EMBEDDING OF AN ORDER INTO A MAXIMAL ORDER

HORST G. ZIMMER

(Springer LNM 262 [1972] pp 25–27)

Let there be given a finite dimensional commutative algebra $\mathfrak A$ of degree n over $\mathbb O$ and an order $\mathfrak o$ in $\mathfrak A$ such that

$$\mathfrak{A} = \mathfrak{o} \otimes_{\mathbb{Z}} \mathbb{O}.$$

It is our goal to find the maximal order $\mathfrak O$ in $\mathfrak A$ containing $\mathfrak o$. We assume the order $\mathfrak o$ in $\mathfrak A$ to be defined by means of a basis $\omega_1,\,\omega_2,\,\ldots,\,\omega_n$ over $\mathbb Z$ together with a multiplication table. All orders in $\mathfrak A$ considered in this section are also supposed to be given by a $\mathbb Z$ -basis that is expressed in terms of the basis $\omega_1,\,\omega_2,\,\ldots,\,\omega_n$ of $\mathfrak o$.

The task proposed was first solved by Berwick (1927). Subsequently, Zassenhaus (1967) developed a more general algorithm which was implemented in the form of an effective computer program. The basic idea is to build up a tower of intermediate orders

$$\mathfrak{o} \subset \mathfrak{o}_1 \subset \cdots \subset \mathfrak{o}_m \subset \mathfrak{o}_{m+1} \subset \cdots \subset \mathfrak{O}$$

so as to reach \mathfrak{O} after a finite number of steps.

A remark concerning effectiveness is in order. The maximal order $\mathfrak O$ over $\mathfrak o$ sought cannot be effectively constructed by a search procedure which finds $\mathfrak O$ among all (finitely many) orders between $\mathfrak o$ and $d^{-1}\mathfrak o$ where d is the discriminant of $\mathfrak o$.

Rather we proceed in the following fashion. Let us assume that we have arrived already at an intermediate order \mathfrak{o}_m and that $\mathfrak{o}_m \neq \mathfrak{O}$. We wish to construct \mathfrak{o}_{m+1} . To this end we introduce for a rational prime p the p-radical of \mathfrak{o} , $\mathfrak{R}_{p,m}$, that is, the ideal containing $p\mathfrak{o}_m$ which is defined by

$$\mathfrak{R}_{p,m} = \{ x \in \mathfrak{o}_m \mid x \bmod p\mathfrak{o}_m \text{ is nilpotent } \}.$$

The construction of \mathfrak{o}_{m+1} is now based on the following

THEOREM. Suppose that $\mathfrak{o}_m \neq \mathfrak{O}$. Then there exists a prime p, whose square divides the discriminant d_m of the order \mathfrak{o}_m , such that the \mathfrak{o}_m -quotient module $[\mathfrak{R}_{p,m}/\mathfrak{R}_{p,m}]$ is an order in $\mathfrak A$ that contains \mathfrak{o}_m properly.

Here, the quotient module $[\mathfrak{R}_{p,m}/\mathfrak{R}_{p,m}]$ consists of those elements in \mathfrak{A} which multiply $\mathfrak{R}_{p,m}$ into itself.

On the grounds of this theorem we know that, amongst all primes p with $p^2 \mid d_m$, there can be found a prime (the smallest such) for which the definition

$$\mathfrak{o}_{m+1} = \left[\mathfrak{R}_{p,m} / \mathfrak{R}_{p,m} \right]$$

yields an order \mathfrak{o}_{m+1} properly containing \mathfrak{o}_m . As soon as an intermediate order \mathfrak{o}_h in the above tower is found for which there is no prime p with $p^2 \mid d_h$ such that $[\mathfrak{R}_{p,h}/\mathfrak{R}_{p,h}]$ properly contains \mathfrak{o}_h , the desired maximal order

$$\mathfrak{O} = \mathfrak{o}_h$$

has been reached.

Note that the discriminants d_m and d_{m+1} of the orders \mathfrak{o}_m and \mathfrak{o}_{m+1} respectively are subject to the relation

$$d_m = (\det T_m)^2 d_{m+1}$$

where T_m^{-1} is the $n \times n$ transition matrix over \mathbb{Z} by which a \mathbb{Z} -basis of \mathfrak{o}_{m+1} is expressed in terms of a \mathbb{Z} -basis of \mathfrak{o}_m . From this remark it can also be seen that there is only a finite number of candidates \mathfrak{o}_m competing for \mathfrak{O} .

In order to obtain a \mathbb{Z} -basis of \mathfrak{o}_{m+1} from a \mathbb{Z} -basis of \mathfrak{o}_m we use the *p-trace radical* of \mathfrak{o}_m , that is, the ideal

$$\mathfrak{T}_{p,m} = \{ x \in \mathfrak{o}_m \mid \operatorname{tr}(x\mathfrak{o}_m) \subseteq p\mathbb{Z} \},$$

where tr denotes the trace function belonging to the regular representation of \mathfrak{o}_m . We have then

$$p\mathfrak{o}_m\subseteq\mathfrak{R}_{p,m}\subseteq\mathfrak{T}_{p,m}$$

with the equality sign standing on the right hand side whenever p > n. Using these inclusions we first determine a suitable \mathbb{Z} -basis for $\mathfrak{T}_{p,m}$ in terms of a \mathbb{Z} -basis of \mathfrak{o}_m and then derive from it a \mathbb{Z} -basis for $\mathfrak{R}_{p,m}$ and, finally, a \mathbb{Z} -basis for $[\mathfrak{R}_{p,m}/\mathfrak{R}_{p,m}]$. All this is accomplished by matrix operations involving matrices with entries in \mathbb{Z} .

The effectiveness of this algorithm can be further improved by dealing simultaneously rather than separately with those primes p for which

$$p^2 \mid d$$
 and $p > n$.

Specifically, on defining the number

$$d_0 = \prod_{p^2|d, p>n} p$$

we introduce the ideals $\mathfrak{R}_{d_0,m}$, $\mathfrak{T}_{d_0,m}$ instead of $\mathfrak{R}_{p,m}$, $\mathfrak{T}_{p,m}$ respectively and proceed in an analogous manner to that outlined above.

The algorithm is naturally of particular interest in the case in which $\mathfrak{A}=K$ is a finite algebraic number field over $\mathbb Q$ because it facilitates the construction of the ring $\mathfrak O$ of all algebraic integers in K.