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Midterm 



Group presentations 

■ Tuesday 
– Team Phoenix 

– Fully Optimized eXperience 

– Fox Bytes 

– The Firey Foxes 

■ Wednesday 
– Volpe Inferno 

– The Flaming Pandas 

■ Friday 
– The Fighting Mongooses 



Introduction 

■ Software understanding tasks represent 

50-90% of maintenance efforts 

■ Good documentation can help, but rarely 

available 

■ Some developers resort to code browsing, 

but that is limited and does not scale 

■ Propose to speedup understanding using 

knowledge from historical modification 

records 



Source Sticky Notes 

■ Attach change details to dependencies 

between software entities 

■ Determine the affect of a change on a 

software’s dependency graph and attach 

change details to edges of the dependency 

■ Provide insight to developers about reasons 

for that dependencies 



Architecture Understanding 

Process 

Propose InvestigateCompare

Better Understanding

■ Propose conceptual architecture 

■ Compare conceptual with concrete 

architecture 

■ Investigate gaps 



Propose - Conceptual 

Architecture 

■ Developers propose a conceptual 

architecture based on: 

– Reference architecture 

– System documentation 

– Developer experience with similar systems 

– Talking to senior developers and domain 

experts 



Conceptual and Concrete 

Mismatch 

■ However, in reality the concrete 

architecture is (almost) always different 

 

■ Need to not only discover differences, but 

also uncover the rationale 



Uncovering the Rationale  

for the Differences 

■ Uncovering the rationale is challenging 
– A senior developer 

• may be too busy  

• may not recall the rationale for such dependency 

• may no longer work on the software system 

– The software  
• may have been bought from another company 

• may have its maintenance out-sourced 

■ Developers must spend hours/days to uncover 
the rationale. The rationale may be: 
– Justified due to, e.g., optimizations or code reuse; or  

– Not justified due to, e.g., developer ignorance or 
pressure to market. 

 



Software Reflexion Framework 
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Investigating Gaps 

DivergencesConvergencesAbsences

Concrete

View

Conceptual

View

■ Absences: rarely occur in large systems 

■ Convergences: usually not a concern 

■ Divergences: must investigate dependencies 



4Ws when Investigating 

Dependencies 



Which? 

■ Which concrete source code entities are 

responsible for an unexpected 

dependency?  

 



Who? 

■ Who introduced an unexpected dependency or 
removed a missing dependency?  

 

■ A gap due to a change made by 
– a novice developer may suggest that the developer 

is at fault and the change must be fixed 

– a senior developer with a well established record for 
producing high quality code may suggest that the 
change is correct 

 

 



When? 

■ When was the unexpected dependency 
added or the missing dependency 
removed?  

■ A fix to a critical bug under a tight release 
schedule? 

– E.g. a few days/hours before a release 

 

■ Or is it is a justified dependency that we 
should expect 

 



Why? 

■ Why was this unexpected dependency 

added or why was an expected 

dependency missing?  

■ A knowledge of the rationale is key in 

explaining the gaps 

 



Dependency Investigation 

Questions (W4 Approach) 

■ Which low level code entity is responsible for 
the dependency? 

– Network (SendData)    Scheduler (PrintToLog) 

■ Who added/removed the dependency? 
– Junior vs. senior/experienced developer 

■ When was the dependency modified? 
– Late night / Just before release 

■ Why was the dependency added/removed? 
– The rationale! 



Source StickyNotes 

■ We are interested in 

– Current and past dependencies 



Source StickyNotes 

■ Static dependencies give only a current 
static view of the system – not enough 
detail! 

■ Need to extend static dependencies, but 
how? 

 



Extending Code Dependencies 

■ Ask developers to fill StickyNotes for each 

change 

– Too time consuming and cumbersome 

■ Use software repositories to build these 

notes automatically 

– Historical information may be hard to process 

 



StickyNotes Recovery 

■ Map code changes to entities and dependencies 
instead of lines  

 

■ Two pass analysis of the source control 
repository data, to recover: 

 
– Record all entities defined throughout the lifetime of a 

project 

 

– Record all dependencies between these entities and 
attach source control meta-data 



Case Study – NetBSD 

■ Large long lived system with hundreds of 

developers 

■ Case study used to demonstrate 

usefulness of the reflexion model: 

– Reuse prior results!  

– Focus on investigating gaps to show the 

strength of our approach 

 



NetBSD (VMC) Conceptual and 

Reflexion Model 
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Unexpected Dependencies 

■ Eight unexpected dependencies 

■ All except two dependencies existed since day one: 

– Virtual Address Maintenance  Pager 

Which? 
vm_map_entry_create (in src/sys/vm/Attic/vm_map.c) 

depends on  pager_map (in /src/sys/uvm/uvm_pager.c) 

Who? cgd 

When? 
1993/04/09 15:54:59 

Revision 1.2 of src/sys/vm/Attic/vm_map.c 

Why?  

from sean eric fagan:  

it seems to keep the vm system from deadlocking the 

system when it runs out of swap + physical memory. 

prevents the system from giving the last page(s) to 

anything but the referenced "processes" (especially 

important is the pager process, which should never 

have to wait for a free page). 

 

Dependency added to avoid deadlocking 

under special circumstances 



Unexpected Dependencies 

■ Pager  Hardware Translations 

 

Dependency added to fix a bug on 

multiple process systems 



Unexpected Dependencies which 

existed in the past 

■ Two unexpected dependencies that were 

removed in the past: 

– Hardware Translation  VM Policy 

– File System  Virtual Address Maintenance 

Dependency removed to fix a previous 

incorrect change 



StickyNotes Usage Patterns 

■ First note to understand the reason for 

unexpected dependencies  

■ Last note to study missing dependencies 

■ All notes when first and last notes do not 

have enough information to assist in 

understanding 



Limitations 

■ Quality of comments and text entered by 

developers in the past 

■ In many open source projects, CVS 

comments are used for: 

– Communicating new features 

– Narrating the progress of a project 



Summary 

■ Development history can help understand the 

current structure of a software system 

■ Traditional dependency graphs and program 

understanding models usually do not use 

historical information 

■ Proposed StickyNotes and presented a case 

study to show the strength of the approach 

 


