1. Resultants

- Show that if α is a root of a monic polynomial in $\mathbb{Z}[x]$ and $\lambda \in \mathbb{Z}$ then $\lambda \alpha$ is a root of a monic polynomial in $\mathbb{Z}[x]$.

2. Algebraic Integers

- Gauss's Lemma.

1. Show that if $f(x)$ is a monic polynomial in $\mathbb{Z}[x]$ and $g(x)$ and $h(x)$ are monic polynomials in $\mathbb{Q}[x]$ and $f(x)=g(x) h(x)$ then $g(x)$ and $h(x)$ belong to $\mathbb{Z}[x]$.
2. Apply Gauss's Lemma to show that the (monic) minimal polynomial of an algebraic integer has integer coefficients.

- Vandermonde Determinants.

Show that if

$$
V=\left[\begin{array}{ccccc}
1 & v_{1} & v_{1}^{2} & & v_{1}^{n-1} \\
1 & v_{2} & v_{2}^{2} & & v_{2}^{n-1} \\
1 & v_{3} & v_{3}^{2} & & v_{3}^{n-1} \\
& & & \ddots & \\
1 & v_{n} & v_{n}^{2} & & v_{n}^{n-1}
\end{array}\right]
$$

then $\operatorname{det} V=\prod_{j<k}\left(v_{k}-v_{j}\right)$.

- Let $\alpha, \beta \in \mathcal{O}$ with $\mathcal{K}=\mathbb{Q}(\alpha)$ and let $\omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be a \mathbb{Z}-module basis for $\mathbb{Z}[\alpha, \beta]$. Then there exists a matrix $T_{\omega} \in \mathbb{Q}^{n \times n}$, in lower-triangular form and with positive diagonal entries, such that $\omega_{j}=\sum_{k=1}^{j}\left(T_{\omega}\right)_{j, k} \alpha^{k-1}$ for $j=1, \ldots, n$. Note that $T_{\omega}^{-1} \in \mathbb{Z}^{n \times n}$, by the definition of ω.
Prove the following.

1. For $k=1, \ldots, n$ there exists a positive integer d_{k} such that $\left(T_{\omega}\right)_{k k}=1 / d_{k}$, and in particular $d_{1}=1$.
(Use the fact that α^{k-1} can be expressed uniquely as a \mathbb{Z}-linear combination of $\omega_{1}, \ldots, \omega_{n}$.)
2. d_{k} is a multiple of d_{k-1} for $k=2, \ldots, n$.
(Use the fact that if $\lambda_{k} d_{k}+\mu_{k} d_{k-1}=\operatorname{gcd}\left(d_{k}, d_{k-1}\right)$ for integers λ_{k} and μ_{k} then $\lambda_{k} \alpha \omega_{k-1}+\mu_{k} \omega_{k}$ can be expressed uniquely as a \mathbb{Z}-linear combination of $\omega_{1}, \ldots, \omega_{n}$.)
3. $d_{k} \omega_{k} \in \mathbb{Z}[\alpha]$ for $k=1, \ldots, n$.
(Use the fact that $\alpha \omega_{k}$ can be expressed uniquely as a \mathbb{Z}-linear combination of $\omega_{1}, \ldots, \omega_{n}$.)

3. Computing Integral Bases Efficiently

- Let \mathcal{A} be an order of \mathcal{K} and let $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be a \mathbb{Z}-basis for \mathcal{A}.

1. Prove that $\mathcal{A} \subseteq \mathcal{O}$, as follows. For an arbitrary element α of \mathcal{A} let

$$
M_{\alpha}=\left[\begin{array}{llll}
a_{11} & a_{12} & & a_{1 n} \\
a_{21} & a_{22} & & a_{2 n} \\
& & \ddots & \\
a_{n 1} & a_{n 2} & & a_{n n}
\end{array}\right] \in \mathbb{Z}^{n \times n}
$$

be given by $\alpha \omega_{j}=a_{j 1} \omega_{1}+\cdots+a_{j n} \omega_{n}$ for $j=1, \ldots, n$ and let

$$
\chi_{\alpha}(x)=\operatorname{det}\left(x I-M_{\alpha}\right) .
$$

Show that $\chi_{\alpha}(x)$ is a monic polynomial in $\mathbb{Z}[x]$ with $\chi_{\alpha}(\alpha)=0$.
2. Apply the previous result with $\mathcal{A}=\mathcal{O}$ to show that if $\beta, \gamma \in \mathcal{K}$ and $\beta \neq 0$ and $\beta \gamma^{k} \in \mathcal{O}$ for all $k \geq 0$ then $\gamma \in \mathcal{O}$.

- Let p be prime and define

$$
\begin{aligned}
\mathcal{O}_{p} & =\{\alpha \in \mathcal{O} \mid p \alpha \in \mathcal{A}\} \\
\mathcal{R}_{p} & =\left\{\beta \in \mathcal{A} \mid \beta^{k} \in p \mathcal{A} \text { for some } k \geq 1\right\}, \\
{\left[\mathcal{R}_{p} / \mathcal{R}_{p}\right] } & =\left\{\gamma \in \mathcal{K} \mid \gamma \mathcal{R}_{p} \subseteq \mathcal{R}_{p}\right\} .
\end{aligned}
$$

For $\theta \in \mathcal{K}$ let μ_{θ} denote the minimal polynomial of θ over \mathbb{Q}. Prove the following.

1. $\gamma \mathcal{R}_{p} \subseteq \mathcal{R}_{p} \Longrightarrow p, p \gamma, p \gamma^{2}, \ldots \in \mathcal{A} \Longrightarrow \gamma \in \mathcal{O}$.
2. $\left[\mathcal{R}_{p} / \mathcal{R}_{p}\right]$ is an order of \mathcal{K}.
3. $\mathcal{A} \subseteq\left[\mathcal{R}_{p} / \mathcal{R}_{p}\right] \subseteq \mathcal{O}_{p}$.
4. $\alpha^{k} \in p \mathcal{O}$ for some $k \geq 1 \Longrightarrow \mu_{\alpha}(x) \mid \mu_{p \beta}\left(x^{k}\right)$ with $p \beta=\alpha^{k}$

$$
\Longrightarrow \mu_{\alpha}(x) \equiv x^{m}(\bmod p) \text { for some } m \geq 1 .
$$

5. $\mu_{\alpha}(x) \equiv x^{m}(\bmod p)$ for some $m \geq 1 \Longrightarrow \alpha^{m} \in p \mathcal{A}$

$$
\Longrightarrow \alpha^{k} \in p \mathcal{O} \text { for some } k \geq 1
$$

6. $\mathcal{R}_{p}=\left\{\alpha \in \mathcal{A} \mid \alpha^{k} \in p \mathcal{O}\right.$ for some $\left.k \geq 1\right\}$.
7. $\left[\mathcal{R}_{p} / \mathcal{R}_{p}\right]=\left\{\gamma \in \mathcal{O} \mid \gamma \mathcal{R}_{p} \subseteq \mathcal{A}\right\}$.
