has a fold where parameter-continuation fails !
e A better continuation method is “pseudo-arclength continuation ”.

e There are also better discretizations, namely collocation , as used in AUTO .
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Pseudo-Arclength Continuation

This method allows continuation of a solution family past a fold .

It was introduced by H. B. Keller (1925-2008) in 1977.

Suppose we have a solution (ug, \g) of

G(u, ) =0,

as well as the normalized direction vector (119, \g) of the solution family.

Pseudo-arclength continuation consists of solving these equations for (uy, A;) :
G(uh )\1) =0,

<111 —uO,ﬁ0>+()\1—)\0)j\0—AS:0.

47



Graphical interpretation of pseudo-arclength continuation.

48



Solve the equations

G(uh)\l) = 07

<U1—uO,ﬁ0>+()\1—)\0)}\Q—AS:O.

for (uj, A1) by Newton’s method :

(GL) (GYY (Au@):_ G(uy”,\")
<

. () .
ug )\0 AAI ugy) — Ug , 1:10 > + (/\gy) - )\0))\0 — As

Compute the next direction vector by solving
GL Gl\ . 0
4)-
A A

and normalize it.

49



NOTE :

e We can compute (13, \;) with only one extra backsubstitution .

e The orientation of the family is preserved if As is sufficiently small.

e Rescale the direction vector so that indeed || 1w |2 + A2 = 1.

50



FACT : The Jacobian is nonsingular at a regular solution.

PROOF : Let x = (‘;) e R

Then pseudo-arclength continuation can be simply written as

G(x;) = 0,

<X1—X0,X0>—A8:O, (HXOH :1)

Pseudo-arclength continuation.
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The pseudo-arclength equations are

G(X1> = 0,
(x1—X0, %) — As = 0, (%l =1).
The Jacobian matrix in Newton’s method at As = 0 is

GO
(%)
At a regular solution AN(GY) = Span{x,} .

G2\ . . .
We must show that ( Xf) is nonsingular at a regular solution.
0
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0
If on the contrary <§X) is singular then for some vector z # 0 we have :

Glz = 0,

<X07Z> == 0,

Since by assumption N (GY) = Span{%¢} , we have

Z = CcXg, for some constant c .
But then
0 = <)'(0,Z> = C<5(0,5(0> = CHXQHQ = C,
so that z = 0 , which is a contradiction . QED !
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EXAMPLE : The Gelfand-Bratu Problem .

Use pseudo-arclength continuation for the discretized Gelfand-Bratu problem.

C;'x . Gu G)\
X* - u* A I

in Newton’s method is a bordered tridiagonal matrix :

Then the matrix

* % *
* ok ok *
*x kK *
*x kK *

*x kK *

*x k% *

*x ok ok K

b O S ¢

O S G S S S I S ¢

which can be decomposed very efficiently .
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Following Folds and Hopf Bifurcations

At a fold the the behavior of a system can change drastically.

How does the fold location change when a second parameter varies ?

Thus we want the compute a locus of folds in 2 parameters.

We also want to compute loci of Hopf bifurcations in 2 parameters.
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Following Folds

Treat both parameters A and p as unknowns , and compute a solution family

X(s) = (u(s), @(s), As), u(s)),
* G(u, A\ p) = 0,

F(X) Gu(uv Aa,u) ¢) = 07

(¢, ¢) -1 =0,

and the added continuation equation

(u—ug, o) + (=g, @) + A=A)Ao + (1 —po)iso — As = 0.

As before, i y : .
(u07 ¢07 AO;MO)?

is the direction of the family at the current solution point

(u07¢07>\07/~L0)‘
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EXAMPLE : The A — B — (C Reaction .

( Course demo : Chemical-Reactions/ABC-Reaction/Folds-SS )

The equations are

vy = —up + D(1—wu)e"™,
uy = —us + D(1—wup)e"s — Douge™ |
uy = —uz — Pus + DB(1 —up)e™ + DBaocugse™ |
where
1 —wu; is the concentration of A, 1wy is the concentration of B,
us is the temperature , a=1, =004, B=8,
D is the Damkohler number , [ is the heat transfer coefficient .
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A stationary solution family for 5 = 1.20.

Note the two folds and the Hopf bifurcation .
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A locus of folds (with blow-up) for the A — B — C reaction.
Notice the two cusp singularities along the 2-parameter locus.

( There is a swallowtail singularity in nearby 3-parameter space. )
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1.21, -+, 1.42.

Stationary solution families for 5 = 1.20,
( Open diamonds mark folds, solid red squares mark Hopf points. )
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Following Hopf Bifurcations

The extended system is

f(u,\,u) = 0,
F(u,¢,3,\n) = fu(w,\p) ¢ — i3 =0,
<¢7 ¢0> -1 Oa
where
F

R"xC"xR*xR — R*"xC"xC,
and to which we want to compute a solution family

(u7¢7/67)\7u)7
with

u e R"”, ¢ e C",

B, A €ER.
Above ¢, belongs to a “reference solution ”

(u0a¢0750a)\071u0)7

which normally is the latest computed solution along a family.
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EXAMPLE : The A — B — (C Reaction .

( Course demo : Chemical-Reactions/ABC-Reaction/Hopf )

0120 01% 0130 0135 011'510 0145 0150 0155 0160
The stationary family with Hopf bifurcation for g = 1.20 .
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The locus of Hopf bifurcations for the A — B — C' reaction.
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Stationary solution families for § = 1.20, 1.20, 1.25, 1.30, --- , 2.30,
with Hopf bifurcations (the red squares) .
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Boundary Value Problems

Consider the first order system of ordinary differential equations
u'(t) — f(ul®t), p, \) =0, telo,1],

where

u(-), f(-) e R", A €R, wER™

subject to boundary conditions

b(u(0), u(l), g, A) = 0,  b(-)eR™,
and integral constraints

/o q(u(s), p, A)ds = 0, q(-) e R™ .
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This boundary value problem (BVP) is of the form

where

to which we add the continuation equation

(X-X,,Xy) — As = 0,

where X, represents the latest solution computed along the family.

In detail , the continuation equation is

/O<u<t>—uo<t>7uo<t>>dt © (o o)

+ ()\—)\0))\0 — As =0.
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NOTE :

e In the context of continuation we solve this BVP for (u(-), A, u) .

° In order for problem to be formally well-posed we must have

ng, = ny +ng —n > 0.

° A simple case is

ng = 0, ny, = n, for which n, = 0.
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Discretization: Orthogonal Collocation

Introduce a mesh

where

Define the space of (vector) piecewise polynomials P" as

P = {preC|0,1] : ps epm},

[tj—1:t;]

where P™ is the space of (vector) polynomials of degree < m .
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The collocation method consists of finding

Pn € P’}T ) ne R™ )
such that the following collocation equations are satisfied :
p%(zj,i) :f(ph(zj,i)7,u7>\)7 jzla"'7N7 izla"'amv

and such that

pr satisfies the boundary and integral conditions .

The collocation points z;; in each subinterval
[tj—1, t5 ],

are the (scaled) roots of the mth-degree orthogonal polynomial (Gauss points?).

3 See Pages 261,287 of the Background Notes on Elementary Numerical Methods.
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toqf : : It
j-1 j
tios tjus
lj,3(0) lj,1(0)
{ RNV
/ |/-\=

= 1}, with

The mesh {0:t0<t1 <<ty
collocation points and extended-mesh points shown for m =3 .

Also shown are two of the four local Lagrange basis polynomials
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Since each local polynomial is determined by
(m+1)n,
coefficients, the total number of unknowns (considering A as fixed) is

(m+1)n N + n, .

This is matched by the total number of equations :

collocation : mn N |
continuity : (N —1) n,

constraints : n, + n, (= n + n,).
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Assume that the solution u(t) of the BVP is sufficiently smooth.

Then the order of accuracy of the orthogonal collocation method is m , i.e.,

P — uf = OR™).

At the main meshpoints t; we have superconvergence :

maz; | pu(t;) —u(t;) | = OR*™).

The scalar variables A and p are also superconvergent .

72



Implementation

For each subinterval [ ¢;_; , t; ], introduce the Lagrange basis polynomials

{€]7Z(t)}7 j:]_,..-?]\/v7 i:ojl’...,m’
defined by
m t—1t. &
)" m
o) = 11 i
Ui — Uik
k=0,k#i 17 m o
where ‘
1
oo =t — —hy

The local polynomials can then be written

pit) = D Lat)uy

i=0
With the above choice of basis
u; ~ u(t)) and u,_ i ~ u(t;

where u(t) is the solution of the continuous problem.
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The collocation equations are

p;(z:) = £(Pj(z0) 1, X)), i=1,---,m, j=1,--

The boundary conditions are

bi(uo,uN,u,)\)IO, i:1,~--,nb.

The integral constraints can be discretized as

N m
ZZWJsz '_;'17/%)\):07 kzla"'vnqa

7=1 =0

where the w;; are the Lagrange quadrature weights .
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The continuation equation is

1
/(u(t) —ug(t), wp(t) )dt + (i — po, fto) + (A — X)) Ao — As = 0,
0

where (u07 Ho )‘0)7

is the previous solution along the solution family, and
( 1‘10 ; I[LO ) ).\0 ) )

is the normalized direction of the family at the previous solution .

The discretized continuation equation is of the form

Wi <uj—% - (uo)j_#' ) (l'lo)j_% )

—|—<,u—,u0,/lo>+(/\—)\0>>\0—AS:0.
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Numerical Linear Algebra

The complete discretization consists of

mnN + n, + ng + 1,

nonlinear equations , with unknowns

{uj,i}G]Rm”NJ“”, e R™ AeR.

These equations are solved by a Newton-Chord iteration .
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We illustrate the numerical linear algebra for the case
n=20DEs , N =4 mesh intervals , m = 3 collocation points ,
ny = 2 boundary conditions , n, = 1 integral constraint ,

and the continuation equation.

e The operations are also done on the right hand side , which is not shown.

e Entries marked “o” have been eliminated by Gauss elimination.

e Entries marked “” denote fill-in due to pivoting .

e Most of the operations can be done in parallel .
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The structure of the Jacobian .
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The system after condensation of parameters, which can be done in parallel .
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The preceding matrix, showing the decoupled e subsystem .
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uo

Stage 1 of the nested dissection to solve the decoupled e subsystem.
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Stage 2 of the nested dissection to solve the decoupled e subsystem.
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The preceding matrix showing the final decoupled e subsystem .
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uy

u3

uz
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e

e

Uo

T T e o
T e e

B lA .

The approximate Floquet multipliers are the eigenvalues of M
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Accuracy Test

The Table shows the location of the fold in the Gelfand-Bratu problem,

for 4 Gauss collocation points per mesh interval, and N mesh intervals .

8

=1

=

Fold location
3.5137897550
3.5138308601
3.5138307211
3.5138307191
32 | 3.5138307191

S 0 = N

integral u(z)
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Periodic Solutions

e Periodic solutions can be computed efficiently using a BVP approach.

e This method also determines the period very accurately.

e Moreover, the technique can compute unstable periodic orbits.
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Consider
w(t) = f(u(t), A), ul), f()eR”,
Fix the interval of periodicity by the transformation
t — i
T

Then the equation becomes

and we seek solutions of period 1 , i.e.,

Note that the period T is one of the unknowns .
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The above equations do not uniquely specify u and T :

Assume that we have computed

(w1 (4) , D1y Aem1 ),

and we want to compute the next solution

(we(), Ty M) -

Then wug(t) can be translated freely in time :

If ug(t) is a periodic solution, then so is wu(t + o) , for any o .

Thus, a phase condition is needed.
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An example is the Poincaré phase condition

(ue(0) — w1 (0), w_1(0)) = 0.

( But we will derive a numerically more suitable integral phase condition . )

Uieq (O)

!

u (0)

Graphical interpretation of the Poincaré phase condition.
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An Integral Phase Condition

If G(t) is a solution then so is

flk(t—f— O') s
for any o .

We want the solution that minimizes

D(o) = /0 it + o) — we(t) |2 dt .

The optimal solution
u(t+0o),

must satisfy the necessary condition

D) = 0.
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Differentiation gives the necessary condition

/O (ap(t+0) — wq(t), wp(t+o)dt

Writing

gives

Integration by parts, using periodicity, gives

Jo (wlt), i (1)) dt

0.

This is the integral phase condition.
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Continuation of Periodic Solutions
e Pseudo-arclength continuation is used to follow periodic solutions .
e [t allows computation past folds along a family of periodic solutions.

Y

e [t also allows calculation of a “vertical family ” of periodic solutions.

For periodic solutions the continuation equation is

/0 () — w1 (8) e n () dt 4 (ThmTh ) Te1 + = Ap1)de s = As .
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SUMMARY :

We have the following equations for periodic solutions :

w(t) = T f(we(t), A ),

llk(O) = uk(l),
1 /
| two w0 =0,
0
with continuation equation

/0 < uk(t) —llk_l(t) s ﬁk_l(t) > dt + (Tk _Tk—l)Tk—l + (/\k — /\k—l)/.\k—l = AS s

where

u), f() € R", AN,T € R.
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Stability of Periodic Solutions
In our continuation context, a periodic solution of period T satisfies
u'(t) = Tf(u(t), forte]l0,1],
u(0) = u(1).
(for given value of the continuation parameter \).
A small perturbation in the initial condition
u(0) + € v(0), e small |
leads to the linearized equation
vi({t) = T fy(u(t))v(t), fortel0,1],

which induces a linear map

represented by



v(l) = M v(0)

The eigenvalues of M are the Floquet multipliers that determine stability.

M always has a multiplier p =1, since differentiating

u'(t) = Tf(u(t)) ,

gives

where
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v(l) = M v(0)

If M has a Floquet multiplier p with | x| > 1 then u(¢) is unstable .

If all multipliers (other than g = 1) satisfy | x| < 1 then u(t) is stable .

At folds and branch points there are two multipliers p =1 .

At a period-doubling bifurcation there is a real multiplier y= —1 .

At a torus bifurcation there is a complex pair on the unit circle.
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EXAMPLE : The Lorenz Equations .

( Course demo : Lorenz )

These equations were introduced in 1963 by Edward Lorenz (1917-2008)

as a simple model of atmospheric convection :

e = o (y—x),
y =pr -y —zz,
Zo=wy - Bz,

where (often)

c=10 , B=8/3 , p=28.
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Course demo : Lorenz/Basic

maxax

10 15 20 %5 30
P

(e}
(]

Bifurcation diagram of the Lorenz equations for o =10 and (5 =18/3 .
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Course demo : Lorenz/Basic

—10

y 0

Unstable periodic orbits of the Lorenz equations.
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In the Lorenz Equations :

The zero stationary solution is unstable for p > 1.

Two nonzero stationary families bifurcate at p=1.

The nonzero stationary solutions are unstable for p > py .

At pg ~ 24.7 there are Hopf bifurcations .

Unstable periodic solution families emanate from the Hopf bifurcations.

These families end in homoclinic orbits (infinite period) at p~ 13.9.

At p =28 (and a range of other values) there is the Lorenz attractor .
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max us

EXAMPLE : The A — B — (C Reaction .

( Course demo : Chemical-Reactions/ABC-Reaction/Periodic )

10 ; T T T 10

020 095 030 035 b0 01 02 03 04 05 06 07 08 09 10
D t

Stationary and periodic solution families of the A — B — (' reaction: [ = 1.55.

Note the coexistence of stable solutions, for example, solutions 1 and 2 .
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.'r/
\
max

max ug
\

Do

M H (

g ST A éﬁ ; B N
Ay

avd Ay

0.20 0.25
D

0.35

0.30

2 (
il
20 .25 0.30 0.35

0.

Top left: § = 1.55, right: g = 1.56, Bottom left: = 1.57, right: § = 1.58.
( QUESTION : Is something missing somewhere 7 )
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Following Folds for Periodic Solutions

Recall that periodic orbits families can be computed using the equations

u'(t) — Tf(u(t), \)
u(0) — u(l) = 0,

/0 (u(t), u(t))dt = 0.

where ug is a reference orbit , typically the latest computed orbit.

The above boundary value problem is of the form
F(X,\) = 0,

where

X = (u,T).
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At a fold with respect to A we have

Fx(X,A)® = 0,

(®,®) = 1,
where

X = (u,T) , ® = (v,95),

i.e., the linearized equations about X have a nonzero solution @ .

In detail :  Vv'(¢t) — Tfy(u®), A)v — Sf(ut), ) = 0,



The complete extended system to follow a fold is

with two free problem parameters A and p .

To the above we add the continuation equation

(X—-Xo, X0> +(®—-%, ‘i’()) + (A=Xo) Xo + (t—po) o — As = 0.
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In detail : u'(t) — Tf(ut), A, p) =0,

with normalization

/1(v(t),v(t)>dt + 5?2 -1 = 0,

and continuation equation

1 1
| uwl) () de + [ (v -valt) 5o0) de +
0 0

+ (T()—T)T() + (SO_S)SO + (/\—)\0)}\0 + (,U/—,uo),llo — As = 0.
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EXAMPLE : The A — B — C Reaction .
Chemical-Reactions/ABC-Reaction/Folds-PS )

( Course demo :

max ug

Stationary and periodic solution families of the A — B — (' reaction
(with blow-up) for = 1.55. Note the three folds , labeled 1, 2, 3 .
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1.62

161}

021 022 023 024 025 02 027 0%

1.54

Loci of folds along periodic solution families for the A — B — C' reaction.
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max us

0.30 0.35 040

Stationary and periodic solution families of the A — B — C reaction: 3 = 1.56 .
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0.30 0.35 0.40

.15

Stationary and periodic solution families of the A — B — C reaction: 3 = 1.57 .
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max us

0.30 0.35 040

Stationary and periodic solution families of the A — B — C reaction: 3 = 1.58 .

111



max us

0.35 040

Stationary and periodic solution families of the A — B — C reaction: 3 = 1.61 .

112



max us

Stationary and periodic solution families of the A — B — C reaction: 3 = 1.62 .
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Z-Axis/(Z)

K-Axisi(X)

_—

Periodic solutions along the isola for (= 1.58 .
(Stable solutions are blue, unstable solutions are red.)
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Following Period-doubling Bifurcations

Let (u(t), T ) bea periodic solution , i.e., a solution of
u'(t) — Tf(u®), \) =0,
u(0) — u(l) = 0,

/O<u<t>,u’o<t>>dt:o,

where ug is a reference orbit .

A necessary condition for a period-doubling bifurcation is that the following
linearized system have a nonzero solution v(t) :

vi(t) — Tfy(ult), \)v(t) = 0,



The complete extended system to follow a period-doubling bifurcation is

and continuation equation
/0<u(t>—uo<t>, uo(t) ) dt + /0 (v(t)=vo(t), Volt) ) dt +

+ (T()—T)To + ()\—)\0)}\0 + (M—uo)ﬂo — As = 0.
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EXAMPLE : Period-Doubling Bifurcations in the Lorenz Equations .

( Course demo : Lorenz/Period-Doubling )

° The Lorenz equations also have period-doubling bifurcations .

° In fact, there is a period-doubling cascade for large p .

° We start from numerical data .

° (Such data may be from simulation , i.e., initial value integration .)

° We also want to compute loci of period-doubling bifurcations .
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( Course demo : Lorenz/Period-Doubling )

—0.90

—0.95

—1.00

Left panel : Solution families of the Lorenz equations.

The open diamonds denote period-doubling bifurcations .

Right panel : Solution 1 was found by initial value integration .
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( Course demo : Lorenz/Period-Doubling )

Left panel : A primary period-doubled solution.

Right panel : A secondary period-doubled solution.

119



( Course demo : Lorenz/Period-Doubling )

10+

0261

i i i H i i i 9 -
150 200 250 300 350 400 450 50C “%00
P

Loci of period-doubling bifurcations for the Lorenz equations (with blow-up) .

Black: primary, Red: secondary, Blue: tertiary period-doublings .
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Periodic Solutions of Conservative Systems

EXAMPLE : A Model Conservative System .

( Course demo : Vertical-HB)

PROBLEM :

e This system has a family of periodic solutions, but no parameter !

e The system has a constant of motion , namely the Hamiltonian

1, 1

H(up,ug) = —Eu% - 5 U + - uj .
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REMEDY :

Introduce an unfolding term with unfolding parameter A :

uh = uy (1 —wuy) .

Then there is a vertical Hopf bifurcation from the trivial solution at A =0 .
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norm
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0.0

_09 ‘ ;
02175 —0.5 0.0 0.

A

Bifurcation diagram of the vertical Hopf bifurcation problem.
( Course demo : Vertical-HB )

1.0

P
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NOTE :

e The family of periodic solutions is vertical .
e The parameter A is solved for in each continuation step.
e Upon solving, A is found to be zero , up to numerical precision.

e One can use standard BVP continuation and bifurcation algorithms.
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0.75

0.50

= 0.00

—0.50

0 —02 000 025 050 045 100

A phase plot of some periodic solutions.
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EXAMPLE : The Circular Restricted 3-Body Problem (CR3BP) .

( Course demo : Restricted-3Body/Earth-Moon/Orbits )

(1—p) @+p) pl@—1+p

W _ .
X Yy + x 7’"{{) T% )
1—
y,,:_2x,+y_( ;t)y_u_g?J’
T Ty
Z” . _(1_:“)2 . ﬁ
= 3 3
1 2
where
o=V et 2 = V1?4 2
and

(z, vy, z) denotes the position of the zero-mass body .

NOTE : For the Earth-Moon system p ~ 0.01215 .
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The CR3BP has one integral of motion , namely, the “Jacobi-constant” :

12 /2 12
1
J:x ty *e —U(a?,y,Z)—,U,—’u,
2 2
where
U= @+t + —F + £,
1 )
and
o= (@x+p? + oy + 22, ro = V(@ —1+p)2 + 2 + 22
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Boundary value formulation :

/

T v,
T v,
T v,

Tl2v, + v — (L=p)(z+pr® = ple—=1+p)rs® + Ao, ]
T[] —2v, +y — (1—pyry® — pyry® + Ao, ]
T[] —(1—pery® — pzry® + Ao, |

with periodicity boundary conditions

+ phase constraint 4  continuation equation .

Here T is the period of the orbit.
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NOTE :

e One can use BVP continuation and bifurcation algorithms.

e The unfolding term A Vv regularizes the continuation.

A will be zero , once solved for.

Other unfolding terms are possible.
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mu=0.01215

Schematic bifurcation diagram of periodic solution families of the Earth-Moon system .

130



The planar Lyapunov family L1.
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The Halo family HI.
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The Vertical family V1.
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Stable and Unstable Manifolds

EXAMPLE : Phase-plane orbits: Fixed length .

These can be computed by orbit continuation .

Model equations are

where ¢ > 0 is small.

e  There is only one equilibrium , namely, (z,y) = (0,0) .

° This equilibrium has eigenvalues € and 1 ; it is a source .
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For the computations :

e  The time variable ¢ is scaled to [0,1].

° The actual integration time 7' is then an explicit parameter :
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These constraints are used :

° To put the initial point on a small circle around the origin :

z(0) — rcos(2m0) =0,
y(0) — rsin(270) =0

° To keep track of the end points :

z(l)—x; =0,
y(1) =y =0.

° To keep track of the length of the orbits

/1 VIRt dt—L =0
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The computations are done in 3 stages :

° In the first run an orbit is grown by continuation :

- The free parameters are T, L, x1, vy .
- The starting point is on the small circle of radius 7.
- The starting point is in the strongly unstable direction .

- The value of € is 0.5 in the first run.

° In the second run the value of € is decreased to 0.01 :

- The free parameters are €, T, 1, y1 .

° In the third run the initial point is free to move around the circle :

- The free parameters are 60, T, xq, y; .
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3.40e+00

2.04e+00

6.80e-01

-6.80e-01

-2.04e+00

-3.40e+00
Y-Axis/(Y)

( Course demo : Basic-Manifolds/2D-0DE/Fixed-Length )

7

X-Axis/(X)
1 1 1 1 | 1
-3.508+00 -2.10e+00 -7.00e-01 7.00e-01 2.10e+00  3.50e+00 \
\

Unstable Manifolds in the Plane: Orbits of Fixed Length .
(The right-hand panel is a blow-up, and also shows fewer orbits.)
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EXAMPLE : Phase-plane orbits: Variable length .
These can also be computed by orbit continuation .

Model equations are

=@ — 3,
= y + 2%.

2
o

e  Theorigin (z,y) = (0,0) isan equilibrium .

. The origin has eigenvalues e and 1 ; it is a source .

° Thus the origin has a 2-dimensional unstable manifold .

° We compute this stable manifold using continuation .

° (The equations are 2D; so we actually compute a phase portrait.)
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For the computations :

e  The time variable ¢ is scaled to [0, 1].

° The actual integration time 7' is then an explicit parameter :
¥ = T(ex —y?),

y = T(y+a).

NOTE :

° There is also a nonzero equilibrium

wlo

).

(2,y) = (€3, —€

e It is asaddle (1 positive, 1 negative eigenvalue).
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These constraints are used :

° To put the initial point on a small circle at the origin :

x(0) —rcos(2mf) =0,
y(0) —rsin(270) =0 .

° To keep track of the end points :
z(l)—z =0,
y() =y =0.

° To keep track of the length of the orbits we add an integral constraint :

/1 Vo @2 +y ()2 dt—L=0.

° To allow the length L to contract :
(Thwax — T) (Lmax — L) —c=10.
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Again the computations are done in 3 stages :

° In the first run an orbit is grown by continuation :

- The free parameters are T, L, x1, y1, C .
- The starting point is on a small circle of radius r.
- The starting point is in the strongly unstable direction .

- In this first run € = 0.5 .

° In the second run the value of € is decreased to 0.05 :

- The free parameters are €, T, L, x1, y1 .

° In the third run the initial point is free to move around the circle :

- The free parameters are 6, T, L, x1, vy .
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( Course demo : Basic-Manifolds/2D-0DE/Variable-Length )

9.40e-01
5.72e-01
2.04e-01 -
-1.64e-01 -

-5.328-01 -

-9.00-01

X-Axis/(X)
Y-Axisi(Y) 1 I I 1 I I

-8.30e-01 -5.62e-01 -3.34e-01 -6.60=-02 1.62e-01 4.10e-01

Unstable Manifolds in the Plane: Orbits of Variable Length .
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EXAMPLE : A 2D unstable manifold in R? .

This can also be computed by orbit continuation. The model equations are

/ 3

x = er— 27,
o 3

= y—a,
2 =zt 4+y?.

° We take € = 0.05.

° The origin is a saddle with eigenvalues ¢, 1, and —1.

° Thus the origin has a 2-dimensional unstable manifold .
° The initial point moves around a circle in the 2D unstable eigenspace .
° The equations are 3D; so we will compute a 2D manifold in R? .
° There is also a nonzero saddle , so we use retraction .

° The set-up is similar to the 2D phase-portrait example.
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( Course demo : Basic-Manifolds/3D-0DE/Variable-Length )

T Axis/(Z)

]

-1.60e-01
-5.40e-01
-9.20e-01

-1.30e+00

-1.60e+00
f-Axis/(Y)

Unstable Manifolds in R3: Orbits of Variable Length .

148



EXAMPLE : Another 2D unstable manifold in R? .

The model equations are

¥ = ex—y>P+ 22,
y o= yta’+2’,
2 = —z—2t 9yt

° We take € = 0.05.

° The origin is a saddle with eigenvalues ¢, 1, and —1.

° Thus the origin has a 2-dimensional unstable manifold .
° The initial point moves around a circle in the 2D unstable eigenspace .
° The equations are 3D; so we will compute a 2D manifold in R? .
° No retraction is needed, so we choose to compute orbits of fixed length .

° The set-up is similar to the 2D phase-portrait example.
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( Course demo : Basic-Manifolds/3D-0DE/Fixed-Length )

Qi
it
i

i

-4.402+00

Unstable Manifolds in R3: Orbits of Fixed Length .
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The Lorenz Manifold

For p > 1 the origin is a saddle point .

The Jacobian has two negative and one positive eigenvalue .

The two negative eigenvalues give rise to a 2D stable manifold .

This manifold is known as as the Lorenz Manifold .

The set-up is as for the earlier 3D model, using fixed length .
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Course demo : Lorenz/Manifolds/Origin/Fixed-Length

Part of the Lorenz Manifold (with blow-up). Orbits have fixed length L = 60 .
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Course demo : Lorenz/Manifolds/Origin/Fixed-Length

Part of the Lorenz Manifold. Orbits have fixed length L = 200 .
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Heteroclinic Connections.

The Lorenz Manifold helps understand the Lorenz attractor .

Many orbits in the manifold depend sensitively on initial conditions .

During the manifold computation one can locate heteroclinic orbits .

These are also in the 2D unstable manifold of the nonzero equilibria.

The heteroclinic orbits have a combinatorial structure 4.

One can also continue heteroclinic orbits as p varies.

4 Nonlinearity 19, 2006, 2947-2972.
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Course demo : Lorenz/Heteroclinics

Four heteroclinic orbits with very close initial conditions
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One can also determine the intersection of the Lorenz manifold with a sphere .

The set-up is as follows :

¢ =To(y—x),
y =T(pz -y — z2),
7 =T(@y — B2,
which is of the form
u'(t) = Tf(ut)), for 0<t<1,
where
° T is the actual integration time , which is negative !

To this we add boundary and integral constraints .
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The complete set-up consists of the ODE
u'(t) = Tf(ut)), for 0<t<1,

subject to the following constraints :

u(0) — e (cos(f) vi —sin(f) vo) = 0 u(0) is on a small circle

u(l) —u; =0 to keep track of the end point u(1)
Jlu || — R =0 distance of u; to the origin
(uy/||w ||, f(uy)/ || f(uy) || ) =7 =0 to locate tangencies, where 7 = 0
T fol | f(u)] ds — L =0 to keep track of the orbit length
(r-17,) (L—L,) —c =0. allows retraction into the sphere
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The continuation system has the form

F(X;) = 0, where X = (u(), A).

with continuation equation

<Xk—Xk_1,Xk_1>—AS:O, (||Xk_1||:1)

The computations are done in 2 stages :

° In the first run an orbit is grown by continuation :

- The starting point is on the small circle of radius e.
- The starting point is in the strongly stable direction .

- The free parameters are A = (T, L, ¢, 7, R, uy) .

° In the second run the orbit sweeps the stable manifold.

- The initial point is free to move around the circle :

- The free parametersare A = (T, L, 6, 7, R, uy) .
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Course demo : Lorenz/Manifolds/Origin/Sphere

Intersection of the Lorenz Manifold with a sphere
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NOTE :

e We do not just change the initial point (i.e., ) and integrate !

e Every continuation step requires solving a boundary value problem .

e The continuation stepsize As controls the change in X .

e X can only change a little in any continuation step.

e This way the entire manifold (up to a given length L) is computed.

e The retraction constraint allows the orbits to retract into the sphere.

e This is necessary when heteroclinic connections are encountered.
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EXAMPLE : Unstable Manifolds of a Periodic Orbit .

( Course demo : Lorenz/Manifolds/Orbits/Rho24.3)

15

Left: Bifurcation diagram of the Lorenz equations.  Right: Labeled solutions.
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Both sides of the unstable manifold of periodic orbit 3 at p =24.3 .
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EXAMPLE : Unstable Manifolds in the CR3BP .

( Course demo : Restricted-3Body/Earth-Moon/Manifolds/H1 )

e ”Small” Halo orbits have one real Floquet multiplier outside the unit circle.

e Such Halo orbits are unstable .

e They have a 2D unstable manifold .

e The unstable manifold can be computed by continuation .

e First compute a starting orbit in the manifold.

e Then continue the orbit keeping, for example, x(1) fixed .
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Part of the unstable manifold of three Earth-Moon L1-Halo orbits.
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e The initial orbit can be taken to be much longer

e Continuation with x(1) fixed can lead to a Halo-to-torus connection!




The Halo-to-torus connection can be continued as a solution to

<Xk—Xk,1,Xk,1> — As = 0.

where

X = ( Halo orbit , Floquet function , connecting orbit) .
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In detail , the continuation system is

du

d_ - Tuf(u(T)nu’ l) =0,
-

u(l) —u(0) =0,

[ ) oty ar =0,

& D fulr), () + Aun(7) =0

v(l) —sv(0) =0 (s==1),
(v(0), v(0))=1=0,

W T f(wlr),1.0) =0
w(0) — (u(0) +£0(0)) = 0,

w(l)x — Iy =0.
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The system has
18 ODEs , 20 boundary conditions , 1 integral constraint .
We need

20+ 1 + 1 - 18 = 4 free parameters .

Parameters :

e An orbit in the unstable manifold: T, , [ , T, , xx

e Compute the unstable manifold: T, , 1, T, , ¢

e Follow a connecting orbit: A 5 U, T, ¢
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The Solar Sail Equations

The equations in Course demo : Solar-Sail/Equations/equations.f90 :

A-—pltp) ple-1+p  BA=wDN,

"

2 = 2+ —

d3 dp ds
" / (1_M>y Ky 5(1_M)D2Ny
yo= 2ty +
BB &
M= (1_M)Z :U/Z_'_ﬁ(l_:u)DzNz
& &, &

where

ds =+ (z+p)2+y2+22, dp=+(x—1+p2+y2+22, 7= /(v +p)?+y>

N, = [cos(a)(z + 1) — sin(a)y] [cos(®) — S22 /g
N, = [cos(a)y + sin(a)(z + )] [cos(8) — 2202 g
N, = [cos(0)z + sin(d)r|/ds , D = x;;'uN + dsN + dgN
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Points

Sun-Jupiter libration points, for 5 =0, a =0, 6 = 0.
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Points

Sun-Jupiter libration points, for § = 0.02, « = 0.02, 6 = 0.
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Loci

Sun-Jupiter libration points, with § € [-7, 7], for various 3, with a = 0.
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Loci

Sun-Jupiter libration points, with § € [-7, 7], for various a, with § = 0.15.
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Homoclinic

Sun-Jupiter: detection of a homoclinic orbit at 4 = 0.050698, with a = 0, § = 0.
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Manifolds

K-Pxis/ (K]

Sun-Jupiter: unstable manifold orbits for § € [~F, 7], with 3 = 0.05, a = 0.1.
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Manifolds
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0.0025¢

2 0.0000F

—0.0025¢

—0.0050+

—

&~

~—

— 5 L L L L L L
0'0069926 0.927  0.928 0.9291’0‘930 0.931 0.932 0.9

The libration points
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Manifolds

Some connecting orbits for a = 0.07 and varying 3 and 9.
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Course demo : Solar-Sail/Sun-Jupiter/Orbits

X-Axisi(X)

Vi-orbits with 8 = 0.15, T = 6.27141, § € [0, 0.6415] .
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