
CISC 322
Software Architecture

Lecture 14:

Design Patterns

Emad Shihab
Material drawn from [Gamma95, Coplien95]

Slides adapted from Spiros Mancoridis and Ahmed E. Hassan

Motivation

■ Good designers know not to solve every

problem from first principles. They reuse

solutions.

■ Practitioners do not do a good job of

recording experience in software design

for others to use.

What is a Design Pattern

■ A Design Pattern systematically names,

explains, and evaluates an important and

recurring design.

■ “descriptions of communicating objects

and classes that are customized to solve a

general problem in a particular context”

Classifying Design Patterns

■ Structural: concern the process of

assembling objects and classes

■ Behavioral: concern the interaction

between classes or objects

■ Creational: concern the process of object

creation

Design Patterns Covered

■ Structural
– Adapter

– Façade

– Composite

■ Behavioral
– Iterator

– Template

– Observer

– Master-Slave

■ Creational
– Abstract Factory

For Each Pattern ….

■Motivation – the problem we want to

solve using the design pattern

■ Intent – the intended solution the design

pattern proposes

■ Structure – How the design pattern is

implemented

■ Participants – the components of the

design pattern

Terminology

■ Objects package both data and the

procedures that operate on that data.

■ Procedures are typically called methods

or operations.

■ An object performs an operation when it

receives a request (or message) from a

client.

Terminology

■ An object‟s implementation is defined by

its class. The class specifies

– Object‟s internal data and representation

– Operations that object can perform

■ An abstract class is one whose main

purpose is to define a common interface

for its subclass

Terminology

■ The set of signatures defined by an

object‟s operations or methods is called

the interface

Adapter Pattern - Intent

■ Convert the interface of a class into

another interface clients expect.

■ Adapter lets classes work together that

otherwise couldn‟t because of

incompatible interfaces

Adapter Pattern - Motivation

■When we want to reuse classes in an

application that expects classes with a

different interface, we do not want (and

often cannot) to change the reusable

classes to suit our application

Adapter Lets users draw and

arrange graphical

elements
Interface for

graphical object

Subclass of shape

defined by editor for

lines

OTS UI toolkit. Provides

sophisticated class for

displaying and editing

text

Can change TextView

class so it conforms to

Shape interface … would

need source code of

TextView. Too much work!
Define TextShape to

adapt TextView interface

to Shape‟s
BoundingBox

requests are

converted to

GetExtent requests

Allows objects to be

„dragged‟

interactively

Adapter Pattern Structure

Client
Target

Request()

Adaptee

SpecificRequest()

Adapter

Request() SpecificRequest()

adaptee

Defines the application-

specific interface that

clients use

Collaborates with

objects conforming to

the target interface

Adapts the interface of

the adaptee to the target

interface

Defines an existing

interface that needs

adapting

Façade Pattern Intent

■ Provide a unified interface to a set of

interfaces in a subsystem.

■ Facade defines a higher-level interface

that makes the subsystem easier to use.

Façade Pattern Motivation

■ Structuring a system into subsystems

helps reduce complexity.

■ A common design goal is to minimize the

communication and dependencies

between subsystems.

■ Use a facade object to provide a single,

simplified interface to the more general

facilities of a subsystem.

Façade Example –

Programming Environment

Software Design (OOD Patterns)

Compiler

Scanner

Parser

Token

ProgNode

ProgNodeBuilder

RISCCG

StackMachineCG

Statement Node

Expression Node

Variable Node Compiler Subsystem Classes

Compile()

CodeGenerator

■ Programming

environment that

provides access to its

compiler

■ Contains many classes

(e.g. scanner, parser)

■ Most clients don‟t care

about details like

parsing and code

generation…just

compile my code!

■ The low-level

interfaces just

complicate their task

Façade Example –

Programming Environment

Software Design (OOD Patterns)

Compiler

Scanner

Parser

Token

ProgNode

ProgNodeBuilder

RISCCG

StackMachineCG

Statement Node

Expression Node

Variable Node Compiler Subsystem Classes

Compile()

CodeGenerator

■ Higher-level interface

(i.e., Compiler class)

shields clients from low

level classes

■ Compiler class defines

a unified interface to

the compiler‟s

functionality

■ Compiler class acts as

a Façade. It offers

clients a simple

interface to the

compiler subsystem

Façade Pattern Structure

Software Design (OOD Patterns) Subsystem Classes

Facade

Client Classes

Participants of Façade Pattern

■ Façade (compiler)

– Knows which subsystem classes are responsible

for a request

– Delegates client requests to appropriate

subsystem objects

■ Subsystem classes (Scanner, Parser,etc..)

– Implements subsystem functionality

– Handles work assigned by the façade object

Façade Pattern Applicability

■ Use a façade when

– To provide a simple interface to a complex

subsystem

– To decouple clients and implementation

classes

– To define an entry point to a layered

subsystem

Façade Pattern Collaborations

■ Clients communicate with the subsystem

by sending requests to façade, which then

forwards requests to the appropriate

subsystems

■ Clients that use the façade don‟t have

access to its subsystem objects directly.

However, clients can access subsystem

classes if they need to

Composite Pattern Intent

■ Lets clients treat individual objects and

compositions of objects uniformly

Composite Pattern Motivation

■ If the composite pattern is not used, client

code must treat primitive and container

classes differently, making the application

more complex than necessary

Composite Pattern Example

Graphic

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

Line Text Rect.

Draw() Draw() Draw()

Picture

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

forall g in graphics

g.Draw()

graphics

■ Graphic

applications allow

users to build

complex diagrams

out of simple

components

■ Users group

components to form

larger components

Primitive graphical objects

Aggregate of Graphic objects

Composite Pattern Example

Graphic

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

Line Text Rect.

Draw() Draw() Draw()

Picture

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

forall g in graphics

g.Draw()

graphics

■ A simple

implementation

defines classes for

graphical primitives

(e.g. Text and lines)

plus other classes

that act as

containers for these

primitives

■ The problem is user

must treat primitive

and container

objects differently

■ Having to

distinguish these

objects makes

applications more

complex

Composite Pattern Example

Graphic

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

Line Text Rect.

Draw() Draw() Draw()

Picture

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

forall g in graphics

g.Draw()

graphics

■ Key is an

abstract class

that represents

both primitives

and their

containers

■ Graphic declares

operations such

as draw that are

specific to

graphical objects

■ Also operations

for accessing

and managing

children

Structure of Composite Pattern

Client

Component

Operation()

Add(Component)

Remove(Component)

GetChild(int)

Leaf Composite

Operation()
Operation()

Add(Component)

Remove(Component)

GetChild(int)

forall g in children

g.Operation()

children

Declares interface for

objects and child

components

Defines behavior for

primitive objects. Leafs

have no children

Defines behavior for

components having

children. Implements

child-related operations

Manipulates objects in

the composition through

Component interface

