CISC 322

Software Architecture

N I e s

Lecture 20:
Software Cost Estimation 2

Emad Shihab

Slides adapted from lan Sommerville and Ahmed E. Hassan

Estimation Techniques

m There Is no simple way to make accurate
estimates of the effort required

— Initially, not much detalil is given
— Technologies and people may be unknown

m Project cost estimates may be self-fulfilling

— Estimate defines budget, project adjusted to
meet budget

Many Estimation Techniques

m Algorithmic cost modeling
m Expert judgment

m Estimation by analogy

m Parkinson’s Law

m Pricing to win

Algorithmic code modelling

m Model is built based on historical cost
Information

m Generally based on the size of the
software

Expert judgement

m Several experts in software development
and the application domain are consulted

m Process iterates until some consensus IS
reached

m Advantages: Relatively cheap estimation
method. Can be accurate If experts have
direct experience of similar systems

m Disadvantages: Very inaccurate If there
are no experts!

Estimation by analogy

m The project is compared to a similar
project in the same application domain

m Advantages: Accurate If project data
available

m Disadvantages: Impossible if no
comparable project has been tackled

Parkinson's Law

m “Work expands to fill the time available”
l.e., the project costs whatever resources
are available

m Advantages: No overspending

m Disadvantages: System is usually
unfinished

Pricing to win

m The project costs whatever the customer
has to spend on it

m Advantages: You get the contract

m Disadvantages: The probability that the
customer gets the system he or she wants
Is small. Often, costs do not accurately
reflect the work required

Cost Estimation Approaches

m The aforementioned techniques may be
used top-down or bottom-up

m Top-down: Starts at the system level and
assess system functionality and its
delivery through subsystems

m Bottom-up: Start at component level and
aggregate to obtain system effort

Top-down vs. Bottom-up

m Top-down:
— Usable without much knowledge

— Factors

In Integration, configuration and

documentation costs
— Can underestimate low-level problems

m Bottom-u

0.

— Usable when architecture of the system is

known

— May underestimate system-level activities

such as

Integration

Algorithmic Cost Modeling

m A cost model can be built by analyzing the
cost and attributes of similar projects

m Effort = AXx SizeB x M

m A — depends on organization

m B — ~1-1.5 reflects disproportionate effort for
large projects (comm. and conf. management)

m M — reflects product, process and people
attributes

Estimation Accuracy

m Difficult to estimate size early on. B and M
are subjective

m Several factors influence the final size
— Use of COTS and components
— Programming language

m Estimations become more accurate as
development progresses

[Sommerville 2000]

Estimate uncertainty

4x

2x

Feasibility Requirements Design

Code Delivery

(0.5x

0.25x

COCOMO Model

m Empirical model based on project
experience

m Started with COCOMO-81 and later
revised to COCOMO 2

m COCOMO 2 is very detailed and takes into
account different approaches, reuse, etc...

COCOMO 81

Project Formula Description
complexity
Simple PM = 2.4 (KDSD)!U> x M Well-understood applications
developed by small teams.
Moderate PM = 3.0 (KDSD!-12 x M More complex projects where

team members may have limited
experience of related systems.

Embedded PM = 3.6 (KDSI)! -2V x M Complex projects where the
software 1s part of a strongly
coupled complex of hardware,
software, regulations and
operational procedures.

A — depends on organization
B — reflects disproportionate effort for large projects
M - reflects product, process and people attributes

COCOMO 2 levels

m Early prototyping model
— Estimates based on OP and a simple formula

m Early desigh model

— Estimates based on FP that are translated to
LOC

m Reuse model

— Estimates effort to integrate reused and
generated code

m Post-architecture level
— Estimates based on lines of source code

Early Prototyping Level

m Supports prototyping projects and projects
where software is developed by
composing existing components

m PM=(NOP x (1 - %reuse/100))/ PROD

— PM is the effort in person-months
— NOP is the number of object points
— PROD is the productivity

Object point productivity

Developer’s Verylow Low Nominal High Very high
experience and

capability

ICASE maturity and Verylow Low Nominal High Very high
capability

PROD (NOP/month) 4 7 13 25 50

Early design level

m Estimates can be made after requirements

m Based on standard algorithmic model
—PM = AX SizeB x M
A =2.94 In Iinitial calibration

» Size in KLOC (aprox. from FP)

* B varies from 1.1 to 1.24 depending on novelty,
development flexibility, risk management and the
process maturity

* M = PERS x RCPX x RUSE x PDIF x PREX X
FCIL x SCED

Multipliers

m Multipliers developers, non-functional

red

uirements, development platform, etc.
RCPX - product reliability and complexity
RUSE - the reuse required

PDIF - platform difficulty

PREX - personnel experience

PERS - personnel capability

— SCED - required schedule
— FCIL - the team support facilities

The Reuse Model

m Effort is required to integrate automatically
generated code

= PM,, = (ASLOC x (AT/100)) / ATPROD

m ASLOC — No. LOC that have to be adapted

m AT - % of adapted code that is automatically
generated

m ATPROD - engineer productivity in adapting code
(2400 LOC/month)

m e.x., 20,000 LOC, 30% automatically generated
= (20,000 x 30/100) / 2400 = 2.5 pm

Post-architecture level

m Uses same formula as early design
estimates (PM = A x SizeB x M)

m Size estimate for the software should be
more accurate at this stage. Takes into
consideration:

— New code to be developed
— Rework required to support change
— Extent of possible reuse

The exponent term (B)

m This depends on 5 scale factors. Their
sum/100 is added to 1.01

Scale factor Explanation

Precedentedness Reflects the previous experience of the organisation
with this type of project. Very low means no previous
experience, Extra high means that the organisation is
completely familiar with this application domain.

Development Reflects the degree of flexibility in the development

flexibility process. Very low means a prescribed process 1s used;:
Extra high means that the client only sets general goals.

Architecture/risk Reflects the extent of risk analysis carried out. Very low

resolution means little analysis, Extra high means a complete a
thorough risk analysis.

Team cohesion Reflects how well the development team know each

other and work together. Very low means very difficult
interactions, Extra high means an integrated and
effective team with no communication problems.

Process maturity Reflects the process maturity of the organisation. The
computation of this value depends on the CMM
Maturity Questionnaire but an estimate can be achieved
by subtracting the CMM process maturity level from 5.

The Exponent Term (B)
Example

m Example:
— Precedenteness - new project - 4

— Development flexibility - no client involvement
- Very high - 1

— Architecture/risk resolution - No risk analysis -
V.Low -5

— Team cohesion - new team - nominal - 3
— Process maturity - some control - nominal - 3

m Scale factor iIs therefore 1.17

CPLE

DU

DATA

RUSE

PVoL

STOR

ACAP

PCOMN

PEXP

LTEX

TOOL

SCED

SITE

Product
Product
Product
Product
Product
Computer
Computer
Computer
Personnel
Personnal
Perscnnel
Personnel
Personnal
Personnel
Project
Project

Project

Multipliers (M)

_ = Product attributes

Required systemn reliability

Complexty of systam modules

Extent of documentation required

Size of database wsed

Required percentage of reusable components
Execsbon time constraimt

Volatility of development platform
Memory constramts

Capability of project analysts

Parsonnel continuity

Programmer capability

Programmer expenence in project domain
Analyst expenience in project domain
Language and tool expenence

Usa of software tools

Development schedule compression

Extent of multisite working and quality of inter-site
communications

— required characteristics of the
software product being
developed

Computer attributes

— constraints imposed on the
software by the hardware
platform

Personnel attributes

— multipliers that take the
experience and capabilities of
the people working on the project
into account.

Project attributes

— concerned with the particular
characteristics of the software
development project

Effects of cost drivers

Exponent value 1.17

System size (including factors for reuse | 128, 000 DSI

and requirements volatility)

Initial COCOMO estimate without 730 person-months

cost drivers

Reliability Very high, multiplier = 1.39
Complexity Very high, multiplier = 1.3
Memory constraint High, multiplier = 1.21

Tool use Low, multiplier = 1.12
Schedule Accelerated, multiplier = 1.29
Adjusted COCOMO estimate 2306 person-months
Reliability Very low, multiplier = 0.75
Complexity Very low, multiplier = 0.75
Memory constraint None, multiplier = 1

Tool use Very high, multiplier = 0.72
Schedule Normal, multiplier = 1
Adjusted COCOMO estimate 295 person-months

Project Duration

m COCOMO
— TDEV = 3 x (PM)(0:33+0.2*(8-1.01))

m COCOMO 2
— TDEV = 3 x (PM)(0:33+0.2(8-1.01)) x SCEDP/100

— TDEV - calendar days
— PM — effort
— B — Exponent

— SCEDP - % Increase or decrease in nominal
schedule

COCOMO Example

Function Point Table

Number of FPs Complexity

External user type Low Average High
Inputs 3 4 6
Outputs 4 5 7
Files 7 10 15
Interfaces 5 7 10
Queries 3 4 6

Object Point Analysis — Complexity

Weighting
Complexity
Type of object Simple Medium Difficult
Screen 1 2 3
Report 2 5 8
SGL N/A N/A 10

component

Object Point Analysis — Productivity

Rate
Very . . Very
oW Low Nominal High High
Developer’s
experience 4 I 13 25 50
and capability
CASE maturity 7 13 o5 50

and capability

COCOMO I

Effort = A x (Size)® x M
— Effort in terms of person-months
—A:2.451in 1998
— Size: Estimated Size in KLOC
— B: combined process factors
— M: combined effort factors

System to be bullt

m An airline sales system is to be built in C:

— Back-end database server has already been
built.

m We will use object point estimation
technigue for high level estimates and FP
for detalled estimates

Object Point Analysis

m Application will have 3 screens and will
produce 1 report:
— A booking screen: records a new sale booking

— A pricing screen: shows the rate for each day
and each flight

— An availability screen: shows available flights

— A sales report: shows total sale figures for the
month and year, and compares figures with
previous months and years

Rating of system

m Booking screen:

— Needs 3 data tables (customer info, customer
history table, available seats)

— Only 1 view of the screen Is enough. So, the
booking screen is classified as simple.

m Similarly, the levels of difficulty of the
pricing screen, the availability screen and
the sales report are classified as simple,
simple and medium, respectively. There is
no 3GL component.

Rating Results

Name Objects | Complexity | Weight
Booking Screen Simple 1
Pricing Screen Simple 1
Availability | Screen Medium 2
Sales Report Medium 5
Total 9

m Assessment of the developers and the environment
shows:
— The developers’ experience is very low (4)
— The CASE tool is low (7). So, we have a productivity rate of 5.5.

m The project requires approx. 1.64 (= 9/5.5) person-months.

Function Point Estimation
(FP->KLOC)

Name External user types Complexity FP
Booking External output type Low 4
Pricing External inquiry type Low 3
Availability External inquiry type Medium 4
Sales External output type Medium 5
Total 16

FP->LOC

m Total function points = 16

m Published figures for C show that:
—~-1FP=128L0CIinC

m Estimated Size
—16*128 = 2048 =2 KLOC

Scale Factor Estimation (B)

Name Very low Low Nominal High \Very Extra Assessme | Value
(0.05) (0.04) (0.03) (0.02) High High nt
(0.01) (0.00)
Precedentedn | Thoroughly | Largely Somewhat Generally | Largely Thorough | Very 0.01
ess unprecedent | unprecedent | unprecedent | familiar familiar ly high
ed ed ed familiar
Flexibility Rigorous Occasional | Some General Some General Very 0.01
relaxation relaxation conformit | conformit | goals high
y y
Significant Little (20%) | Some (40%) | Often (60%) | Generally | Mostly Full Nominal | 0.03
risks (75%) (90%) (100%)
eliminated
Team \Very Some Basically Largely Highly Seamless | High 0.02
Interaction difficult difficult cooperative | cooperati | cooperati | interactio
process ve ve ns
Process Level 1 Level 2 Level 2+ Level 3 Level 4 Level 5 Low 0.04
maturity
Add 1.01
Total 1.13

Effort Adjustment Factors (M)

Identifier | Name Ranges Assessment Values
(VL-EH) | VL/L/N/H/VH/EH
RCPX product Reliability and 05-15 low 0.75
ComPleXity
RUSE required reusability 05-15 nominal 1.0
PDIF Platform DIFficulty 05-15 high 1.1
PERS PERSonnel capability 1.5-05 high 0.75
PREX PeRsonnel EXperience 1.5-05 very high 0.65
FCIL FaClLities available 1.5-05 nomial 1.0
SCED SChEDule pressure 1.5-05 low 1.2
Product 0.4826

m Effort = 2.94 x (2.048)1-13 x 0.4826 = 3.19 person-months

References

m Hughes, B., and Cotterell, M. (1999) Software
oroject management, 2" ed., McGraw Hill

m Pfleeger, S.L. (1998) Software Engineering:
Theory and Practice, Prentice Hall

m Royce, W. (1998) Software Project
Management: A Unified Framework, Addison
Wesley

m Center for Software Engineering, USC (1999)
COCOMO Il Model Definition Manual.

