
1

Improved Data Partitioning For
Building Large ROLAP Data Cubes in Parallel

Ying Chen

Dalhousie University

Halifax, Canada

ychen@cs.dal.ca

Frank Dehne

Carleton University

Ottawa, Canada

www.dehne.net

frank@dehne.net

Todd Eavis

Concordia University

Montreal, Canada

eavis@cs.concordia.ca

A. Rau-Chaplin

Dalhousie University

Halifax, Canada

www.cs.dal.ca/ arc

arc@cs.dal.ca

Abstract
The pre-computation of data cubes is critical to improving the response time of On-Line Analytical Processing

(OLAP) systems and can be instrumental in accelerating data mining tasks in large data warehouses. However,

as the size of data warehouses grows, the time it takes to perform this pre-computation becomes a significant

performance bottleneck.

This paper presents an improved parallel method for generating ROLAP data cubes on a shared-nothing

multiprocessor based on a novel optimized data partitioning technique. Since no shared disk is required, our

method can be used for highly scalable processor clusters consisting of standard PCs with local disks only,

connected via a data switch. The approach taken, which uses a ROLAP representation of the data cube, is well

suited for large data warehouses and high dimensional data, and supports the generation of both fully

materialized and partially materialized data cubes.

We have implemented our new parallel shared-nothing data cube generation method and evaluated the impact

of our novel optimized data partitioning technique. The experiements show a significant performace

improvement. As a result, our new optimized parallel data cube generation method achieves close to optimal

speedup for as many as 32 processors, generating a full data cube for a fact table with 16 million rows and 8

attributes in under 7 minutes. For a fact table with 256 million rows and 8 attributes, our improved method

reaches optimal speedup for 32 processors, generating a full data cube consisting of ≈ 7 billion rows (200

Gigabytes) in under 88 minutes. In comparison with previous approaches, our new method does significantly

improve the scalability with respect to both, the number of processors and the I/O bandwidth (number of

parallel disks).

Keywords: Data Cube, ROLAP, Parallel Computing.

2

INTRODUCTION

The pre-computation of the different views (group-bys) of a data cube, i.e. the forming of

aggregates for every combination of GROUP-BY attributes, is critical to improving the

response time of On-Line Analytical Processing (OLAP) queries in decision support

systems and can be instrumental in accelerating data mining tasks in large data warehouses

(Han, et.al., 1996). As the size of data warehouses grows, the time it takes to perform this

pre-computation becomes a significant performance bottleneck, one which may stretch into

days in the very largest cases (Microsoft, 2001). This paper presents an improved parallel

method for generating ROLAP data cubes on shared-nothing multiprocessors, based on a

novel optimized data partitioning technique. Since no shared disk is required, this method

can be applied to highly scalable processor clusters consisting of standard PCs with local

disks, connected via a high bandwidth (Ethernet) switch. Parallelism based on such shared-

nothing machines is an attractive solution to improving system performance especially in

the context of large data warehouses where scaling I/O bandwidth to disk is as important as

scaling computational resources.

For a given raw data set, R, with N records and d attributes (dimensions), a view is

constructed by an aggregation of R along a subset of attributes. As proposed in (Gray, et.al.,

1997), the pre-computation of the full data cube (the set of all 2d possible views) or a partial

data cube (a subset of all 2d possible views) supports the fast execution of subsequent

OLAP queries. Many methods have been presented for generating the data cube on

sequential (Beyer & Ramakrishnan, 1999; Harinarayan, et.al., 1996; Ross & Srivastava,

1997; Sarawagi, et.al., 1996; Yu & Lu, 2001; Zhao, et.al., 1997) and parallel systems

(Chen, et.al. 2004; Dehne, et.al. 2001; Dehne, et.al. 2002; Goil & Choudhary, 1997; Goil &

Choudhary, 1999; Lu, et.al., 1997; Muto & Kitsuregawa, 1999; Ng, et.al., 2001). For

parallel data cube construction, good data partitioning is a key factor in obtaining good

performance on shared nothing multiprocessors. Some researchers partition data on one or

several dimensions (Goil & Choudhary, 1998; Muto & Kitsuregawa, 1999). They assume

that the product of the cardinalities of these dimensions is much larger than the number of

processors (Goil & Choudhary, 1998) in order to achieve sufficient parallelism. The

advantage of their method is that they do not need to merge views across the network.

However, in practice, this assumption is often not true. The cardinality of some dimensions

may be small, such as gender, months and intervals for a numeric attribute. Therefore, those

methods are often not scalable. One approach which avoids these problems is to partition on

3

all dimensions and then apply a parallel merge procedure (Chen, et.al. 2004). The challenge

here is that merge procedures based on fixed data partitioning schemes often lead to excess

inter-processor communications which may greatly reduce the speedup achieved by the

parallel system and limit its effective scalability.

In this paper, we describe and evaluate a novel optimized data partition scheme for

parallel ROLAP data cube generation which improves significantly on our previous result in

(Chen, et.al. 2004) and outperforms all previously reported parallel data cube generation

methods. Our new dynamic data partitioning scheme adapts to both, the current data set and

the performance parameters of the parallel machine. Using this scheme, data cube

generation tasks involving millions of rows of input, which take days to perform on a single

processor machine, can be completed in just hours on a 32 processor cluster. We have

performed an extensive performance evaluation of our new method, exploring relative

speedup, scaleup, sizeup, output sizes and data skew. For our experiments, our new

optimized data partitioning method results in approximately twice the speedup achieved

with our previous fixed data partitioning scheme (Chen, et.al. 2004) which had already

outperformed all previously reported parallel data cube generation methods (Dehne, et.al.

2002; Chen, et.al. 2004). Our new optimized data partition scheme exhibited optimal, linear,

speedup for full cube generation on as many as 32 processors, as well as excellent sizeup

and scaleup behavior. For example, for a fact table with 16 million rows and 8 attributes,

our parallel data cube generation method achieves close to optimal speedup for 32

processors, generating a full data cube in under 7 minutes. For a fact table with 256 million

rows and 8 attributes, our parallel method achieves optimal speedup for 32 processors,

generating a full data cube consisting of ≈ 7 billion rows (200 Gigabytes) in under 88

minutes.

In comparison with previous approaches, our new method has a significantly better

scalability with respect to the number of processors. Optimal speedup for as many as 32

processors was not observed for any previous parallel method (Chen, et.al. 2004; Dehne,

et.al. 2001; Dehne, et.al. 2002; Goil & Choudhary, 1997; Goil & Choudhary, 1999; Lu,

et.al., 1997; Muto & Kitsuregawa, 1999; Ng, et.al., 2001). In addition, because of its shared

nothing approach, our new method does also significantly improve the scalability with

respect to the I/O bandwidth (number of parallel disks) which is of great importance for

handling large data sets.

The remainder of this paper is organized as follows. In the following section we review

the global structure of our algorithm which is similar to (Chen, et.al. 2004). We then present

4

in detail our new optimized data partitioning method, the main contribution of this paper.

The performance improvement achieved by our new optimized method is discussed in the

subsequent sections.

PARALLEL DATA CUBE CONSTRUCTION FOR SHARED-
NOTHING MULTIPROCESSORS

We first review the global structure of our parallel data cube construction algorithm for

shared-nothing multiprocessors, which is similar to (Chen, et.al. 2004). Consider a raw data

set R with N rows and d attributes D1, …, Dd. Without loss of generality, let

|D1|≥|D2|≥...≥|Dd|, where |Di| is the cardinality for dimension Di, 1≤i≤d (i.e. the number of

distinct values for dimension Di). Let S be the set of all 2d view identifiers. Each view

identifier consists of a subset of {D1, D2 ... Dd}, ordered by the cardinalities of the selected

dimensions (in decreasing order). Alternatively, S could also be a subset of the 2d view

identifiers selected by the users. We refer to the latter case as partial data cube construction.

As input, we assume that the raw data set, R is evenly distributed over the p disks as shown

in Figure 1b. The goal is to create a data cube DC containing the views in S. We assume

that, when the algorithm terminates, every view is distributed evenly across the p disks as

shown in Figure 1b. It is important to note that, for the subsequent use of the views by

OLAP queries, each view needs to be evenly distributed across all disks in order to achieve

maximum I/O bandwidth for subsequent parallel disk accesses.

(a) (b)

Figure 1: (a) Shared-Nothing Multiprocessor. (b) Data Partitioning.

The basic communication operation used by our parallel data cube algorithm is the h-

relation (method MPI_ALL_TO_ALL_v in MPI). In addition, our method uses two basic

5

sequential local disk operations, applied by each processor to its local disk: (1) linear scan

and (2) external memory sort (Vitter, 2001). For a processor Pj with local memory size M

and a local disk with block transfer size B, a linear scan through a file of size N stored on its

disk requires O(N/B) block transfers between disk and memory while an external memory

sort of that file requires O(N/B log M/B(N/B)) block transfers (Vitter, 2001). We will present

our method for a shared-nothing multiprocessor with one local disk per processor Pj.

However, it is easy to generalize our methods for machines with multiple local disks per

processor by applying the linear scan and external memory sort methods for a single

processor with multiple local disks presented in (Vitter & Shriver, 1994).

Let Si⊂ S be the subset of view identifiers in S that start with Di, and let DCi be the data

cube for Si. DCi is called the i-subcube and the view Di...Dd is referred to as Rooti; see

Figure 2. As discussed above, all data sets are distributed over the p disks of the p

processors as shown in Figure 1b. We refer to the part of a data set stored on processor Pj as

its j-partition. The j-partitions of R, DCi, and Rooti are denoted as Rj, DCij, and Rootij,

respectively.

Algorithm 1 describes the global structure of our parallel data cube construction

algorithm for shared-nothing multiprocessors. The algorithm consists of d iterations i=1...d.

In iteration i, the i-subcube DCi is created in five main steps: Computing Rooti, computing

the schedule tree Ti, optimizing the partitioning of Rooti into Rooti1 ... Rootip, computing

the local DCij from each Rootij, and merging the DCij to obtain the correct i-subcube DCi.

Figure 2: Subcubes of a data cube for d=4.

Dimensions are labelled D1=“A”, D2=“B”, D3=“C”, D4=“D”.

6

Algorithm 1: Parallel-Shared-Nothing-Data-Cube

 INPUT: R, the raw data set; N, the number of rows in R; d, the number of attributes;

p, the number of processors; S, the set of views to be generated. Every processor Pj

(1<j<p) stores on its disk a set Rj of N/p rows of R.

 OUTPUT: DC, the data cube distributed over the p processors. Each view is evenly

distributed over the p processors’ disks.

1: FOR i=1 to d

2: Compute Rooti via a parallel global sort of Rooti-1 by key Di, …, Dd, where

Root0=R. As a result, each processor Pj stores a j-partition, Rootij, of Rooti.

3: Processor P0 generates and broadcasts the schedule tree, Ti, for computing Si

from Rooti.

4: Execute Optimize-Partition(Rooti) to obtain an optimized partitioning of Rooti

into Rootij, 1≤j≤p.

5: Every processor Pj (1<j<p) locally computes DCij from its Rootij using the

schedule tree Ti.

6: Execute Merge-Subcube(DCi) to obtain the correct i-subcube DCi.

7: END FOR

In the remainder of this section, we present further details for Step 3 (how the schedule tree

Ti is built) and Step 6 (how locally generated i-subcubes are merged) of Algorithm 1. Step

4, the optimized data partitioning, which is the main contribution of this paper, will be

discussed in the next section.

In Step 3, our parallel algorithm uses as a building block a standard sequential top-down

data cube method such as Pipesort (Sarawagi, et.al., 1996). Such methods have in common

that they consist of a two-phase approach. In the first phase, a schedule tree T is constructed

which is a subgraph of the lattice and contains as nodes the identifiers of all views to be

constructed. Recall that view v is a parent of a view v' if v can be created from v'. The

schedule tree T identifies the sequence in which the views are to be constructed in the

second phase. The main difference between the various top-down data cube methods is the

schedule tree T that they build. For example, Pipesort starts with the lattice and assigns to

every view identifier an estimate of the size of the respective view (Flajolet & Martin, 1985;

Shukla, et.al., 1996). It then computes the cost of the aggregate operation associated with

each edge of the lattice. The schedule tree T is then built by scanning the lattice level by

level and computing for each two subsequent levels of nodes, and the edges between them,

7

a minimum cost bi-partite matching. We use Pipesort to compute the schedule tree Ti in

Step 3 of Algorithm 1 if all 2d views are to be computed. For building the partial data cube,

i.e. a subset of the 2d possible views, we use a modified schedule tree construction method

presented in (Dehne, et.al. 2003).

We now discuss how locally generated i-subcubes are merged in Step 6. In Step 5 of

Algorithm 1, each processor Pj locally computes DCij from its local Rootij. For a view v of

Si, let vj be the local view created by processor Pj. We need to merge, for each view v in Si,

the p different views vj created on the p different processors Pj. Consider Algorithm 1 for

i=1 and the 1-subcube shown in Figure 2. In Step 2 of Algorithm 1, Root0=R is globally

sorted by ABCD. In Step 5, each processor Pj computes locally the cube DC1j from its data

set Root0j. Consider the views ABCDj, ABCj, ABj, and Aj computed in Step 5. All these

views are in the same sort order as the global sort order created in Step 2 because they are a

prefix of ABCD. We shall refer to these views as the prefix views. The other views, ABDj,

ACj, ACDj and ADj, are not a prefix of ABCD and are therefore in a sort order that is

different from the global sort order. We shall refer to them as the non-prefix views.

Figure 3: Illustration of cases for Merge-Subcube(DCi).

Consider a prefix view v and the problem of merging v1, ..., vp stored on processors P1,

..., Pp. For example, consider the view v = AB in Figure 2 and the problem of merging AB1,

..., ABp. The goal is to obtain a global AB sort order for AB1∪ AB2...∪ ABp and then

agglomerate those items that have the same values for dimensions A and B. Since AB is a

prefix of the global sort order, ABCD, the first part is already done and the only items that,

potentially, need to be agglomerated are the last item of vj and the first item if vj+1 for each

8

1≤j<p. For each prefix view v every processor Pj+1 simply sends the first item of vj+1 to

processor Pj which compares it with the last item of vj. Nothing else needs to be done in

order to merge all vj. Figure 3 illustrates the case of a prefix view v as “Case 1”.

We now study the case of merging the views v1, ..., vp stored on processors P1, ..., Pp

for a non-prefix view v. For example, consider the view v=AC in Figure 2 and the problem

of merging AC1, ..., ACp. Again, the goal is to obtain a global AC sort order for

AC1∪ AC2...∪ ACp and then agglomerate those items that have the same values for

dimensions A and C. However, AC is not a prefix of ABCD and, therefore, the different vj

can have considerable overlap with respect to the AC order. Figure 3 illustrates the case of a

non-prefix view v as “Case 2” and “Case 3”. The rectangles represent the vj with respect to

AC order. The shaded areas represent the overlap which, in contrast to Case 1 (prefix view),

can now be considerably more than just one element. We distinguish between a small

overlap (Case 2) and large overlap (Case 3), depending on whether the overlap is smaller or

larger than an experimentally chosen threshold value γ, respectively.

For each non-prefix view v, every processor Pj sends its first and last element to every

other processor. Each processor Pk then determines its overlap with each Pj and sends that

overlap to Pj. For each processor Pj let v'j be the view vj plus all the overlap received by

processor Pj. We distinguish two cases which are both illustrated in Figure 3. The

distinguishing criterion is the imbalance between the v'j defined as I(|v’1|,|v’2|, …, |v’p|) =

max{(rmax- ravg)/ravg , (ravg-rmin)/ravg}, where rmin, rmax, and ravg are the minimum,

maximum and average of {|v’1|,|v’2|, …, |v’p|}, respectively. Case 2: IF I(|v’1|,|v’2|, …, |v’p|)

≤ γ for a non-prefix view v THEN each Pj locally sorts v'j and agglomerates the items with

same values for dimensions in v. Case 3: IF (|v’1|,|v’2|, …, |v’p|) > γ for a non-prefix view v

THEN the vj are merged by a global sort.

If the imbalance is smaller than γ (Case 2) then we proceed similar to Case 1. If the

imbalance is larger than γ (Case 3) then we need to completely re-balance via a global sort.

In fact, for Case 3 we do not wish to even route the overlap between processors. We rather

re-sort immediately. Hence, in order to determine whether Case 2 or Case 3 applies, each

processor Pk first determines the size of its overlap with each Pj and sends only the

information about the size of that overlap to Pj.

9

A NEW OPTIMIZED DATA PARTITIONING METHOD

Good data partitioning is a key factor in obtaining good performance on shared nothing

multiprocessors. Some researchers partition data on one or several dimensions (Goil &

Choudhary, 1998; Muto & Kitsuregawa, 1999). They assume that the product of the

cardinalities of these dimensions is much larger than the number of processors (Goil &

Choudhary, 1998), in order to achieve sufficient parallelism. The advantage of their method

is that they do not need to merge views across the network. For examples, if we partition on

A, then ABC and AC do not need to be merged, or if we partition on A and B, then ABC and

ABD do not need to be merged. However, in practice, this assumption is often not true. The

cardinality of some dimensions may be small, such as gender, months and intervals for a

numeric attribute. The number of processors in a parallel machine may be large, especially

in clusters of workstations. Therefore, those methods are often not scalable. Our approach

avoids these problems by partitioning on all dimensions and then applying a parallel merge

procedure (Chen, et.al. 2004). The challenge here is that merge procedures based on fixed

data partitioning schemes (Chen, et.al. 2004) often lead to excess inter-processor

communications which may greatly reduce the speedup achieved by the parallel system and

hence its effective scalability. In this paper, we improve on the results in (Chen, et.al. 2004)

and present an optimized and dynamic data partition scheme for ROLAP data cube

generation. This new dynamic data partitioning scheme adapts to both, the current data set

and the performance parameters of the parallel machine. Our performance results show that

our new partitioning scheme yields a significant performance and scalability improvement.

Our partitioning scheme adapts to the performance parameters of the parallel hardware.

For a given parallel machine, we consider four performance parameters tcompute, tread, twrite

and tnetwork defined as follows: tcompute is the average time in microseconds to

fetch/compare/store a data item in main memory; tread is the average time in microseconds

to read a data item from disk; twrite is the average time in microseconds to write a data item

to disk; tnetwork is the average time in microseconds for communicating a data item between

processors. For heterogeneous parallel machines (e.g. clusters with different generations of

processors), the parameters tcompute, tread and twrite can differ between processors. In this

case, we choose the parameters for the slowest processor. The parameter tnetwork depends

on both, the network hardware and the number of processors used. Based on the above four

parameters, we devise a cost model to estimate the time for communication and

computation, and determine the best data partitioning for Algorithm 1. Before starting

10

Algorithm 1, our software enters a test phase where it measures automatically the

parameters tcompute, tread, twrite and tnetwork for the given machine.

After the i-th iteration of Step 2 of Algorithm 1, the j-partitions of Rooti are well

balanced over processors Pj (1≤j≤p). However, as a result of the global sort, subsequent

items with the same sort key may end up on two different (subsequent) processors. This is

especially the case when the cardinality of some dimensions are small, such as for attributes

like gender, months and intervals for a numeric attribute. The situation is illustrated in

Figure 4 for an attribute “A” with attribute values a1,a2,...,a10. When the data is sorted by

“A” in Step 2, each processor receives a range of data as indicated. Consider the range of

items with value a4. Some items are on Processor 1 and some are on Processor 2. The

problem is that during the merging of subcubes in Step 6 of Algorithm 1, data movement

occurs because Processor 2 has to send its items with value a4 to Processor 1. Instead, we

could have made a4 the dividing line between the data between Processors 1 and 2 and

moved all items with value a4 to Processor 2. We call this process “pivoting” and refer to

a4 as the pivot. If we choose a4 as a pivot, then no data will have to be transferred between

Processors 1 and 2 during the merging of subcubes in Step 6 of Algorithm 1. However, on

the negative side, choosing a4 as a pivot introduces an imbalance in data size between

Processors 1 and 2, and other steps of Algorithm 1 may now have a longer computation

time because of this imbalance since the total computation time is always determined by the

slowest processor.

Figure 4: Data partitioning and pivots.

Our strategy is to choose pivots in such a way that we obtain the best tradeoff between

lower communication due to less data movement and longer computation due to imbalance.

We build a cost model to measure the impact of each possible pivot and choose the one with

the lowest cost. We iterate this process until the total cost can be no further reduced.

We now present in detail our cost model and its impact on the performance of

Algorithm 1 for a chosen set of pivots. We will later discuss how to select pivots. Note that

11

Steps 2 and 3 are not impacted by pivots and, hence, our model measures only the

performance of Step 4 (shifting partitions), Step 5 (computing cubes), and Step 6 (merging

cubes).

An important factor to be taken into consideration is the impact of external memory. For

our implementation of Algorithm 1, views that are small enough to fit into main memory

are created in memory for better speed, while larger views are built in external memory

through disk scan and external memory sort. In order to determine which version is used at

run time, we define a maximal number of records, nmax. If the number of records of a view

is smaller than nmax, we calculate the cost according to a formula for internal memory

computation. Otherwise, we calculate the cost according to a formula for external memory

computation. For example, if nmax is 1,000,000, view ABCD has 2,000,000 records and

view ABC has 500,000 records, then we process ABC in main memory using the internal

memory cost calculation and process ABC in external memory using the external memory

cost calculation.

To calculate the cost of Steps 4-6 of Algorithm 1 for each view v, we use two basic

numbers for each processor: n, the number of records stored at the processor and m, the

number of moved records. Figure 4 illustrates n and m for Processor 2. The n and m values

for Rooti are obtained through a local linear scan. For every other view v in DCi, we

estimate values nest and mest as follows: Set n to the estimated view size calculated in Step 3

of Algorithm 1. Set m = mRooti / nRooti where nRooti and mRooti are the n and m values for

Rooti, respectively. Note that, a record is composed of d feature attributes and 1 measure

attribute so that the size of a record is proportional to d+1.

We are now ready to analyze Steps 4 to 6 of Algorithm 1. For each step, we will give

the cost for internal and external memory calculation and outline our rationale for the given

formulas.

Step 4. Scanning: n(d/2) tcompute (internal memory), n(d+1) tread + n(d/2) tcompute (external

memory). Exchanging: m(d+1) tnetwork (internal memory), m(d+1) tnetwork (external memory).

Merging: n(d/2) tcompute (internal memory), n(d+1) twrite + n(d/2) tcompute (external memory).

Rationale: Step 4 in Algorithm 1 shifts partitions of root views among processor. It consists

of three sub-steps: scanning data, exchanging data and merging data. Each processor scans

the local data and compares each row with the pivots considered. To compare a row with a

pivot, we compare attribute values one by one. In the best case, only one comparison is

needed, and d comparisons in the worst case, where d is the number of attributes. The

average number of comparisons is d/2. In the external memory version, the cost for reading

12

data from disk is n(d+1) tread, where n(d+1) is the number of items in Rooti since each row

contains d+1 items. In both versions, the communication cost is m(d+1) tnetwork, where

m(d+1) is the number of items moved across the network. The cost of the last sub-step is

n(d/2) tcompute. For the merging, the number of comparisons is a function of both, n and m.

However m is much smaller than n and we ignore m in order to simplify calculations. In the

external memory version, the cost for writing the data to disks is n(d+1) twrite. Note that, this

is also an approximation since data is also exchanged between processors.

Step 5. Sorting: n log n tcompute + n(d/2) tcompute (internal memory), n(d+1) tread + n log n

tcompute + n(d/2) tcompute (external memory). Scanning: n(d+1) tcompute (internal memory),

n(d+1) twrite + n(d+1) tcompute (external memory). Rationale: Step 5 of Algorithm 1 calculates

the schedule tree used to generate the views. As described in (Sarawagi, et.al., 1996), we

compute pipelines one by one. For each pipeline, the first view is sorted and the remaining

views are generated by scanning. For example, in Figure 2, the schedule tree for the 1-

subcube consists of a pipeline ABCD→BCD→BC→B. The cost of sorting is n log n tcompute

+ n(d/2) tcompute (Dehne, et.al. 2003) for the internal memory version. The external memory

version includes an additional cost for disk reading: n(d+1) tread. The cost for scanning is

n(d/2) tcompute for the internal memory version, plus n(d+1) twrite for the external memory

version.

Step 6. Scanning: n(d/2) tcompute (internal memory), n(d+1) tread + n(d/2) tcompute (external

memory). Exchanging: m(d+1) tnetwork (internal memory), m(d+1) tnetwork (external memory).

Merging: n(d/2) tcompute (internal memory), n(d+1) twrite + n(d/2) tcompute (external memory).

Rationale: Step 6 of Algorithm 1 merges i-subcubes between processors. The cost

calculation is analogous to the calculation for Step 4.

Based on the above cost model, we evaluate possible partitionings and choose an

optimal partitioning with minimum cost. Algorithm 2 shows our method to select a set of

pivots and shift current partitions. The function Cost() represents the cost function for a

given set of pivots as discussed above. Algorithm 2 first calculates the cost of the

partitioning generated by Steps 2 and 3 of Algorithm 1 without any pivots. We then select

pivots, calculate the cost based on those pivots and update the partitioning if the new cost is

smaller than the old one. This process will continue until the cost can not be reduced any

further. Unfortunately, the number of possible pivot combinations is very high. For p

processors, the maximum number of possible pivots is p-1. Each pivot can either be not

selected or selected for its left adjacent processor (all data move left) or selected for its right

adjacent processor (all data move right). Therefore, the total number of possible data

13

partitionings is 3p-1. If we have 32 processors in a cluster, the total number of partitionings

is 332-1 = 617,673,396,283,947. In Algorithm 2, we choose a greedy method to reduce the

cost as much as possible. In each iteration of the repeat-until loop we choose the pivot

which generates the greatest cost reduction among all possible remaining pivots. We update

the partitioning and the cost, and search again until we cannot reduce the cost further by

adding another pivot. Algorithm 2 then re-partitions Rooti, using the chosen set of pivots.

Algorithm 2: Optimize-Partition(Rooti)

1: Each processor Pj collects locally, for its data set Rootij, the partitioning information

(pivots and their n, m values) required for the evaluation of the function Cost(). The

partitioning information is broadcast to all processors.

2: Each processor Pj computes cost=Cost(current partition without pivots).

3: done = FALSE.

4: REPEAT

5: FOR each processor Pj in parallel

6: Processor Pj calculates the new cost cost
new
j obtained by adding pivot j,

(moving the respective data to the left or right processor, whichever is lower

cost).

7: ENDFOR

8: Let costnew = Min(cost
new
1 , cost

new
2 , ...,cost

new
p-1)

9: IF costnew<cost

10: update partition by adding the chosen pivot.

11: cost=costnew

12: ELSE

13: done = TRUE

14: ENDIF

15: UNTIL done

16: Rooti is re-partitioned using the chosen set of pivots.

14

EXPERIMENTAL EVALUATION OF OUR NEW
OPTIMIZED DATA PARTITIONING METHOD

In this Section, we analyze the performance gain obtained by our new optimized data

partitioning method in comparison to (Chen, et.al. 2004).

We have implemented our optimized data partitioning method for shared-nothing data

cube generation using C++ and the MPI communication library. This implementation

evolved from (Chen, et.al. 2004), the code base for a fast sequential Pipesort (Dehne, et.al.

2002) and the sequential partial cube method described in (Dehne, et.al. 2003). Most of the

required sequential graph algorithms, as well as data structures like hash tables and graph

representations, were drawn from the LEDA library (LEDA, 2001).

Our experimental platform consists of a 32 node Beowulf style cluster with 16 nodes

based on 2.0 GHz Intel Xeon processors and 16 more nodes based on 1.7 GHz Intel Xeon

processors. Each node was equipped with 1 GB RAM, two 40GB 7200 RPM IDE disk

drives and an onboard Inter Pro 1000 XT NIC. Each node was running Linux Redhat 7.2

with gcc 2.95.3 and MPI/LAM 6.5.6. as part of a ROCKS cluster distribution. All nodes

were interconnected via a Cisco 6509 GigE switch.

Our implementation of Algorithm 1 initially runs a performance test to calculate the key

machine specific cost parameters, tcompute, tread, twrite and tnetwork, that drive our optimized

dynamic data partitioning method. On our experimental platform these parameters were as

follows: tcompute=0.0293 microseconds, tread = 0.0072 microseconds, twrite=0.2730

microseconds. The network parameter, tnetwork, captures the performance characteristics of

the MPI operation “MPI_ALL_TO_ALL_v” on a fixed amount of data relative to the

number of processors involved in the communication. On our experimental platform,

tnetwork = 0.0551, 0.0873, 0.1592, 0.2553, 0.4537, and 0.5445 microseconds for p = 2, 4, 8,

16, 24, and 32, respectively.

In our experiments all sequential times were measured as wall clock times in seconds.

All parallel times were measured as the wall clock time between the start of the first process

and the termination of the last process. We will refer to the latter as parallel wall clock time.

All times include the time taken to read the input from files and write the output into files.

Furthermore, all wall clock times were measured with no other users on the machine.

Figure 5 shows for full cube construction the parallel wall clock time observed for data

sets of N=8 million records, with and without optimized data partitioning, as a function of

the number of processors used. Figure 6 shows the corresponding relative Sp for p

15

processors defined as Sp = t1 / tp, where t1 is the running time of the parallel program using

one processor (all communication overhead having been removed from the program) and tp

is the running time using p processors.

The main observation is that optimized data partitioning leads to a significant

improvement in speedup and scalability. Without our new optimization method, relative

speedup hovers around 50% of optimal. With our new optimization method, we obtain

linear (i.e. optimal) relative speedup for as many as 30 processors. This is an impressive

improvement in speedup and scalability.

Throughout these experiments, as we increased the number of processors we observed

two countervailing trends. Increasing processors, while holding total data size constant,

leads to less data per processor and therefore better relative speedup because each processor

can fit more of its data in memory, thereby reducing disk related overheads. On the other

hand, using standard GigE switches and a standard MPI implementation, increasing the

number of processors reduces the speed of communication, even when total data size

communicated is held constant, and therefore tends to reduce relative speedup. The slight

super linear effects observed for example at 16 processors in Figure 6 result when the

benefits of fitting data in memory outweigh the penalties associated with higher

communication overheads.

Figure 7 shows for full cube construction with optimized partitioning the parallel wall

clock time in seconds on a p=32 node cluster as a function of the data size N = 16M, 32M,

48M, 64M, 128M, and 256M records. We observe that, with optimized partitioning, when

we double the input size of the cube being generated at most twice the time is required. This

holds true even for extremely large cubes where the input consists of 256 million rows of

data (9.2 Gigabytes) and the output consists of a data cube consisting of 2d views containing

a total of ≈ 7 billion rows (200 Gigabytes), despite the fact that we are not scaling network

bandwidth, in large part because of the improved data balance.

16

Figure 5: Parallel wall clock time in seconds as a function of the number of processors

with and without optimized data partitioning.

Figure 6: Relative speedup corresponding to Figure 5.

17

Figure 7: Parallel wall clock time in seconds as a function of the data size N = 16M,

32M, 48M, 64M, 128M, and 256M records.

IN DEPTH TESTING OF OUR NEW PARALLEL DATA
CUBE COSTRUCTION METHOD

In this section, we report in more detail on how our new parallel data cube construction

method performed under various loads and conditions in order to further illuminate its

strengths and weaknesses.

For this series of experiments we generated a large number of synthetic data sets which

varied in terms of the following parameters: N - number of records, d - number of

dimensions, |D1|, |D2|, …, |Dd| - cardinality in each dimension, and α1, α2, …, αd - skew in

each dimension. Unless otherwise stated, the following defaults were used for these

parameters: dimensions d = 8, cardinalities |Di| = 256, 128, 64, 32, 16, 8, 4, 2, skew α=0 in

all dimensions, and percentage of views selected k = 100%.

Relative Speedup

Speedup is one of key metrics for evaluation of parallel database systems (DeWitt & Gray,

1992) as it indicates the degree to which adding processors decreases the running time.

Figure 8 shows for full cube construction the parallel wall clock time observed for data sets

of varying sizes as a function of the number of processors used, and Figure 9 shows the

18

corresponding relative speedup. As is typically the case, relative speedup improves as we

increase the size of the input and hence the total amount of work to be performed. For N =

8,000,000 records, optimal linear relative speedup can be observed all the way up to 32

processors, while for fewer N = 1,000,000 records speedup drops off beyond 4 processors.

In general, linear speedup is observed when there are at least N/p = 250,000 records per

processor.

Figure 8: Parallel wall clock time in seconds as a function of the number of processors

for data of size N = 1M, 2M, 4M and 8M records.

Figure 9: Relative speedup corresponding to Figure 8.

19

Partial Cubes

In many applications, users do not require all of the 2d views contained in a full data cube

but rather only a selected subset. The challenge for a partial cube generation method is to

efficiently construct the set of selected views, maintaining relative efficiency even as the

number of views (and therefore total work) is decreased. Figure 10 shows for partial cube

construction the parallel wall clock time observed for a range of different percentages of

selected views as a function of the number of processors, and shows Figure 11 the

corresponding relative speedup. Note that near optimal speedup is achieved for a range of

different percentages of selected views up to 16 processors. Beyond that there is a reduction

in speedup for smaller sets of selected views, in large part because there is simply not

enough work to keep all of the processors busy.

Figure 10: Parallel wall clock time in seconds as a function of the number of processors

for partial cubes with percentage of selected views k= 100%, 75%, 50%, and 25%.

20

Figure 11: Relative speedup corresponding to Figure 10.

Scaleup

Scaleup is another key metric for the evaluation of parallel database systems (DeWitt &

Gray, 1992). It indicates whether a constant running time can be maintained as the workload

is increased by adding a proportional numbers of processors and disks. Figure 12 shows for

full cube construction the parallel wall clock time observed as a function of the number of

processors used when N/p=0.125M, 0.25M, 0.5M, and 1M records per processor. Overall,

we observe good scaleup. Initially, when we double the number of processors and double

the size of the input, we observe a better than linear scaleup for all curves in Figure 12. This

is due to the fact that we are keeping the cardinalities of attributes constant as we increase

the data size and therefore the relative density of the data cube is increasing, which is

beneficial for top-down generation methods (Agarwal, et.al. 1996; Sarawagi, et.al., 1996).

This increase in relative density leads to more agglomeration and therefore a smaller output

data size per processor, as illustrated in Figure 13. However, this effect is offset by the fact

that the network bandwidth is not being scaled as we increase the total input size N. As we

increase the data size per processor, more data has to be moved across the network as can be

seen in Figure 13. When the total input size N is greater than 8M records, network

congestion on our switch begins to degrade the scaleup performance. However this effect

can be observed to flatten out after N reaches 16M records.

21

Figure 12: Scaleup for data size of N/p = 1M, 0.5M, 0.25M and 0.125M records per

processor.

Figure 13: Output sizes per processor for input of N/p = 1M records per processor.

Sizeup

Sizeup is similar to scaleup but considers the number of processors fixed. It indicates

whether a proportional running time can be maintained as the workload is increased. The

sizeup for x units of workload is defined as Ux=
tx
t1

, where t1 is the running time of one unit

workload and tx is the running time of x unit workload. An ideal Ux is x, which implies that

x units of workload costs x times more time than one unit of workload. Hence, the curve for

22

ideal sizeup is a linear diagonal. Figure 14 shows for full cube construction the sizeup

observed for data sets between 1 and 8 million records using between 1 and 32 processors.

We observe that the sizeup curves are all approximately linear. The actual slope of the

curves is determined by the percentage of the parallel overhead for fixed p when N =

1,000,000. Figure 15 shows for full cube construction the relative sizeup observed for data

sets between 1 and 256 million records on p=32 processors. Even with these large data sets

we observe good sizeup performance.

Figure 14: Relative sizeup for data sizes N=1M to 8M records on p=1 to 32 processors.

Figure 15: Relative sizeup for p=32 and input data of size N = 16M, 32M, 48M, 64M,

128M, and 256M records. Corresponds to Figure 7.

23

Data Skew

Data sets with skewed distributions can pose an interesting challenge to parallel data cube

generation methods. As skew increases, data reduction tends to increase, particularly in top-

down generation methods (Agarwal, et.al. 1996; Sarawagi, et.al., 1996). Data reduction is

typically positive, as it reduces the total amount of work to be performed. However, if data

reduction is large and unevenly spread across the processors it may unbalance the parallel

computation and cause the amount of data that has to be communicated to rise sharply. To

explore this issue we generated data sets using the standard ZIPF (Zipf, 1949) distribution

in each dimension with α=0 (no skew) to α=2 (high skew). Figure 16 shows for cube

construction the parallel wall clock time observed as a function of the skew for α=0,1,2, and

Figure 17 the corresponding relative speedup. We observe that, in general, as skew is

increased parallel time decreases due to data reduction and decreased local computation.

Our data partitioning optimization appears to handle gracefully the resulting data imbalance

by shifting data appropriately. However, if this data reduction is very large, as for α=2, it

reduces the opportunities for speedup as there is simply much less work to be parallelized.

Figure 16: Parallel wall clock time in seconds as a function of the skew for α=0,1,2.

24

Figure 17: Relative speedup corresponding to Figure 16.

Cardinalities of Dimensions

The cardinalities of the different dimensions in a data set can affect the performance of our

algorithm. As cardinalities increase so does the sparsity of the data set and this may

adversely effect parallel time especially given that top-down methods (Agarwal, et.al. 1996;

Sarawagi, et.al., 1996) are designed primarily for dense data cubes. Curves A, B and C of

Figure 18 clearly illustrate this effect. The sparser data sets require significantly more time,

although, as can be seen in Figure 19, this has a positive effect on the relative speedup

achieved.

25

Figure 18: Parallel wall clock time in seconds as a function of the number of processors

for data sets with different cardinality mixes (A)|Di| = 256, 256, 256, 256, 256, 256, 256,

256. (B)|Di| = 256, 128, 64, 32, 16, 8, 4, 2. (C)|Di| = 32, 32, 32, 32, 32, 32, 32, 32.

Figure 19: Relative speedup corresponding to Figure 18.

CONCLUSION

In this paper, we present an optimized data partitioning method for parallel ROLAP data

cube construction on shared-nothing multiprocessors that can provide a significant

performance improvement. Our optimized data partitioning method adapts to both, the

current data set and the performance parameters of the machine. In comparison with

previous approaches, our new method has a significantly better scalability with respect to

the number of processors. Optimal speedup for as many as 32 processors was not observed

for previous parallel methods (Chen, et.al. 2004; Dehne, et.al. 2001; Dehne, et.al. 2002;

Goil & Choudhary, 1997; Goil & Choudhary, 1999; Lu, et.al., 1997; Muto & Kitsuregawa,

1999; Ng, et.al., 2001). In addition, because of its shared nothing approach, our new method

does also significantly improve the scalability with respect to the I/O bandwidth (number of

parallel disks) which is of great importance for handling large data sets.

26

ACKNOWLEDGEMENTS

This research was partially supported by the Natural Sciences and Engineering Research

Council of Canada (NSERC) and the Australian Research Council (ARC).

REFERENCES

Agarwal, S., Agarwal, R., Deshpande, P.M., Gupta, A., Naughton, J.F., Ramakrishnan, R., & Srawagi, S.
(1996) On the computation of multi-dimensional aggregates. In Proc. 22nd VLDB Conf., 506–521.

Beyer, K. & Ramakrishnan, R. (1999). Bottom-up computation of sparse and iceberg cubes. In ACM
SIGMOD Conference on Management of Data, 359–370.

Chen, Y., Dehne, F, Eavis, T.& Rau-Chaplin, A. (2004). Parallel rolap data cube construction on shared-
nothing multiprocessors. Distributed and Parallel Databases, 15: 219-236.

Dehne, F., Eavis, T., Hambrusch, S. & Rau-Chaplin, A. (2002). Parallelizing the data cube. Distributed and
Parallel Databases, 11(2): 181–201.

Dehne, F., Eavis, T. & Rau-Chaplin, A. (2001). A cluster architecture for parallel data warehousing. In Proc
IEEE International Conference on Cluster Computing and the Grid (CCGrid 2001), Brisbane, Australia.

Dehne, F., Eavis, T. & Rau-Chaplin, A. (2003). Computing partial data cubes. In Proc. HICSS-37, January,
2004, available online at http://www.cs.dal.ca/~arc/publications/2-30/paper.pdf.

DeWitt, D. & Gray, J. (1992). Parallel database systems: the future of high performance database systems.
Communications of the ACM, 35(6): 85–98.

Flajolet, P. & Martin, G.N.(1985). Probablistic counting algorithms for database applications. Journal of
Computer and System Sciences, 31(2): 182–209.

Goil, S. & Choudhary, A. (1997). High performance OLAP and data mining on parallel computers. Journal of
Data Mining and Knowledge Discovery, 1(4): 391–417.

Goil, S. & Choudhary, A. (1999). A parallel scalable infrastructure for OLAP and data mining. In Proc.
International Data Engineering and Applications Symposium (IDEAS’99), Montreal.

Goil, S. & Choudhary, A. (1998). High performance multidimensional analysis of large datasets. In
International Workshop on Data Warehousing and OLAP, pages 34–39.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D. & Venkatrao, V. (1997). Data Cube: A
relational aggregation operator generalizing group-by, cross-tab, and sub-totals. J. Data Mining and
Knowledge Discovery, 1(1): 29–53.

Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W., Koperski, K., Li, D., Lu, Y., Rajan, A., Stefanovic, N., Xia,
B. & Zaiane, O. R.(1996). DBMiner: A system for mining knowledge in large relational databases. In Proc.
1996 Int’l Conf. on Data Mining and Knowledge Discovery (KDD’96), pages 250–255, Portland, Oregon.

27

Harinarayan, V., Rajaraman, A. & Ullman, J.D. (1996). Implementing data cubes efficiently. ACM SIGMOD
Record, 25(2): 205–216.

LEDA (2001). http://www.algorithmic-solutions.com/.

Lu, H., Huang, X. & Li, Z.(1997). Computing data cubes using massively parallel processors. In Proc. 7th
Parallel Computing Workshop (PCW’97), Canberra, Australia.

Microsoft, EMC & Unisys (2001). T3 Project Technical Overview. White paper, Microsoft, EMC, and
Unisys.

Muto, S. & Kitsuregawa, M.(1999). A dynamic load balancing strategy for parallel datacube computation. In
ACM Second International Workshop on Data Warehousing and OLAP (DOLAP 1999), 67–72.

Ng, R.T. , Wagner, A. & Yin, Y. (2001). Iceberg-cube computation with pc clusters. In ACM SIGMOD
Conference on Management of Data, 25–36.

Ross, K.A. & Srivastava, D. (1997). Fast computation of sparse datacubes. In Proc. 23rd VLDB Conference,
pages 116–125.

Sarawagi, S., Agrawal, R. & Gupta, A. (1996). On computing the data cube. Technical report RJ10026, IBM
Almaden Research Center, San Jose, CA.

Shukla, A., Deshpende, P., Naughton, J.F. & Ramasamy, K. (1996). Storage estimation for mutlidimensional
aggregates in the presence of hierarchies. In Proc. 22nd VLDB Conference, pages 522–531.

Vitter, J. S. (2001). External memory algorithms and data structures: Dealing with massive data. ACM
Computing Surveys, 33(2): 209–271.

Vitter, J. S. & Shriver, E. A. M. (1994). Algorithms for parallel memory I: Two-level memories.
Algorithmica, 12(2-3): 110–147.

Yu, J.X. & Lu, H. (2001). Multi-cube computation. In Proc. 7th International Symposium on Database
Systems for Advanced Applications, 126–133, Hong Kong.

Zhao, Y., Deshpande, P.M. & Naughton, J.F. (1997). An array-based algorithm for simultaneous
multidimensional aggregates. In Proc. ACM SIGMOD Conf., 159–170.

Zipf, G.K. (1949). Human Behavior and The Principle of Least Effort. Addison-Wesley.

