
CISC 322
Software Architecture

Lecture 20:

Software Cost Estimation 2

Emad Shihab
Slides adapted from Ian Sommerville and Ahmed E. Hassan

Estimation Techniques

■ There is no simple way to make accurate

estimates of the effort required

– Initially, not much detail is given

– Technologies and people may be unknown

■ Project cost estimates may be self-fulfilling

– Estimate defines budget, project adjusted to

meet budget

Many Estimation Techniques

■ Algorithmic cost modeling

■ Expert judgment

■ Estimation by analogy

■ Parkinson’s Law

■ Pricing to win

Algorithmic code modelling

■ Model is built based on historical cost

information

■ Generally based on the size of the

software

Expert judgement

■ Several experts in software development

and the application domain are consulted

■ Process iterates until some consensus is

reached

■ Advantages: Relatively cheap estimation

method. Can be accurate if experts have

direct experience of similar systems

■ Disadvantages: Very inaccurate if there

are no experts!

Estimation by analogy

■ The project is compared to a similar

project in the same application domain

■ Advantages: Accurate if project data

available

■ Disadvantages: Impossible if no

comparable project has been tackled

Parkinson's Law

■ “Work expands to fill the time available”

i.e., the project costs whatever resources

are available

■ Advantages: No overspending

■ Disadvantages: System is usually

unfinished

Pricing to win

■ The project costs whatever the customer

has to spend on it

■ Advantages: You get the contract

■ Disadvantages: The probability that the

customer gets the system he or she wants

is small. Often, costs do not accurately

reflect the work required

Cost Estimation Approaches

■ The aforementioned techniques may be

used top-down or bottom-up

■ Top-down: Starts at the system level and

assess system functionality and its

delivery through subsystems

■ Bottom-up: Start at component level and

aggregate to obtain system effort

Top-down vs. Bottom-up

■ Top-down:

– Usable without much knowledge

– Factors in integration, configuration and

documentation costs

– Can underestimate low-level problems

■ Bottom-up:

– Usable when architecture of the system is

known

– May underestimate system-level activities

such as integration

Algorithmic Cost Modeling

■ A cost model can be built by analyzing the

cost and attributes of similar projects

■ Effort = A x SizeB x M

■ A – depends on organization

■ B – ~1-1.5 reflects disproportionate effort for

large projects (comm. and conf. management)

■ M – reflects product, process and people

attributes

Estimation Accuracy

■ Difficult to estimate size early on. B and M

are subjective

■ Several factors influence the final size

– Use of COTS and components

– Programming language

■ Estimations become more accurate as

development progresses

Estimate uncertainty

[Sommerville 2000]

COCOMO Model

■ Empirical model based on project

experience

■ Started with COCOMO-81 and later

revised to COCOMO 2

■ COCOMO 2 is very detailed and takes into

account different approaches, reuse, etc…

COCOMO 81

A – depends on organization

B – reflects disproportionate effort for large projects

M - reflects product, process and people attributes

COCOMO 2 levels

■ Early prototyping model

– Estimates based on OP and a simple formula

■ Early design model

– Estimates based on FP that are translated to

LOC

■ Reuse model

– Estimates effort to integrate reused and

generated code

■ Post-architecture level

– Estimates based on lines of source code

Early Prototyping Level

■ Supports prototyping projects and projects

where software is developed by

composing existing components

■ PM = (NOP x (1 - %reuse/100)) / PROD

– PM is the effort in person-months

– NOP is the number of object points

– PROD is the productivity

Object point productivity

Early design level

■ Estimates can be made after requirements

■ Based on standard algorithmic model

– PM = A x SizeB x M

• A = 2.94 in initial calibration

• Size in KLOC (aprox. from FP)

• B varies from 1.1 to 1.24 depending on novelty,

development flexibility, risk management and the

process maturity

• M = PERS x RCPX x RUSE x PDIF x PREX x

FCIL x SCED

Multipliers

■ Multipliers developers, non-functional

requirements, development platform, etc.

– RCPX - product reliability and complexity

– RUSE - the reuse required

– PDIF - platform difficulty

– PREX - personnel experience

– PERS - personnel capability

– SCED - required schedule

– FCIL - the team support facilities

The Reuse Model

■ Effort is required to integrate automatically

generated code

■ PMAuto = (ASLOC x (AT/100)) / ATPROD

■ ASLOC – No. LOC that have to be adapted

■ AT - % of adapted code that is automatically

generated

■ ATPROD – engineer productivity in adapting code

(2400 LOC/month)

■ e.x., 20,000 LOC, 30% automatically generated

■ (20,000 x 30/100) / 2400 = 2.5 pm

Post-architecture level

■ Uses same formula as early design

estimates (PM = A x SizeB x M)

■ Size estimate for the software should be

more accurate at this stage. Takes into

consideration:

– New code to be developed

– Rework required to support change

– Extent of possible reuse

■ This depends on 5 scale factors. Their

sum/100 is added to 1.01

The exponent term (B)

■ Example:

– Precedenteness - new project - 4

– Development flexibility - no client involvement

- Very high - 1

– Architecture/risk resolution - No risk analysis -

V. Low - 5

– Team cohesion - new team - nominal - 3

– Process maturity - some control - nominal - 3

■ Scale factor is therefore 1.17

The Exponent Term (B)

Example

Multipliers (M)

■ Product attributes

– required characteristics of the
software product being
developed

■ Computer attributes

– constraints imposed on the
software by the hardware
platform

■ Personnel attributes

– multipliers that take the
experience and capabilities of
the people working on the project
into account.

■ Project attributes
– concerned with the particular

characteristics of the software
development project

Effects of cost drivers

Project Duration

■ COCOMO

– TDEV = 3 x (PM)(0.33+0.2*(B-1.01))

■ COCOMO 2

– TDEV = 3 x (PM)(0.33+0.2*(B-1.01)) x SCEDP/100

– TDEV – calendar days

– PM – effort

– B – Exponent

– SCEDP - % increase or decrease in nominal

schedule

COCOMO Example

Function Point Table

Number of FPs Complexity

External user type Low Average High

Inputs 3 4 6

Outputs 4 5 7

Files 7 10 15

Interfaces 5 7 10

Queries 3 4 6

Object Point Analysis – Complexity

Weighting

Complexity

Type of object Simple Medium Difficult

Screen 1 2 3

Report 2 5 8

3GL

component
N/A N/A 10

Object Point Analysis – Productivity

Rate

Very

low
Low Nominal High

Very

High

Developer’s

experience

and capability

4 7 13 25 50

CASE maturity

and capability
4 7 13 25 50

COCOMO II

Effort = A × (Size)B × M

– Effort in terms of person-months

– A: 2.45 in 1998

– Size: Estimated Size in KLOC

– B: combined process factors

– M: combined effort factors

System to be built

■ An airline sales system is to be built in C:

– Back-end database server has already been

built.

■ We will use object point estimation

technique for high level estimates and FP

for detailed estimates

Object Point Analysis

■ Application will have 3 screens and will

produce 1 report:

– A booking screen: records a new sale booking

– A pricing screen: shows the rate for each day

and each flight

– An availability screen: shows available flights

– A sales report: shows total sale figures for the

month and year, and compares figures with

previous months and years

Rating of system

■ Booking screen:

– Needs 3 data tables (customer info, customer
history table, available seats)

– Only 1 view of the screen is enough. So, the
booking screen is classified as simple.

■ Similarly, the levels of difficulty of the
pricing screen, the availability screen and
the sales report are classified as simple,
simple and medium, respectively. There is
no 3GL component.

Rating Results

■ Assessment of the developers and the environment
shows:
– The developers’ experience is very low (4)

– The CASE tool is low (7). So, we have a productivity rate of 5.5.

■ The project requires approx. 1.64 (= 9/5.5) person-months.

Name Objects Complexity Weight

Booking Screen Simple 1

Pricing Screen Simple 1

Availability Screen Medium 2

Sales Report Medium 5

Total 9

Function Point Estimation

(FP->KLOC)
Name External user types Complexity FP

Booking External output type Low 4

Pricing External inquiry type Low 3

Availability External inquiry type Medium 4

Sales External output type Medium 5

Total 16

FP->LOC

■ Total function points = 16

■ Published figures for C show that:

– 1 FP = 128 LOC in C

■ Estimated Size

– 16 * 128 = 2048 = 2 KLOC

Scale Factor Estimation (B)

Name Very low

(0.05)

Low

(0.04)

Nominal

(0.03)

High

(0.02)

Very

High

(0.01)

Extra

High

(0.00)

Assessme

nt

Value

Precedentedn

ess

Thoroughly

unprecedent

ed

Largely

unprecedent

ed

Somewhat

unprecedent

ed

Generally

familiar

Largely

familiar

Thorough

ly

familiar

Very

high

0.01

Flexibility Rigorous Occasional

relaxation

Some

relaxation

General

conformit

y

Some

conformit

y

General

goals

Very

high

0.01

Significant

risks

eliminated

Little (20%) Some (40%) Often (60%) Generally

(75%)

Mostly

(90%)

Full

(100%)

Nominal 0.03

Team

interaction

process

Very

difficult

Some

difficult

Basically

cooperative

Largely

cooperati

ve

Highly

cooperati

ve

Seamless

interactio

ns

High 0.02

Process

maturity

Level 1 Level 2 Level 2+ Level 3 Level 4 Level 5 Low 0.04

Add 1.01

Total 1.13

Effort Adjustment Factors (M)

Identifier Name Ranges

(VL – EH)

Assessment

VL/L/N/H/VH/EH

Values

RCPX product Reliability and

ComPleXity

0.5 – 1.5 low 0.75

RUSE required reusability 0.5 – 1.5 nominal 1.0

PDIF Platform DIFficulty 0.5 – 1.5 high 1.1

PERS PERSonnel capability 1.5 – 0.5 high 0.75

PREX PeRsonnel EXperience 1.5 – 0.5 very high 0.65

FCIL FaCILities available 1.5 – 0.5 nomial 1.0

SCED SChEDule pressure 1.5 – 0.5 low 1.2

Product 0.4826

■ Effort = 2.94  (2.048)1.13  0.4826 = 3.19 person-months

References

■ Hughes, B., and Cotterell, M. (1999) Software

project management, 2nd ed., McGraw Hill

■ Pfleeger, S.L. (1998) Software Engineering:

Theory and Practice, Prentice Hall

■ Royce, W. (1998) Software Project

Management: A Unified Framework, Addison

Wesley

■ Center for Software Engineering, USC (1999)

COCOMO II Model Definition Manual.

