
CISC 322
Software Architecture

Lecture 13:

Reflexion Models and Source

Sticky Notes

Emad Shihab
Paper by: Ahmed E. Hassan and Richard C. Holt

Slides adapted from Ahmed E. Hassan

Midterm

Group presentations

■ Tuesday
– Team Phoenix

– Fully Optimized eXperience

– Fox Bytes

– The Firey Foxes

■ Wednesday
– Volpe Inferno

– The Flaming Pandas

■ Friday
– The Fighting Mongooses

Introduction

■ Software understanding tasks represent

50-90% of maintenance efforts

■ Good documentation can help, but rarely

available

■ Some developers resort to code browsing,

but that is limited and does not scale

■ Propose to speedup understanding using

knowledge from historical modification

records

Source Sticky Notes

■ Attach change details to dependencies

between software entities

■ Determine the affect of a change on a

software’s dependency graph and attach

change details to edges of the dependency

■ Provide insight to developers about reasons

for that dependencies

Architecture Understanding

Process

Propose InvestigateCompare

Better Understanding

■ Propose conceptual architecture

■ Compare conceptual with concrete

architecture

■ Investigate gaps

Propose - Conceptual

Architecture

■ Developers propose a conceptual

architecture based on:

– Reference architecture

– System documentation

– Developer experience with similar systems

– Talking to senior developers and domain

experts

Conceptual and Concrete

Mismatch

■ However, in reality the concrete

architecture is (almost) always different

■ Need to not only discover differences, but

also uncover the rationale

Uncovering the Rationale

for the Differences

■ Uncovering the rationale is challenging
– A senior developer

• may be too busy

• may not recall the rationale for such dependency

• may no longer work on the software system

– The software
• may have been bought from another company

• may have its maintenance out-sourced

■ Developers must spend hours/days to uncover
the rationale. The rationale may be:
– Justified due to, e.g., optimizations or code reuse; or

– Not justified due to, e.g., developer ignorance or
pressure to market.

Software Reflexion Framework

Conceptual

subsystems

Mapping

source entities

to subsystems

Dependencies

between

subsystems

Extracted

source

dependencies

Conceptual

architecture

Concrete

architecture

Compare

GapsInvestigate

Propose

Investigating Gaps

DivergencesConvergencesAbsences

Concrete

View

Conceptual

View

■ Absences: rarely occur in large systems

■ Convergences: usually not a concern

■ Divergences: must investigate dependencies

4Ws when Investigating

Dependencies

Which?

■ Which concrete source code entities are

responsible for an unexpected

dependency?

Who?

■ Who introduced an unexpected dependency or
removed a missing dependency?

■ A gap due to a change made by
– a novice developer may suggest that the developer

is at fault and the change must be fixed

– a senior developer with a well established record for
producing high quality code may suggest that the
change is correct

When?

■ When was the unexpected dependency
added or the missing dependency
removed?

■ A fix to a critical bug under a tight release
schedule?

– E.g. a few days/hours before a release

■ Or is it is a justified dependency that we
should expect

Why?

■ Why was this unexpected dependency

added or why was an expected

dependency missing?

■ A knowledge of the rationale is key in

explaining the gaps

Dependency Investigation

Questions (W4 Approach)

■ Which low level code entity is responsible for
the dependency?

– Network (SendData)  Scheduler (PrintToLog)

■ Who added/removed the dependency?
– Junior vs. senior/experienced developer

■ When was the dependency modified?
– Late night / Just before release

■ Why was the dependency added/removed?
– The rationale!

Source StickyNotes

■ We are interested in

– Current and past dependencies

Source StickyNotes

■ Static dependencies give only a current
static view of the system – not enough
detail!

■ Need to extend static dependencies, but
how?

Extending Code Dependencies

■ Ask developers to fill StickyNotes for each

change

– Too time consuming and cumbersome

■ Use software repositories to build these

notes automatically

– Historical information may be hard to process

StickyNotes Recovery

■ Map code changes to entities and dependencies
instead of lines

■ Two pass analysis of the source control
repository data, to recover:

– Record all entities defined throughout the lifetime of a

project

– Record all dependencies between these entities and
attach source control meta-data

Case Study – NetBSD

■ Large long lived system with hundreds of

developers

■ Case study used to demonstrate

usefulness of the reflexion model:

– Reuse prior results! 

– Focus on investigating gaps to show the

strength of our approach

NetBSD (VMC) Conceptual and

Reflexion Model

Hardware

Trans.

Kernel Fault

Handler

Pager

FileSystem
Virtual Addr.

Maint.
VM Policy

Subsystem

Depend
Divergence

Hardware

Trans.

Kernel Fault

Handler

Pager

FileSystem
Virtual Addr.

Maint.
VM Policy

Convergence

Subsystem

Why? Who?

When?

Where?

Unexpected Dependencies

■ Eight unexpected dependencies

■ All except two dependencies existed since day one:

– Virtual Address Maintenance  Pager

Which?
vm_map_entry_create (in src/sys/vm/Attic/vm_map.c)

depends on pager_map (in /src/sys/uvm/uvm_pager.c)

Who? cgd

When?
1993/04/09 15:54:59

Revision 1.2 of src/sys/vm/Attic/vm_map.c

Why?

from sean eric fagan:

it seems to keep the vm system from deadlocking the

system when it runs out of swap + physical memory.

prevents the system from giving the last page(s) to

anything but the referenced "processes" (especially

important is the pager process, which should never

have to wait for a free page).

Dependency added to avoid deadlocking

under special circumstances

Unexpected Dependencies

■ Pager  Hardware Translations

Dependency added to fix a bug on

multiple process systems

Unexpected Dependencies which

existed in the past

■ Two unexpected dependencies that were

removed in the past:

– Hardware Translation  VM Policy

– File System  Virtual Address Maintenance

Dependency removed to fix a previous

incorrect change

StickyNotes Usage Patterns

■ First note to understand the reason for

unexpected dependencies

■ Last note to study missing dependencies

■ All notes when first and last notes do not

have enough information to assist in

understanding

Limitations

■ Quality of comments and text entered by

developers in the past

■ In many open source projects, CVS

comments are used for:

– Communicating new features

– Narrating the progress of a project

Summary

■ Development history can help understand the

current structure of a software system

■ Traditional dependency graphs and program

understanding models usually do not use

historical information

■ Proposed StickyNotes and presented a case

study to show the strength of the approach

