1. Resultants

• Show that if α is a root of a monic polynomial in $\mathbb{Z}[x]$ and $\lambda \in \mathbb{Z}$ then $\lambda \alpha$ is a root of a monic polynomial in $\mathbb{Z}[x]$.

2. Algebraic Integers

• Gauss's Lemma.

- 1. Show that if f(x) is a monic polynomial in $\mathbb{Z}[x]$ and g(x) and h(x) are monic polynomials in $\mathbb{Q}[x]$ and f(x) = g(x) h(x) then g(x) and h(x) belong to $\mathbb{Z}[x]$.
- 2. Apply Gauss's Lemma to show that the (monic) minimal polynomial of an algebraic integer has integer coefficients.

• Vandermonde Determinants.

Show that if

$$V = \begin{bmatrix} 1 & v_1 & v_1^2 & & v_1^{n-1} \\ 1 & v_2 & v_2^2 & & v_2^{n-1} \\ 1 & v_3 & v_3^2 & & v_3^{n-1} \\ & & \ddots & & \\ 1 & v_n & v_n^2 & & v_n^{n-1} \end{bmatrix}$$

then det $V = \prod_{j < k} (v_k - v_j).$

• Let $\alpha, \beta \in \mathcal{O}$ with $\mathcal{K} = \mathbb{Q}(\alpha)$ and let $\omega = \{\omega_1, \ldots, \omega_n\}$ be a \mathbb{Z} -module basis for $\mathbb{Z}[\alpha, \beta]$. Then there exists a matrix $T_{\omega} \in \mathbb{Q}^{n \times n}$, in lower-triangular form and with positive diagonal entries, such that $\omega_j = \sum_{k=1}^j (T_{\omega})_{j,k} \alpha^{k-1}$ for $j = 1, \ldots, n$. Note that $T_{\omega}^{-1} \in \mathbb{Z}^{n \times n}$, by the definition of ω .

Prove the following.

1. For k = 1, ..., n there exists a positive integer d_k such that $(T_{\omega})_{kk} = 1/d_k$, and in particular $d_1 = 1$.

(Use the fact that α^{k-1} can be expressed uniquely as a \mathbb{Z} -linear combination of $\omega_1, \ldots, \omega_n$.)

2. d_k is a multiple of d_{k-1} for $k = 2, \ldots, n$.

(Use the fact that if $\lambda_k d_k + \mu_k d_{k-1} = \gcd(d_k, d_{k-1})$ for integers λ_k and μ_k then $\lambda_k \alpha \omega_{k-1} + \mu_k \omega_k$ can be expressed uniquely as a \mathbb{Z} -linear combination of $\omega_1, \ldots, \omega_n$.)

3.
$$d_k \omega_k \in \mathbb{Z}[\alpha]$$
 for $k = 1, \ldots, n$.

(Use the fact that $\alpha \omega_k$ can be expressed uniquely as a \mathbb{Z} -linear combination of $\omega_1, \ldots, \omega_n$.)

3. Computing Integral Bases Efficiently

- Let \mathcal{A} be an order of \mathcal{K} and let $\{\omega_1, \ldots, \omega_n\}$ be a \mathbb{Z} -basis for \mathcal{A} .
 - 1. Prove that $\mathcal{A} \subseteq \mathcal{O}$, as follows. For an arbitrary element α of \mathcal{A} let

$$M_{\alpha} = \begin{bmatrix} a_{11} & a_{12} & & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ & & \ddots & \\ a_{n1} & a_{n2} & & a_{nn} \end{bmatrix} \in \mathbb{Z}^{n \times n}$$

be given by $\alpha \omega_j = a_{j1}\omega_1 + \cdots + a_{jn}\omega_n$ for $j = 1, \ldots, n$ and let

$$\chi_{\alpha}(x) = \det(xI - M_{\alpha})$$

Show that $\chi_{\alpha}(x)$ is a monic polynomial in $\mathbb{Z}[x]$ with $\chi_{\alpha}(\alpha) = 0$.

- 2. Apply the previous result with $\mathcal{A} = \mathcal{O}$ to show that if $\beta, \gamma \in \mathcal{K}$ and $\beta \neq 0$ and $\beta \gamma^k \in \mathcal{O}$ for all $k \geq 0$ then $\gamma \in \mathcal{O}$.
- Let p be prime and define

$$\mathcal{O}_p = \{ \alpha \in \mathcal{O} \mid p\alpha \in \mathcal{A} \}, \\ \mathcal{R}_p = \{ \beta \in \mathcal{A} \mid \beta^k \in p\mathcal{A} \text{ for some } k \ge 1 \}, \\ [\mathcal{R}_p/\mathcal{R}_p] = \{ \gamma \in \mathcal{K} \mid \gamma \mathcal{R}_p \subseteq \mathcal{R}_p \}.$$

For $\theta \in \mathcal{K}$ let μ_{θ} denote the minimal polynomial of θ over \mathbb{Q} . Prove the following. 1. $\gamma \mathcal{R}_p \subseteq \mathcal{R}_p \implies p, p\gamma, p\gamma^2, \ldots \in \mathcal{A} \implies \gamma \in \mathcal{O}$. 2. $[\mathcal{R}_p/\mathcal{R}_p]$ is an order of \mathcal{K} . 3. $\mathcal{A} \subseteq [\mathcal{R}_p/\mathcal{R}_p] \subseteq \mathcal{O}_p$. 4. $\alpha^k \in p\mathcal{O}$ for some $k \ge 1 \implies \mu_{\alpha}(x) \mid \mu_{p\beta}(x^k)$ with $p\beta = \alpha^k$

$$\implies \mu_{\alpha}(x) \equiv x^m \pmod{p}$$
 for some $m \ge 1$.

5. $\mu_{\alpha}(x) \equiv x^m \pmod{p}$ for some $m \ge 1 \implies \alpha^m \in p\mathcal{A}$ $\implies \alpha^k \in p\mathcal{O}$ for some $k \ge 1$.

6.
$$\mathcal{R}_p = \{ \alpha \in \mathcal{A} \mid \alpha^k \in p\mathcal{O} \text{ for some } k \ge 1 \}.$$

7. $[\mathcal{R}_p/\mathcal{R}_p] = \{ \gamma \in \mathcal{O} \mid \gamma \mathcal{R}_p \subseteq \mathcal{A} \}.$