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Persistence of Solutions

• Newton’s method for solving a nonlinear equation [B83]1

G(u) = 0 , G(·) , u ∈ Rn ,

may not converge if the “initial guess” is not close to a solution.

• However, one can put a homotopy parameter in the equation.

• Actually, most equations already have parameters.

• We will discuss persistence of solutions to such equations.

1 See Page 83+ of the Background Notes on Elementary Numerical Methods.
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The Implicit Function Theorem

Let G : Rn × R → Rn satisfy

(i) G(u0, λ0) = 0 , u0 ∈ Rn , λ0 ∈ R .

(ii) Gu(u0, λ0) is nonsingular (i.e., u0 is an isolated solution) ,

(iii) G and Gu are smooth near u0 .

Then there exists a unique, smooth solution family u(λ) such that

• G(u(λ), λ) = 0 , for all λ near λ0 ,

• u(λ0) = u0 .

NOTE : The IFT also holds in more general spaces · · ·
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EXAMPLE : A Simple Homotopy .

( Course demo : Simple-Homotopy2)

Let

g(u, λ) = (u2 − 1) (u2 − 4) + λ u2 e
1
10
u .

When λ = 0 the equation
g(u, 0) = 0 ,

has four solutions , namely,

u = ± 1 , and u = ± 2 .

We have

gu(u, λ)
∣∣∣
λ=0

≡ d

du
(u, λ)

∣∣∣
λ=0

= 4u3 − 10u .

2 http://users.encs.concordia.ca/ doedel/
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Since
gu(u, 0) = 4u3 − 10u ,

we have

gu(−1, 0) = 6 , gu( 1, 0) = −6 ,

gu(−2, 0) = −12 , gu( 2, 0) = 12 ,

which are all nonzero .

Thus each of the four solutions when λ = 0 is isolated .

Hence each of these solutions persists as λ becomes nonzero,

( at least for “small” values of | λ | · · · ).
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Solution families of g(u, λ) = 0 . Note the fold .
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NOTE :

• Each of the four solutions at λ = 0 is isolated .

• Thus each of these solutions persists as λ becomes nonzero.

• Only two of the four homotopies reach λ = 1 .

• The other two homotopies meet at a fold .

• IFT condition (ii) is not satisfied at the fold. (Why not? )
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In the equation

G(u, λ) = 0 , u , G(·, ·) ∈ Rn , λ ∈ R ,

let

x ≡
(

u
λ

)
.

Then the equation can be written

G(x) = 0 , G : Rn+1 → Rn .

DEFINITION :

A solution x0 of G(x) = 0 is regular if the matrix

G0
x ≡ Gx(x0) , (with n rows and n+ 1 columns)

has maximal rank , i.e., if

Rank(G0
x) = n .
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In the parameter formulation ,

G(u, λ) = 0 ,

we have

Rank(G0
x) = Rank(G0

u | G0
λ) = n ⇐⇒



(i) G0
u is nonsingular,

or

(ii)


dim N (G0

u) = 1 ,
and
G0
λ 6∈ R(G0

u) .

Here N (G0
u) denotes the null space of G0

u ,

and

R(G0
u) denotes the range of G0

u ,

i.e., R(G0
u) is the linear space spanned by the n columns of G0

u .
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COROLLARY (to the IFT) : Let

x0 ≡ ( u0 , λ0 )

be a regular solution of
G(x) = 0 .

Then, near x0 , there exists a unique one-dimensional solution family

x(s) with x(0) = x0 .

PROOF : Since Rank( G0
x ) = Rank( G0

u | G0
λ ) = n , we have that

(i) either G0
u is nonsingular and by the IFT we have

u = u(λ) near x0 ,

(ii) or else we can interchange colums in the Jacobian G0
x to see that the

solution can locally be parametrized by one of the components of u .

Thus a (locally) unique solution family passes through x0 . QED !
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NOTE :

• Such a solution family is sometimes called a solution branch .

• Case (i) is where the IFT applies directly .

• Case (ii) is that of a simple fold .

• Thus even near a simple fold there is a unique solution family .

• However, near such a fold, the family cannot be parametrized by λ.
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More Examples of IFT Application

• We give examples where the IFT shows that a given solution persists

(at least locally ) when a problem parameter is changed.

• We also consider cases where the conditions of the IFT are not satisfied .
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EXAMPLE : The A→ B → C Reaction .

( Course demo : Chemical-Reactions/ABC-Reaction/Stationary )

u′1 = −u1 + D(1− u1)eu3 ,

u′2 = −u2 + D(1− u1)eu3 − Dσu2e
u3 ,

u′3 = −u3 − βu3 + DB(1− u1)eu3 + DBασu2e
u3 ,

where

1− u1 is the concentration of A , u2 is the concentration of B ,

u3 is the temperature, α = 1 , σ = 0.04 , B = 8 ,

D is the Damkohler number , β > 0 is the heat transfer coefficient .

NOTE : The zero stationary solution at D = 0 persists (locally), because

the Jacobian is nonsingular there, having eigenvalues −1, −1, and −(1 + β) .
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Families of stationary solutions of the A→ B → C reaction.

(From left to right : β = 1.1 , 1.3 , 1.5 , 1.6 , 1.7 , 1.8 . )
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NOTE :

In the preceding bifurcation diagram:

• ‖ u ‖ =
√
u2

1 + u2
2 + u2

3 .

• Solid/dashed curves denote stable/unstable solutions.

• The red squares are Hopf bifurcations .

From the basic theory of ODEs:

• u0 is a stationary solution of u′(t) = f(u(t)) if f(u0) = 0 .

• u0 is stable if all eigenvalues of fu(u0) are in the negative half-plane.

• u0 is unstable if one or more eigenvalues are in the positive half-plane.

• At a fold there is zero eigenvalue.

• At a Hopf bifurcation there is a pair of purely imaginary eigenvalues.
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EXAMPLE (of IFT application) : The Gelfand-Bratu Problem .

( Course demo : Gelfand-Bratu/Original )

The boundary value problem u′′(x) + λ eu(x) = 0 , ∀x ∈ [0, 1] ,

u(0) = u(1) = 0 ,

defines the stationary states of a solid fuel ignition model.

If λ = 0 then u(x) ≡ 0 is a solution.

This problem can be thought of as an operator equation G(u;λ) = 0 .

We can use (a generalized) IFT to prove that there is a solution family

u = u(λ) , for |λ| small .

15



The linearization of G(u;λ) acting on v , i.e., Gu(u;λ)v , leads to

the homogeneous equation

v′′(x) + λ eu(x)v = 0 ,

v(0) = v(1) = 0 ,

which for the solution u(x) ≡ 0 at λ = 0 becomes

v′′(x) = 0 ,

v(0) = v(1) = 0 .

Since this equation only has the zero solution v(x) ≡ 0 , the IFT applies.

Thus (locally) a unique solution family passes through u(x) ≡ 0 , λ = 0 .
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In Course demo : Gelfand-Bratu/Original the BVP is implemented

as a first order system :

u′1(t) = u2(t) ,

u′2(t) = − λ eu1(t) ,

with boundary conditions

u1(0) = 0 ,

u1(1) = 0 .

A convenient solution measure in the bifurcation diagram is the value of∫ 1

0

u1(x) dx .
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Bifurcation diagram of the Gelfand-Bratu equation.
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Some solutions of the Gelfand-Bratu equation.
(The solution at the fold is colored red ).
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EXAMPLE : A Boundary Value Problem with Bifurcations .

( Course demo : Basic-BVP/Nonlinear-Eigenvalue )

u′′ + λ̂ u(1 − u) = 0 ,

u(0) = u(1) = 0 ,

has u(x) ≡ 0 as a solution for all λ̂ .

QUESTION : Are there more solutions ?

Again, this problem corresponds to an operator equation G(u; λ̂) = 0 .

Its linearization acting on v leads to the equation Gu(u; λ̂)v = 0 , i.e.,

v′′ + λ̂ (1− 2u)v = 0 ,

v(0) = v(1) = 0 .
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In particular, the linearization about the zero solution family u ≡ 0 is

v′′ + λ̂ v = 0 ,

v(0) = v(1) = 0 ,

which for most values of λ̂ only has the zero solution v(x) ≡ 0 .

However, when
λ̂ = λ̂k ≡ k2π2 ,

then there are nonzero solutions , namely,

v(x) = sin(kπx) ,

Thus the IFT does not apply at λ̂k = k2π2 .

(We will see that these solutions are bifurcation points .)
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In the implementation we write the BVP as a first order system .

We also use a scaled version of λ.

The equations are then

u′1 = u2 ,

u′2 = λ2π2 u1 (1− u1) ,

with λ̂ = λ2π2 .

A convenient solution measure in the bifurcation diagram is

γ ≡ u2(0) = u′1(0) .
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Solution families to the nonlinear eigenvalue problem.

23



Some solutions to the nonlinear eigenvalue problem.
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Hopf Bifurcation

THEOREM : Suppose that along a stationary solution family (u(λ), λ) , of

u′ = f(u, λ) ,

a complex conjugate pair of eigenvalues

α(λ) ± i β(λ) ,

of fu(u(λ), λ) crosses the imaginary axis transversally , i.e., for some λ0 ,

α(λ0) = 0 , β(λ0) 6= 0 , and α̇(λ0) 6= 0 .

Also assume that there are no other eigenvalues on the imaginary axis .

Then there is a Hopf bifurcation, that is, a family of periodic solutions bifurcates

from the stationary solution at (u0, λ0) .

NOTE : The assumptions imply that f0
u is nonsingular, so that the stationary

solution family is indeed (locally) a function of λ .
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EXAMPLE : The A→ B → C reaction .

( Course demo : Chemical-Reactions/ABC-Reaction/Homoclinic )

A stationary (blue) and a periodic (red) family of the A→ B → C reaction for
β = 1.2 . The periodic orbits are stable and terminate in a homoclinic orbit .
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The periodic family orbit family approaching a homoclinic orbit (black). The
red dot is the Hopf point; the blue dot is the saddle point on the homoclinic.
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Course demo : Chemical-Reactions/ABC-Reaction/Periodic

Bifurcation diagram for β = 1.1, 1.3, 1.5, 1.6, 1.7, 1.8 .

(For periodic solutions ‖ u ‖= 1
T

∫ T
0

√
u2

1 + u2
2 + u2

3 dt , where T is the period.)
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EXAMPLE : A Predator-Prey Model .

( Course demo : Predator-Prey/ODE/2D )

 u′1 = 3u1(1− u1)− u1u2 − λ(1− e−5u1 ) ,

u′2 = −u2 + 3u1u2 .

Here u1 may be thought of as “fish ” and u2 as “sharks ”, while the term

λ (1− e−5u1 ) ,

represents “fishing”, with “fishing-quota ” λ .

When λ = 0 the stationary solutions are

3u1(1− u1)− u1u2 = 0

−u2 + 3u1u2 = 0

 ⇒ (u1, u2) = (0, 0) , (1, 0) , (
1

3
, 2) .
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The Jacobian matrix is

Gu(u1, u2 ; λ) =

(
3− 6u1 − u2 − 5λe

−5u1 −u1

3u2 −1 + 3u1

)
so that

Gu(0, 0 ; 0) =

(
3 0
0 −1

)
; real eigenvalues 3 , -1 (unstable)

Gu(1, 0 ; 0) =

( −3 −1
0 2

)
; real eigenvalues -3 , 2 (unstable)

Gu(
1

3
, 2 ; 0) =

( −1 −1
3

6 0

)
; complex eigenvalues − 1

2
± 1

2

√
7 i (stable)

All three Jacobians at λ = 0 are nonsingular .

Thus, by the IFT, all three stationary points persist for (small) λ 6= 0 .
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In this problem we can explicitly find all solutions:

Family 1 : (u1, u2) = (0 , 0)

Family 2 :

u2 = 0 , λ =
3u1(1− u1)

1− e−5u1

( Note that lim
u1 → 0

λ = lim
u1 → 0

3(1− 2u1)

5e−5u1
=

3

5
)

Family 3 :

u1 =
1

3
,

2

3
− 1

3
u2 − λ(1− e−5/3) = 0 ⇒ u2 = 2−3λ(1− e−5/3)

These solution families intersect at two bifurcation points , one of which is

(u1, u2, λ) = (0 , 0 , 3/5) .
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quota
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sharks
0.0

0.5

1.0

1.5

fish

0.00

0.25

0.50

0.75

Stationary solution families of the predator-prey model.
Solid/dashed curves denote stable/unstable solutions.

Note the bifurcations and Hopf bifurcation (red square).
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

quota

0.0

0.2

0.4

0.6

0.8

fis
h

Stationary solution families, showing fish versus quota.
Solid/dashed curves denote stable/unstable solutions.
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Stability of Family 1 :

Gu(0, 0 ; λ) =

(
3− 5λ 0

0 −1

)
; eigenvalues 3− 5λ, − 1 .

Hence the zero solution is :

unstable if λ < 3/5 ,

and

stable if λ > 3/5 .

Stability of Family 2 :

This family has no stable positive solutions.
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• Stability of Family 3 :

At λH ≈ 0.67 the complex eigenvalues cross the imaginary axis:

− This crossing is a Hopf bifurcation ,

− Beyond λH there are stable periodic solutions .

− Their period T increases as λ increases.

− The period becomes infinite at λ = λ∞ ≈ 0.70 .

− This final orbit is a heteroclinic cycle .
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
quota

−0.25

0.00

0.25

0.50

0.75

1.00

m
in

fis
h,

m
ax

fis
h

Stationary (blue) and periodic (red) solution families of the predator-prey model.
( For the periodic solution family both the maximum and minimum are shown. )
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Periodic solutions of the predator-prey model.
The largest orbits are close to a heteroclinic cycle.
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The bifurcation diagram shows the solution behavior for (slowly) increasing λ :

• Family 3 is followed until λH ≈ 0.67 .

• Periodic solutions of increasing period until λ = λ∞ ≈ 0.70 .

• Collapse to trivial solution (Family 1).
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Continuation of Solutions

Parameter Continuation

Suppose we have a solution (u0, λ0) of

G(u, λ) = 0 ,

as well as the derivative u̇0 .

Here

u̇ ≡ du

dλ
.

We want to compute the solution u1 at λ1 ≡ λ0 + ∆λ .
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Graphical interpretation of parameter-continuation.
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To solve the equation
G(u1 , λ1) = 0 ,

for u1 (with λ = λ1 fixed) we use Newton’s method

Gu(u
(ν)
1 , λ1) ∆u

(ν)
1 = − G(u

(ν)
1 , λ1) ,

u
(ν+1)
1 = u

(ν)
1 + ∆u

(ν)
1 .

ν = 0, 1, 2, · · · .

As initial approximation use

u
(0)
1 = u0 + ∆λ u̇0 .

If
Gu(u1, λ1) is nonsingular ,

and ∆λ sufficiently small then this iteration will converge [B55].
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After convergence, the new derivative u̇1 is computed by solving

Gu(u1, λ1) u̇1 = −Gλ(u1, λ1) .

This equation is obtained by differentiating

G(u(λ), λ) = 0 ,

with respect to λ at λ = λ1 .

Repeat the procedure to find u2 , u3 , · · · .

NOTE :

• u̇1 can be computed without another LU -factorization of Gu(u1, λ1) .

• Thus the extra work to compute u̇1 is negligible .
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EXAMPLE : The Gelfand-Bratu Problem .

u′′(x) + λ eu(x) = 0 for x ∈ [0, 1] , u(0) = 0 , u(1) = 0 .

We know that if λ = 0 then u(x) ≡ 0 is an isolated solution .

Discretize by introducing a mesh ,

0 = x0 < x1 < · · · < xN = 1 ,

xj − xj−1 = h , (1 ≤ j ≤ N) , h = 1/N .

The discrete equations are :

uj+1 − 2uj + uj−1

h2
+ λ euj = 0 , j = 1, · · · , N − 1 ,

with u0 = uN = 0 .
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Let

u ≡


u1

u2

·
uN−1

 .

Then we can write the discrete equations as

G( u , λ ) = 0 ,

where

G : RN−1 × R → RN−1 .
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Parameter-continuation :

Suppose we have λ0 , u0 , and u̇0 . Set λ1 = λ0 + ∆λ .

Newton’s method :

Gu(u
(ν)
1 , λ1) ∆u

(ν)
1 = −G(u

(ν)
1 , λ1) ,

u
(ν+1)
1 = u

(ν)
1 + ∆u

(ν)
1 ,

for ν = 0, 1, 2, · · · , with

u
(0)
1 = u0 + ∆λ u̇0 .

After convergence compute u̇1 from

Gu(u1, λ1) u̇1 = −Gλ(u1, λ1) .

Repeat the procedure to find u2 , u3 , · · · .
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Here

Gu( u , λ ) =


− 2
h2 + λeu1 1

h2

1
h2 − 2

h2 + λeu2 1
h2

. . .
. . .

1
h2 − 2

h2 + λeuN−1

 .

Thus we must solve a tridiagonal system for each Newton iteration.

NOTE :

• The solution family has a fold where parameter-continuation fails !

• A better continuation method is “pseudo-arclength continuation ”.

• There are also better discretizations, namely collocation , as used in AUTO .
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Pseudo-Arclength Continuation

This method allows continuation of a solution family past a fold .

It was introduced by H. B. Keller (1925-2008) in 1977.

Suppose we have a solution (u0, λ0) of

G( u , λ ) = 0 ,

as well as the normalized direction vector (u̇0, λ̇0) of the solution family.

Pseudo-arclength continuation consists of solving these equations for (u1, λ1) :

G(u1, λ1) = 0 ,

〈 u1 − u0 , u̇0 〉 + (λ1 − λ0) λ̇0 − ∆s = 0 .

47



����u 0

u 0 ∆ s
�
�
�
�

λ 0��

��
��
��
��
��

�
�
�
�

"u"

λ λ
λ

u

10

1

u( ), λ 00

Graphical interpretation of pseudo-arclength continuation.
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Solve the equations
G(u1, λ1) = 0 ,

〈 u1 − u0 , u̇0 〉 + (λ1 − λ0) λ̇0 − ∆s = 0 .

for (u1, λ1) by Newton’s method :

 (G1
u)(ν) (G1

λ)
(ν)

u̇∗0 λ̇0

(∆u
(ν)
1

∆λ
(ν)
1

)
= −

 G(u
(ν)
1 , λ

(ν)
1 )

〈 u
(ν)
1 − u0 , u̇0 〉+ (λ

(ν)
1 − λ0)λ̇0 −∆s

 .

Compute the next direction vector by solvingG1
u G1

λ

u̇∗0 λ̇0

( u̇1

λ̇1

)
=

0

1

 ,

and normalize it.
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NOTE :

• We can compute (u̇1, λ̇1) with only one extra backsubstitution .

• The orientation of the family is preserved if ∆s is sufficiently small.

• Rescale the direction vector so that indeed ‖ u̇1 ‖2 + λ̇2
1 = 1 .
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FACT : The Jacobian is nonsingular at a regular solution.

PROOF : Let x ≡
(

u
λ

)
∈ Rn+1 .

Then pseudo-arclength continuation can be simply written as

G(x1) = 0 ,

〈 x1 − x0 , ẋ0 〉 − ∆s = 0 , ( ‖ ẋ0 ‖ = 1 ) .

∆ s��

�� ����

1x

0x

         

0x

Pseudo-arclength continuation.
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The pseudo-arclength equations are

G(x1) = 0 ,

〈 x1 − x0 , ẋ0 〉 − ∆s = 0 , ( ‖ ẋ0 ‖ = 1 ) .

The Jacobian matrix in Newton’s method at ∆s = 0 is(
G0

x

ẋ∗0

)
.

At a regular solution N (G0
x) = Span{ẋ0} .

We must show that

(
G0

x

ẋ∗0

)
is nonsingular at a regular solution.

52



If on the contrary

(
G0

x

ẋ∗0

)
is singular then for some vector z 6= 0 we have :

G0
x z = 0 ,

〈 ẋ0 , z 〉 = 0 ,

Since by assumption N (G0
x) = Span{ẋ0} , we have

z = c ẋ0 , for some constant c .

But then

0 = 〈 ẋ0 , z 〉 = c 〈 ẋ0 , ẋ0 〉 = c ‖ ẋ0 ‖2 = c ,

so that z = 0 , which is a contradiction . QED !
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EXAMPLE : The Gelfand-Bratu Problem .

Use pseudo-arclength continuation for the discretized Gelfand-Bratu problem.

Then the matrix (
Gx

ẋ∗

)
=

(
Gu Gλ

u̇∗ λ̇

)
,

in Newton’s method is a bordered tridiagonal matrix :

? ? ?
? ? ? ?

? ? ? ?
? ? ? ?

? ? ? ?
? ? ? ?

? ? ? ?
? ? ?

? ? ? ? ? ? ? ? ?


.

which can be decomposed very efficiently .
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Following Folds and Hopf Bifurcations

• At a fold the the behavior of a system can change drastically.

• How does the fold location change when a second parameter varies ?

• Thus we want the compute a locus of folds in 2 parameters.

• We also want to compute loci of Hopf bifurcations in 2 parameters.
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Following Folds

Treat both parameters λ and µ as unknowns , and compute a solution family

X(s) ≡ ( u(s) , φ(s) , λ(s) , µ(s) ) ,

to

F(X) ≡


G(u, λ, µ) = 0 ,

Gu(u, λ, µ) φ = 0 ,

〈 φ , φ0 〉 − 1 = 0 ,

and the added continuation equation

〈 u− u0 , u̇0 〉 + 〈 φ− φ0 , φ̇0 〉 + (λ− λ0)λ̇0 + (µ− µ0)µ̇0 − ∆s = 0 .

As before,
( u̇0 , φ̇0 , λ̇0 , µ̇0 ) ,

is the direction of the family at the current solution point

( u0 , φ0 , λ0 , µ0) .
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EXAMPLE : The A→ B → C Reaction .

( Course demo : Chemical-Reactions/ABC-Reaction/Folds-SS )

The equations are

u′1 = −u1 + D(1− u1)eu3 ,

u′2 = −u2 + D(1− u1)eu3 − Dσu2e
u3 ,

u′3 = −u3 − βu3 + DB(1− u1)eu3 + DBασu2e
u3 ,

where

1− u1 is the concentration of A , u2 is the concentration of B ,

u3 is the temperature , α = 1 , σ = 0.04 , B = 8 ,

D is the Damkohler number , β is the heat transfer coefficient .
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A stationary solution family for β = 1.20.

Note the two folds and the Hopf bifurcation .
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0.00 0.05 0.10 0.15 0.20
D

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

β

0.14 0.15 0.16 0.17 0.18 0.19 0.20
D

1.20

1.25

1.30

1.35

1.40

β

A locus of folds (with blow-up) for the A→ B → C reaction.

Notice the two cusp singularities along the 2-parameter locus.

( There is a swallowtail singularity in nearby 3-parameter space. )
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7

||u
||

Stationary solution families for β = 1.20, 1.21, · · · , 1.42.
( Open diamonds mark folds, solid red squares mark Hopf points. )

60



Following Hopf Bifurcations

The extended system is

F(u,φ, β, λ;µ) ≡


f(u, λ, µ) = 0 ,

fu(u, λ, µ) φ − i β φ = 0 ,

〈 φ , φ0 〉 − 1 = 0 ,

where
F : Rn × Cn × R2 × R → Rn × Cn × C ,

and to which we want to compute a solution family

( u , φ , β , λ , µ ) ,

with
u ∈ Rn, φ ∈ Cn, β, λ, µ ∈ R .

Above φ0 belongs to a “reference solution ”

( u0 , φ0 , β0 , λ0 , µ0 ) ,

which normally is the latest computed solution along a family.
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EXAMPLE : The A→ B → C Reaction .

( Course demo : Chemical-Reactions/ABC-Reaction/Hopf )

The stationary family with Hopf bifurcation for β = 1.20 .
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The locus of Hopf bifurcations for the A→ B → C reaction.
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Stationary solution families for β = 1.20, 1.20, 1.25, 1.30, · · · , 2.30,
with Hopf bifurcations (the red squares) .
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Boundary Value Problems

Consider the first order system of ordinary differential equations

u′(t) − f( u(t) , µ , λ ) = 0 , t ∈ [0, 1] ,

where

u(·) , f(·) ∈ Rn , λ ∈ R, µ ∈ Rnµ ,

subject to boundary conditions

b( u(0) , u(1) , µ , λ ) = 0 , b(·) ∈ Rnb ,

and integral constraints∫ 1

0

q( u(s) , µ , λ ) ds = 0 , q(·) ∈ Rnq .
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This boundary value problem (BVP) is of the form

F( X ) = 0 ,
where

X = ( u , µ , λ ) ,

to which we add the continuation equation

〈 X−X0 , Ẋ0 〉 − ∆s = 0 ,

where X0 represents the latest solution computed along the family.

In detail , the continuation equation is∫ 1

0

〈 u(t)− u0(t) , u̇0(t) 〉 dt + 〈 µ− µ0 , µ̇0 〉

+ (λ− λ0)λ̇0 − ∆s = 0 .
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NOTE :

• In the context of continuation we solve this BVP for (u(·) , λ , µ) .

• In order for problem to be formally well-posed we must have

nµ = nb + nq − n ≥ 0 .

• A simple case is

nq = 0 , nb = n , for which nµ = 0 .
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Discretization: Orthogonal Collocation

Introduce a mesh

{ 0 = t0 < t1 < · · · < tN = 1 } ,
where

hj ≡ tj − tj−1 , (1 ≤ j ≤ N) ,

Define the space of (vector) piecewise polynomials Pmh as

Pmh ≡ { ph ∈ C[0, 1] : ph

∣∣∣
[tj−1,tj ]

∈ Pm } ,

where Pm is the space of (vector) polynomials of degree ≤ m .
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The collocation method consists of finding

ph ∈ Pmh , µ ∈ Rnµ ,

such that the following collocation equations are satisfied :

p′h(zj,i) = f( ph(zj,i) , µ, λ ) , j = 1, · · · , N , i = 1, · · · ,m ,

and such that

ph satisfies the boundary and integral conditions .

The collocation points zj,i in each subinterval

[ tj−1 , tj ] ,

are the (scaled) roots of the mth-degree orthogonal polynomial (Gauss points3).

3 See Pages 261, 287 of the Background Notes on Elementary Numerical Methods.
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The mesh {0 = t0 < t1 < · · · < tN = 1} , with

collocation points and extended-mesh points shown for m = 3 .

Also shown are two of the four local Lagrange basis polynomials .
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Since each local polynomial is determined by

(m+ 1) n ,

coefficients, the total number of unknowns (considering λ as fixed) is

(m+ 1) n N + nµ .

This is matched by the total number of equations :

collocation : m n N ,

continuity : (N − 1) n ,

constraints : nb + nq ( = n + nµ ) .
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Assume that the solution u(t) of the BVP is sufficiently smooth.

Then the order of accuracy of the orthogonal collocation method is m , i.e.,

‖ ph − u ‖∞ = O(hm) .

At the main meshpoints tj we have superconvergence :

maxj | ph(tj)− u(tj) | = O(h2m) .

The scalar variables λ and µ are also superconvergent .
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Implementation

For each subinterval [ tj−1 , tj ] , introduce the Lagrange basis polynomials

{ `j,i(t) } , j = 1, · · · , N , i = 0, 1, · · · ,m ,

defined by

`j,i(t) =
m∏

k=0,k 6=i

t− tj− k
m

tj− i
m
− tj− k

m

,

where

tj− i
m
≡ tj − i

m
hj .

The local polynomials can then be written

pj(t) =
m∑
i=0

`j,i(t) uj− i
m
.

With the above choice of basis

uj ∼ u(tj) and uj− i
m
∼ u(tj− i

m
) ,

where u(t) is the solution of the continuous problem.
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The collocation equations are

p
′

j(zj,i) = f( pj(zj,i) , µ , λ ) , i = 1, · · · ,m, j = 1, · · · , N .

The boundary conditions are

bi( u0 , uN , µ , λ ) = 0 , i = 1, · · · , nb .

The integral constraints can be discretized as

N∑
j=1

m∑
i=0

ωj,i qk( uj− i
m
, µ , λ) = 0 , k = 1, · · · , nq ,

where the ωj,i are the Lagrange quadrature weights .
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The continuation equation is∫ 1

0

〈 u(t) − u0(t) , u̇0(t) 〉 dt + 〈 µ − µ0 , µ̇0 〉 + (λ − λ0) λ̇0 − ∆s = 0 ,

where ( u0 , µ0 , λ0 ) ,

is the previous solution along the solution family, and

( u̇0 , µ̇0 , λ̇0 ) ,

is the normalized direction of the family at the previous solution .

The discretized continuation equation is of the form

N∑
j=1

m∑
i=0

ωj,i 〈 uj− i
m
− (u0)j− i

m
, (u̇0)j− i

m
〉

+ 〈 µ − µ0 , µ̇0 〉 + (λ − λ0) λ̇0 − ∆s = 0 .

75



Numerical Linear Algebra

The complete discretization consists of

m n N + nb + nq + 1 ,

nonlinear equations , with unknowns

{uj− i
m
} ∈ RmnN+n , µ ∈ Rnµ , λ ∈ R .

These equations are solved by a Newton-Chord iteration .

76



We illustrate the numerical linear algebra for the case

n = 2 ODEs , N = 4 mesh intervals , m = 3 collocation points ,

nb = 2 boundary conditions , nq = 1 integral constraint ,

and the continuation equation.

• The operations are also done on the right hand side , which is not shown.

• Entries marked “◦” have been eliminated by Gauss elimination.

• Entries marked “·” denote fill-in due to pivoting .

• Most of the operations can be done in parallel .
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • •
• • • • • •
• • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • • • • • •

The structure of the Jacobian .
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • •
• • • • • •
• • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • •

The system after condensation of parameters, which can be done in parallel .
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • •
• • • • • •
• • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • •

The preceding matrix, showing the decoupled • subsystem .
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • · · • •
• • ◦ ◦ ◦ ◦ ◦ • · · • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

• • ◦ ◦ ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • · · • •
• • ◦ ◦ ◦ ◦ ◦ • · · • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

• • ◦ ◦ ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦ • • • •

• • • • • •
• • • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •

Stage 1 of the nested dissection to solve the decoupled • subsystem.
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • · · • •
• • ◦ ◦ ◦ ◦ ◦ • · · • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

• • ◦ ◦ ◦ ◦ ◦ ◦ • • · · • •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • · · • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • · · • •
• • ◦ ◦ ◦ ◦ ◦ • · · • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •
• • • • • •
• • • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •

Stage 2 of the nested dissection to solve the decoupled • subsystem.
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • · · • •
• • ◦ ◦ ◦ ◦ ◦ • · · • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

• • ◦ ◦ ◦ ◦ ◦ ◦ • • · · • •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • · · • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • · · • •
• • ◦ ◦ ◦ ◦ ◦ • · · • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •
• • • • • •
• • • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •

The preceding matrix showing the final decoupled • subsystem .
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • · · • •
• • ◦ ◦ ◦ ◦ ◦ • · · • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

• • ◦ ◦ ◦ ◦ ◦ ◦ • • · · • •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • · · • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • · · • •
• • ◦ ◦ ◦ ◦ ◦ • · · • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

A A ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B B • •
A A ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B B • •
• • • • • •
• • • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •

The approximate Floquet multipliers are the eigenvalues of M ≡ −B−1A .
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Accuracy Test

The Table shows the location of the fold in the Gelfand-Bratu problem,

for 4 Gauss collocation points per mesh interval, and N mesh intervals .

N Fold location
2 3.5137897550
4 3.5138308601
8 3.5138307211

16 3.5138307191
32 3.5138307191
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Periodic Solutions

• Periodic solutions can be computed efficiently using a BVP approach.

• This method also determines the period very accurately.

• Moreover, the technique can compute unstable periodic orbits.
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Consider

u′(t) = f( u(t) , λ ) , u(·) , f(·) ∈ Rn , λ ∈ R .

Fix the interval of periodicity by the transformation

t → t

T
.

Then the equation becomes

u′(t) = T f( u(t) , λ ) , u(·) , f(·) ∈ Rn , T , λ ∈ R .

and we seek solutions of period 1 , i.e.,

u(0) = u(1) .

Note that the period T is one of the unknowns .
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The above equations do not uniquely specify u and T :

Assume that we have computed

( uk−1(·) , Tk−1 , λk−1 ) ,

and we want to compute the next solution

( uk(·) , Tk , λk ) .

Then uk(t) can be translated freely in time :

If uk(t) is a periodic solution, then so is uk(t+ σ) , for any σ .

Thus, a phase condition is needed.
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An example is the Poincaré phase condition

〈 uk(0) − uk−1(0) , u
′

k−1(0) 〉 = 0 .

( But we will derive a numerically more suitable integral phase condition . )

u k-1 (0)

��

��

u
k-1 (0)

u (0)
k

Graphical interpretation of the Poincaré phase condition.
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An Integral Phase Condition

If ũk(t) is a solution then so is

ũk(t+ σ) ,
for any σ .

We want the solution that minimizes

D(σ) ≡
∫ 1

0

‖ ũk(t+ σ) − uk−1(t) ‖2
2 dt .

The optimal solution
ũk(t+ σ̂) ,

must satisfy the necessary condition

D′(σ̂) = 0 .
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Differentiation gives the necessary condition

∫ 1

0

〈 ũk(t+ σ̂) − uk−1(t) , ũ′k(t+ σ̂ 〉 dt = 0 .

Writing
uk(t) ≡ ũk(t+ σ̂) ,

gives ∫ 1

0

〈 uk(t) − uk−1(t) , u′k(t) 〉 dt = 0 .

Integration by parts, using periodicity, gives

∫ 1

0
〈 uk(t) , u

′

k−1(t) 〉 dt = 0 .

This is the integral phase condition.
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Continuation of Periodic Solutions

• Pseudo-arclength continuation is used to follow periodic solutions .

• It allows computation past folds along a family of periodic solutions.

• It also allows calculation of a “vertical family ” of periodic solutions.

For periodic solutions the continuation equation is

∫ 1

0

〈 uk(t)−uk−1(t) , u̇k−1(t) 〉 dt + (Tk−Tk−1)Ṫk−1 + (λk−λk−1)λ̇k−1 = ∆s .
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SUMMARY :

We have the following equations for periodic solutions :

u′k(t) = T f( uk(t) , λk ) ,

uk(0) = uk(1) ,∫ 1

0

〈 uk(t) , u
′

k−1(t) 〉 dt = 0 ,

with continuation equation

∫ 1

0

〈 uk(t)−uk−1(t) , u̇k−1(t) 〉 dt + (Tk−Tk−1)Ṫk−1 + (λk−λk−1)λ̇k−1 = ∆s ,

where

u(·) , f(·) ∈ Rn , λ , T ∈ R .
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Stability of Periodic Solutions

In our continuation context, a periodic solution of period T satisfies

u′(t) = T f( u(t)) , for t ∈ [0, 1] ,

u(0) = u(1) ,

(for given value of the continuation parameter λ).

A small perturbation in the initial condition

u(0) + ε v(0) , ε small ,

leads to the linearized equation

v′(t) = T fu( u(t) ) v(t) , for t ∈ [0, 1] ,

which induces a linear map

v(0) → v(1) ,

represented by
v(1) = M v(0) .
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v(1) = M v(0)

The eigenvalues of M are the Floquet multipliers that determine stability.

M always has a multiplier µ = 1 , since differentiating

u′(t) = T f( u(t)) ,

gives

v′(t) = T fu( u(t) ) v(t) ,

where

v(t) = u′(t) , with v(0) = v(1) .
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v(1) = M v(0)

• If M has a Floquet multiplier µ with | µ | > 1 then u(t) is unstable .

• If all multipliers (other than µ = 1) satisfy | µ | < 1 then u(t) is stable .

• At folds and branch points there are two multipliers µ = 1 .

• At a period-doubling bifurcation there is a real multiplier µ = −1 .

• At a torus bifurcation there is a complex pair on the unit circle.
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EXAMPLE : The Lorenz Equations .

( Course demo : Lorenz )

These equations were introduced in 1963 by Edward Lorenz (1917-2008)

as a simple model of atmospheric convection :

x′ = σ (y − x) ,

y′ = ρ x − y − x z ,

z′ = x y − β z ,

where (often)

σ = 10 , β = 8/3 , ρ = 28 .
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Course demo : Lorenz/Basic

Bifurcation diagram of the Lorenz equations for σ = 10 and β = 8/3 .
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Course demo : Lorenz/Basic

Unstable periodic orbits of the Lorenz equations.
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In the Lorenz Equations :

• The zero stationary solution is unstable for ρ > 1 .

• Two nonzero stationary families bifurcate at ρ = 1 .

• The nonzero stationary solutions are unstable for ρ > ρH .

• At ρH ≈ 24.7 there are Hopf bifurcations .

• Unstable periodic solution families emanate from the Hopf bifurcations.

• These families end in homoclinic orbits (infinite period) at ρ ≈ 13.9 .

• At ρ = 28 (and a range of other values) there is the Lorenz attractor .
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EXAMPLE : The A→ B → C Reaction .

( Course demo : Chemical-Reactions/ABC-Reaction/Periodic )

Stationary and periodic solution families of the A→ B → C reaction: β = 1.55 .

Note the coexistence of stable solutions, for example, solutions 1 and 2 .
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Top left: β = 1.55, right: β = 1.56, Bottom left: β = 1.57, right: β = 1.58.

( QUESTION : Is something missing somewhere ? )
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Following Folds for Periodic Solutions

Recall that periodic orbits families can be computed using the equations

u′(t) − T f( u(t) , λ ) = 0 ,

u(0) − u(1) = 0 ,∫ 1

0

〈 u(t) , u
′

0(t) 〉 dt = 0 ,

where u0 is a reference orbit , typically the latest computed orbit.

The above boundary value problem is of the form

F( X , λ ) = 0 ,

where
X = ( u , T ) .
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At a fold with respect to λ we have

FX( X , λ ) Φ = 0 ,

〈 Φ , Φ 〉 = 1 ,

where
X = ( u , T ) , Φ = ( v , S ) ,

i.e., the linearized equations about X have a nonzero solution Φ .

In detail : v′(t) − T fu( u(t) , λ ) v − S f( u(t) , λ ) = 0 ,

v(0) − v(1) = 0 ,∫ 1

0

〈 v(t) , u
′

0(t) 〉 dt = 0 ,

∫ 1

0

〈 v(t) , v(t) 〉 dt + S2 = 1 .
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The complete extended system to follow a fold is

F( X , λ , µ ) = 0 ,

FX( X , λ , µ ) Φ = 0 ,

〈 Φ , Φ 〉 − 1 = 0 ,

with two free problem parameters λ and µ .

To the above we add the continuation equation

〈 X−X0 , Ẋ0 〉 + 〈 Φ−Φ0 , Φ̇0 〉 + (λ−λ0) λ̇0 + (µ−µ0) µ̇0 − ∆s = 0 .
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In detail : u′(t) − T f( u(t) , λ , µ ) = 0 ,

u(0) − u(1) = 0 ,∫ 1

0

〈 u(t) , u
′

0(t) 〉 dt = 0 ,

v′(t) − T fu( u(t) , λ , µ ) v − S f( u(t) , λ , µ ) = 0 ,

v(0) − v(1) = 0 ,∫ 1

0

〈 v(t) , u
′

0(t) 〉 dt = 0 ,

with normalization∫ 1

0

〈 v(t) , v(t) 〉 dt + S2 − 1 = 0 ,

and continuation equation∫ 1

0

〈 u(t)−u0(t) , u̇0(t) 〉 dt +

∫ 1

0

〈 v(t)−v0(t) , v̇0(t) 〉 dt +

+ (T0 − T )Ṫ0 + (S0 − S)Ṡ0 + (λ− λ0)λ̇0 + (µ− µ0)µ̇0 − ∆s = 0 .
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EXAMPLE : The A→ B → C Reaction .

( Course demo : Chemical-Reactions/ABC-Reaction/Folds-PS )

Stationary and periodic solution families of the A→ B → C reaction .

(with blow-up) for β = 1.55 . Note the three folds , labeled 1, 2, 3 .
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Stationary and periodic solution families of the A→ B → C reaction: β = 1.56 .
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Stationary and periodic solution families of the A→ B → C reaction: β = 1.57 .
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Stationary and periodic solution families of the A→ B → C reaction: β = 1.58 .
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Stationary and periodic solution families of the A→ B → C reaction: β = 1.61 .
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Stationary and periodic solution families of the A→ B → C reaction: β = 1.62 .
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Periodic solutions along the isola for β = 1.58 .
(Stable solutions are blue, unstable solutions are red.)
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Following Period-doubling Bifurcations

Let ( u(t) , T ) be a periodic solution , i.e., a solution of

u′(t) − T f( u(t) , λ ) = 0 ,

u(0) − u(1) = 0 ,∫ 1

0

〈 u(t) , u
′

0(t) 〉 dt = 0 ,

where u0 is a reference orbit .

A necessary condition for a period-doubling bifurcation is that the following
linearized system have a nonzero solution v(t) :

v′(t) − T fu( u(t) , λ ) v(t) = 0 ,

v(0) + v(1) = 0 ,∫ 1

0

〈 v(t) , v(t) 〉 dt = 1 .
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The complete extended system to follow a period-doubling bifurcation is

u′(t) − T f( u(t) , λ , µ ) = 0 ,

u(0) − u(1) = 0 ,∫ 1

0

〈 u(t) , u
′

0(t) 〉 dt = 0 ,

v′(t) − T fu( u(t) , λ ) v(t) = 0 ,

v(0) + v(1) = 0 ,∫ 1

0

〈 v(t) , v(t) 〉 dt − 1 = 0 ,

and continuation equation∫ 1

0

〈 u(t)−u0(t) , u̇0(t) 〉 dt +

∫ 1

0

〈 v(t)−v0(t) , v̇0(t) 〉 dt +

+ (T0 − T )Ṫ0 + (λ− λ0)λ̇0 + (µ− µ0)µ̇0 − ∆s = 0 .

116



EXAMPLE : Period-Doubling Bifurcations in the Lorenz Equations .

( Course demo : Lorenz/Period-Doubling )

• The Lorenz equations also have period-doubling bifurcations .

• In fact, there is a period-doubling cascade for large ρ .

• We start from numerical data .

• (Such data may be from simulation , i.e., initial value integration .)

• We also want to compute loci of period-doubling bifurcations .
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( Course demo : Lorenz/Period-Doubling )

Left panel : Solution families of the Lorenz equations.

The open diamonds denote period-doubling bifurcations .

Right panel : Solution 1 was found by initial value integration .

118



( Course demo : Lorenz/Period-Doubling )

Left panel : A primary period-doubled solution.

Right panel : A secondary period-doubled solution.
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( Course demo : Lorenz/Period-Doubling )

Loci of period-doubling bifurcations for the Lorenz equations (with blow-up) .

Black: primary, Red: secondary, Blue: tertiary period-doublings .
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Periodic Solutions of Conservative Systems

EXAMPLE : A Model Conservative System .

( Course demo : Vertical-HB )

u′1 = − u2 ,

u′2 = u1 (1− u1) .

PROBLEM :

• This system has a family of periodic solutions, but no parameter !

• The system has a constant of motion , namely the Hamiltonian

H(u1, u2) = − 1

2
u2

1 −
1

2
u2

2 +
1

3
u3

1 .
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REMEDY :

Introduce an unfolding term with unfolding parameter λ :

u′1 = λ u1 − u2 ,

u′2 = u1 (1− u1) .

Then there is a vertical Hopf bifurcation from the trivial solution at λ = 0 .
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Bifurcation diagram of the vertical Hopf bifurcation problem.
( Course demo : Vertical-HB )
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NOTE :

• The family of periodic solutions is vertical .

• The parameter λ is solved for in each continuation step.

• Upon solving, λ is found to be zero , up to numerical precision.

• One can use standard BVP continuation and bifurcation algorithms.
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A phase plot of some periodic solutions.

125



EXAMPLE : The Circular Restricted 3-Body Problem (CR3BP) .

( Course demo : Restricted-3Body/Earth-Moon/Orbits )

x′′ = 2y′ + x − (1− µ) (x+ µ)

r3
1

− µ (x− 1 + µ)

r3
2

,

y′′ = −2x′ + y − (1− µ) y

r3
1

− µ y

r3
2

,

z′′ = −(1− µ) z

r3
1

− µ z

r3
2

,

where

r1 =
√

(x + µ)2 + y2 + z2 , r2 =
√

(x− 1 + µ)2 + y2 + z2 .

and
( x , y , z ) denotes the position of the zero-mass body .

NOTE : For the Earth-Moon system µ ≈ 0.01215 .

126



The CR3BP has one integral of motion , namely, the “Jacobi-constant” :

J =
x′2 + y′2 + z′2

2
− U(x, y, z) − µ

1− µ
2

,

where

U =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2

,

and

r1 =
√

(x+ µ)2 + y2 + z2 , r2 =
√

(x− 1 + µ)2 + y2 + z2 .
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Boundary value formulation :

x′ = T vx

y′ = T vy

z′ = T vz

v′x = T [ 2vy + x − (1− µ)(x+ µ)r−3
1 − µ(x− 1 + µ)r−3

2 + λ vx ]

v′y = T [ − 2vx + y − (1− µ)yr−3
1 − µyr−3

2 + λ vy ]

v′z = T [ − (1− µ)zr−3
1 − µzr−3

2 + λ vz ]

with periodicity boundary conditions

x(1) = x(0) , y(1) = y(0) , z(1) = z(0) ,

vx(1) = vx(0) , vy(1) = vy(0) , vz(1) = vz(0) ,

+ phase constraint + continuation equation .

Here T is the period of the orbit.
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NOTE :

• One can use BVP continuation and bifurcation algorithms.

• The unfolding term λ ∇v regularizes the continuation.

• λ will be zero , once solved for.

• Other unfolding terms are possible.
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Schematic bifurcation diagram of periodic solution families of the Earth-Moon system .
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The planar Lyapunov family L1.
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The Halo family H1.
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The Halo family H1.
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The Vertical family V1.
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The Axial family A1.
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Stable and Unstable Manifolds

EXAMPLE : Phase-plane orbits: Fixed length .

These can be computed by orbit continuation .

Model equations are

x′ = εx − y3 ,

y′ = y + x3 .

where ε > 0 is small.

• There is only one equilibrium , namely, (x, y) = (0, 0) .

• This equilibrium has eigenvalues ε and 1 ; it is a source .
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For the computations :

• The time variable t is scaled to [0, 1].

• The actual integration time T is then an explicit parameter :

x′ = T ( εx − y3 ) ,

y′ = T ( y + x3 ) .
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These constraints are used :

• To put the initial point on a small circle around the origin :

x(0)− r cos(2πθ) = 0 ,

y(0)− r sin(2πθ) = 0 .

• To keep track of the end points :

x(1)− x1 = 0 ,

y(1)− y1 = 0 .

• To keep track of the length of the orbits∫ 1

0

√
x′(t)2 + y′(t)2 dt− L = 0 .
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The computations are done in 3 stages :

• In the first run an orbit is grown by continuation :

- The free parameters are T, L, x1, y1 .

- The starting point is on the small circle of radius r.

- The starting point is in the strongly unstable direction .

- The value of ε is 0.5 in the first run.

• In the second run the value of ε is decreased to 0.01 :

- The free parameters are ε, T, x1, y1 .

• In the third run the initial point is free to move around the circle :

- The free parameters are θ, T, x1, y1 .
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( Course demo : Basic-Manifolds/2D-ODE/Fixed-Length )

Unstable Manifolds in the Plane: Orbits of Fixed Length .
(The right-hand panel is a blow-up, and also shows fewer orbits.)
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EXAMPLE : Phase-plane orbits: Variable length .

These can also be computed by orbit continuation .

Model equations are

x′ = εx − y2 ,

y′ = y + x2 .

• The origin (x, y) = (0, 0) is an equilibrium .

• The origin has eigenvalues ε and 1 ; it is a source .

• Thus the origin has a 2-dimensional unstable manifold .

• We compute this stable manifold using continuation .

• (The equations are 2D; so we actually compute a phase portrait.)
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For the computations :

• The time variable t is scaled to [0, 1].

• The actual integration time T is then an explicit parameter :

x′ = T (εx− y2) ,

y′ = T (y + x2) .

NOTE :

• There is also a nonzero equilibrium

(x, y) = (ε
1
3 ,−ε 2

3 ) .

• It is a saddle (1 positive, 1 negative eigenvalue).

142



These constraints are used :

• To put the initial point on a small circle at the origin :

x(0)− r cos(2πθ) = 0 ,

y(0)− r sin(2πθ) = 0 .

• To keep track of the end points :

x(1)− x1 = 0 ,

y(1)− y1 = 0 .

• To keep track of the length of the orbits we add an integral constraint :∫ 1

0

√
x′(t)2 + y′(t)2 dt− L = 0 .

• To allow the length L to contract :

(Tmax − T )(Lmax − L)− c = 0 .
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Again the computations are done in 3 stages :

• In the first run an orbit is grown by continuation :

- The free parameters are T, L, x1, y1, c .

- The starting point is on a small circle of radius r.

- The starting point is in the strongly unstable direction .

- In this first run ε = 0.5 .

• In the second run the value of ε is decreased to 0.05 :

- The free parameters are ε, T, L, x1, y1 .

• In the third run the initial point is free to move around the circle :

- The free parameters are θ, T, L, x1, y1 .
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( Course demo : Basic-Manifolds/2D-ODE/Variable-Length )

Unstable Manifolds in the Plane: Orbits of Variable Length .
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( Course demo : Basic-Manifolds/2D-ODE/Variable-Length )

Unstable Manifolds in the Plane: Orbits of Variable Length (Blow-up).
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EXAMPLE : A 2D unstable manifold in R3 .

This can also be computed by orbit continuation. The model equations are

x′ = εx− z3 ,

y′ = y − x3 ,

z′ = −z + x2 + y2 .

• We take ε = 0.05.

• The origin is a saddle with eigenvalues ε, 1, and −1.

• Thus the origin has a 2-dimensional unstable manifold .

• The initial point moves around a circle in the 2D unstable eigenspace .

• The equations are 3D; so we will compute a 2D manifold in R3 .

• There is also a nonzero saddle , so we use retraction .

• The set-up is similar to the 2D phase-portrait example.
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( Course demo : Basic-Manifolds/3D-ODE/Variable-Length )

Unstable Manifolds in R3: Orbits of Variable Length .

148



EXAMPLE : Another 2D unstable manifold in R3 .

The model equations are

x′ = εx− y3 + z3 ,

y′ = y + x3 + z3 ,

z′ = −z − x2 + y2 .

• We take ε = 0.05.

• The origin is a saddle with eigenvalues ε, 1, and −1.

• Thus the origin has a 2-dimensional unstable manifold .

• The initial point moves around a circle in the 2D unstable eigenspace .

• The equations are 3D; so we will compute a 2D manifold in R3 .

• No retraction is needed, so we choose to compute orbits of fixed length .

• The set-up is similar to the 2D phase-portrait example.
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( Course demo : Basic-Manifolds/3D-ODE/Fixed-Length )

Unstable Manifolds in R3: Orbits of Fixed Length .
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The Lorenz Manifold

• For ρ > 1 the origin is a saddle point .

• The Jacobian has two negative and one positive eigenvalue .

• The two negative eigenvalues give rise to a 2D stable manifold .

• This manifold is known as as the Lorenz Manifold .

• The set-up is as for the earlier 3D model, using fixed length .

151



Course demo : Lorenz/Manifolds/Origin/Fixed-Length

Part of the Lorenz Manifold (with blow-up). Orbits have fixed length L = 60 .
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Course demo : Lorenz/Manifolds/Origin/Fixed-Length

Part of the Lorenz Manifold. Orbits have fixed length L = 200 .
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Heteroclinic Connections.

• The Lorenz Manifold helps understand the Lorenz attractor .

• Many orbits in the manifold depend sensitively on initial conditions .

• During the manifold computation one can locate heteroclinic orbits .

• These are also in the 2D unstable manifold of the nonzero equilibria.

• The heteroclinic orbits have a combinatorial structure 4.

• One can also continue heteroclinic orbits as ρ varies.

4 Nonlinearity 19, 2006, 2947-2972.

154



Course demo : Lorenz/Heteroclinics

Four heteroclinic orbits with very close initial conditions
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One can also determine the intersection of the Lorenz manifold with a sphere .

The set-up is as follows :

x′ = T σ (y − x) ,

y′ = T (ρ x − y − x z) ,

z′ = T (x y − β z) ,

which is of the form

u′(t) = T f( u(t) ) , for 0 ≤ t ≤ 1 ,

where

• T is the actual integration time , which is negative !

To this we add boundary and integral constraints .
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The complete set-up consists of the ODE

u′(t) = T f( u(t) ) , for 0 ≤ t ≤ 1 ,

subject to the following constraints :

u(0)− ε (cos(θ) v1 − sin(θ) v2) = 0 u(0) is on a small circle

u(1) − u1 = 0 to keep track of the end point u(1)

‖ u1 ‖ − R = 0 distance of u1 to the origin

〈 u1/ ‖ u1 ‖ , f(u1)/ ‖ f(u1) ‖ 〉 − τ = 0 to locate tangencies, where τ = 0

T
∫ 1

0
‖ f(u) ‖ ds − L = 0 to keep track of the orbit length

(T − Tn) (L− Ln) − c = 0 . allows retraction into the sphere
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The continuation system has the form

F(Xk) = 0 , where X = ( u(·) , Λ ) .

with continuation equation

〈 Xk −Xk−1 , Ẋk−1 〉 − ∆s = 0 , ( ‖ Ẋk−1 ‖= 1 ) .

The computations are done in 2 stages :

• In the first run an orbit is grown by continuation :

- The starting point is on the small circle of radius ε.

- The starting point is in the strongly stable direction .

- The free parameters are Λ = (T , L , c , τ , R ,u1) .

• In the second run the orbit sweeps the stable manifold.

- The initial point is free to move around the circle :

- The free parameters are Λ = (T , L , θ , τ , R , u1) .
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Course demo : Lorenz/Manifolds/Origin/Sphere

Intersection of the Lorenz Manifold with a sphere
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NOTE :

• We do not just change the initial point (i.e., θ) and integrate !

• Every continuation step requires solving a boundary value problem .

• The continuation stepsize ∆s controls the change in X .

• X can only change a little in any continuation step.

• This way the entire manifold (up to a given length L) is computed.

• The retraction constraint allows the orbits to retract into the sphere.

• This is necessary when heteroclinic connections are encountered.
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EXAMPLE : Unstable Manifolds of a Periodic Orbit .

( Course demo : Lorenz/Manifolds/Orbits/Rho24.3 )

Left: Bifurcation diagram of the Lorenz equations. Right: Labeled solutions.
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Both sides of the unstable manifold of periodic orbit 3 at ρ = 24.3 .
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EXAMPLE : Unstable Manifolds in the CR3BP .

( Course demo : Restricted-3Body/Earth-Moon/Manifolds/H1 )

• ”Small” Halo orbits have one real Floquet multiplier outside the unit circle.

• Such Halo orbits are unstable .

• They have a 2D unstable manifold .

• The unstable manifold can be computed by continuation .

• First compute a starting orbit in the manifold.

• Then continue the orbit keeping, for example, x(1) fixed .
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Part of the unstable manifold of three Earth-Moon L1-Halo orbits.
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• The initial orbit can be taken to be much longer · · ·
• Continuation with x(1) fixed can lead to a Halo-to-torus connection!

165



• The Halo-to-torus connection can be continued as a solution to

F( Xk ) = 0 ,

< Xk −Xk−1 , Ẋk−1 > − ∆s = 0 .

where

X = ( Halo orbit , Floquet function , connecting orbit) .
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In detail , the continuation system is

du

dτ
− Tuf(u(τ), µ, l) = 0 ,

u(1)− u(0) = 0 ,∫ 1

0

〈 u(τ) , u̇0(τ) 〉 dτ = 0 ,

dv

dτ
− TuDuf(u(τ), µ, l)v(τ) + λuv(τ) = 0 ,

v(1)− sv(0) = 0 (s = ±1) ,

〈 v(0) , v(0) 〉 − 1 = 0 ,

dw

dτ
− Twf(w(τ), µ, 0) = 0 ,

w(0)− (u(0) + εv(0)) = 0 ,

w(1)x − xΣ = 0 .
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The system has

18 ODEs , 20 boundary conditions , 1 integral constraint .

We need

20 + 1 + 1 - 18 = 4 free parameters .

Parameters :

• An orbit in the unstable manifold: Tw , l , Tu , xΣ

• Compute the unstable manifold: Tw , l , Tu , ε

• Follow a connecting orbit: λu , l , Tu , ε
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The Solar Sail Equations

The equations in Course demo : Solar-Sail/Equations/equations.f90 :

x′′ = 2y′ + x− (1− µ)(x+ µ)

d3
S

− µ(x− 1 + µ)

d3
P

+
β(1− µ)D2Nx

d2
S

y′′ = − 2x′ + y − (1− µ)y

d3
S

− µy

d3
P

+
β(1− µ)D2Ny

d2
S

z′′ = − (1− µ)z

d3
S

− µz

d3
P

+
β(1− µ)D2Nz

d2
S

where

dS =
√

(x+ µ)2 + y2 + z2 , dP =
√

(x− 1 + µ)2 + y2 + z2 , r =
√

(x+ µ)2 + y2

Nx = [cos(α)(x+ µ)− sin(α)y] [cos(δ)− sin(δ)z

r
]/dS

Ny = [cos(α)y + sin(α)(x+ µ)] [cos(δ)− sin(δ)z

r
]/dS

Nz = [cos(δ)z + sin(δ)r]/dS , D =
x+ µ

dS
Nx +

y

dS
Ny +

z

dS
Nz
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Points

Sun-Jupiter libration points, for β = 0, α = 0, δ = 0.
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Points

Sun-Jupiter libration points, for β = 0.02, α = 0.02, δ = 0.
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Loci

Sun-Jupiter libration points, with δ ∈ [−π
2
, π

2
], for various β, with α = 0.
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Loci

Sun-Jupiter libration points, with δ ∈ [−π
2
, π

2
], for various α, with β = 0.15.
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Homoclinic

Sun-Jupiter: detection of a homoclinic orbit at β = 0.050698, with α = 0, δ = 0.
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Manifolds

Sun-Jupiter: unstable manifold orbits for δ ∈ [−π
2
, π

2
], with β = 0.05, α = 0.1.
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Manifolds
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Course demo : Solar-Sail/Sun-Jupiter/Libration/Manifolds

Some connecting orbits for α = 0.07 and varying β and δ.
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Course demo : Solar-Sail/Sun-Jupiter/Orbits

V1-orbits with β = 0.15, T = 6.27141, δ ∈ [0 , 0.6415] .
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