Key Polynomials

As we have seen, the Round Two integral basis algorithm involves repeatedly solving $n^2 \times n$ systems of linear equations and so (with the use of up-to-date matrix algorithms) would be expected to take no fewer than $O(n^{1+\log_2 7})$ operations (with $1 + \log_2 7 \approx 3.81$). The Round Four algorithm does considerably better, terminating after

$$O(m^{1+\epsilon}n^3 + m^{2+\epsilon}n^2)$$

operations, where $m = v_p(\operatorname{disc} f)$. The behavior of Round Four is dominated by the cost of computing polynomial resultants, which are required in determining the *p*-adic values of the various elements that arise.

Another approach is to construct sequences of *valuations*, avoiding the explicit construction of individual elements but working instead with their minimal or characteristic polynomials. Determination of p-adic (and other) values is via Newton polygons, of both elementary and "higher order" types; computation of polynomial resultants is thus avoided.

1. Discrete Valuations of $\mathbb{Q}[x]$

Suppose W is a (non-trivial) discrete valuation of $\mathbb{Q}[x]$. We can approximate W by a sequence V_0, V_1, V_2, \ldots , of *inductive valuations* of $\mathbb{Q}[x]$.

We define the valuation V_0 as

$$V_0(a_n x^n + \dots + a_0) = \min \{ W(a_n), \dots, W(a_0) \}.$$

Next we let $\phi_1(x) = x$ and $\mu_1 = W(x)$ and define

$$V_1(a_n x^n + \dots + a_0) = \min \{ V_0(a_i) + i\mu_1 \mid i = 0, \dots, n \}.$$

For k > 1 we assume $W \neq V_{k-1}$. We choose a monic polynomial ϕ_k of minimal degree such that $W(\phi_k) > V_{k-1}(\phi_k)$ and let $\mu_k = W(\phi_k)$.

We define V_k to be the (ϕ_k, μ_k) -augmentation of V_{k-1} , denoted

(1)
$$V_k = \left[V_{k-1}, \phi_k \to \mu_k \right]$$

and given by

(2)
$$V_k(f) = \min \left\{ V_{k-1}(f_i) + i\mu_k \mid i = 0, \dots, n \right\}$$

for f(x) with ϕ_k -adic expansion

(3)
$$f(x) = f_n(x) \phi_k^n + f_{n-1}(x) \phi_k^{n-1} + \dots + f_0(x).$$

Each valuation in the chain V_0, V_1, \ldots, V_k is called an *inductive valuation*. If the construction of the successive inductive valuations does not terminate with $W = V_k$ then we define the valuation V_∞ by

$$V_{\infty}(f) = \lim_{k \to \infty} V_k(f)$$

for each f(x) in $\mathbb{Q}[x]$.

If $W(f) > V_k(f)$ for all k then $V_{k+1}(f) > V_k(f)$ for all k and, since W is discrete, this implies the limit is ∞ . But this limit is bounded by W(f), hence $W(f) = \infty$ and f = 0. Otherwise $W(f) = V_k(f)$ for all $k \ge t$ for some t. Thus $W = V_{\infty}$.

Theorem (M_1) . Every non-trivial discrete valuation of $\mathbb{Q}[x]$ can be represented either as an inductive valuation or as the limit of an infinite sequence of inductive valuations.

2. Homogeneous Form

Definitions. A valuation V of $\mathbb{Q}[x]$ induces certain relations on $\mathbb{Q}[x]$.

equivalence in
$$V : a \approx_V b \iff V(b-a) > V(b)$$
.
equivalence-divisibility in $V : a \parallel_V b \iff b \approx_V ca$ for some $c(x) \in \mathbb{Q}[x]$.

Theorem (M₁). In the inductive valuation V_k any nonzero polynomial f(x) in $\mathbb{Q}[x]$ has a unique (ϕ_1, \ldots, ϕ_k) -adic expansion

(4)
$$f(x) = \sum_{j} c_{j} p^{m_{0j}} \phi_{1}^{m_{1j}} \phi_{2}^{m_{2j}} \cdots \phi_{k}^{m_{k_{2j}}}$$

with $c_j \in \mathbb{Q}$, $v_p(c_j) = 0$, and $0 \le m_{ij} < \deg \phi_{i+1} / \deg \phi_i$ for $i = 1, \ldots, k-1$.

The polynomial f(x) is homogeneous in V_k if all terms in the expansion (4) have the same value in V_k and each coefficient c_j belongs to $\{1, \ldots, p-1\}$.

Each class of polynomials equivalent in V_k contains a unique representative in homogeneous form. The representative of the class of a polynomial f(x) is its *k*-homogeneous part, formed by omitting from the expansion (4) all terms with value greater than $V_k(f)$ and in each remaining term replacing the coefficient c_i by $c_i \mod p$.

We denote the k-homogeneous part of f(x) by $f^{\scriptscriptstyle (V_k)}.$ In general,

$$f\approx_{_{V_k}}f^{_{(V_k)}},\quad V_k(f)=V_k(f^{_{(V_k)}}),\quad f\approx_{_{V_k}}g \text{ if and only if }f^{_{(V_k)}}=g^{_{(V_k)}}.$$

Exercises. Let V_k defined as in section 1. Prove the following.

1. V_k is a (discrete) non-archimedean valuation of $\mathbb{Q}[x]$, i.e.,

2. $W(f) \ge V_k(f)$ for all f(x) in $\mathbb{Q}[x]$.

3. If deg $f < \deg \phi_k$ then $W(f) = V_k(f)$.

4.
$$W(\phi_i) = V_k(\phi_i)$$
 for $i = 1, ..., k$.

- 5. $W(f) > V_{k-1}(f)$ if and only if $\phi_k \parallel_{V_{k-1}} f$.
- 6. $V_k(f) > V_{k-1}(f)$ if and only if $\phi_k \parallel_{V_{k-1}} f$.
- 7. $\phi_k(x) \not\approx_{V_{k-1}} \phi_{k-1}(x)$.
- 8. If $\phi_k \parallel_{V_{k-1}} f$ and $f \neq 0$ then deg $f \ge \deg \phi_k$.
- 9. If $\phi_k \parallel_{V_{k-1}} fg$ then $\phi_k \parallel_{V_{k-1}} f$ or $\phi_k \parallel_{V_{k-1}} g$.

Note: The exercises appear as lemmas and theorems in MacLane's 1936 papers.

BIBLIOGRAPHY

- [M₁] S. MacLane, A construction for absolute values in polynomial rings, Transactions of the American Mathematical Society 40(3) (1936) 363–395.
- [M₂] S. MacLane, A construction for prime ideals as absolute values of an algebraic field, Duke Mathematical Journal 2 (1936) 492–510.

3. Key Polynomials and Augmented Valuations

The construction of inductive valuations outlined in the previous section relies on the properties of *key polynomials*.

Definition. A key polynomial over a valuation V of $\mathbb{Q}[x]$ is a non-constant monic polynomial $\phi(x)$ in $\mathbb{Z}[x]$ that is minimal in V, i.e.,

$$\phi \parallel_{\scriptscriptstyle V} f \text{ and } f \neq 0 \implies \deg f \geq \deg \phi,$$

and equivalence-irreducible in V, i.e.,

$$\phi \parallel_{_{V}} fg \implies \phi \parallel_{_{V}} f \text{ or } \phi \parallel_{_{V}} g.$$

Definition. For V a valuation of $\mathbb{Q}[x]$, $\phi(x)$ a non-constant polynomial in $\mathbb{Q}[x]$, and $\mu \in \mathbb{Q}$, the (ϕ, μ) -augmentation of V is the map

$$W = [V, \phi \rightarrow \mu]$$

given by

$$W(f) = \min \{ V(f_i) + i\mu \mid i = 0, ..., n \}$$

for f(x) with ϕ -adic expansion

$$f(x) = f_n(x) \phi^n + f_{n-1}(x) \phi^{n-1} + \dots + f_0(x)$$

Exercises. Let $\phi(x)$ be a key polynomial over V, let $\mu > V(\phi)$, and let W be the (ϕ, μ) -augmentation of V. Prove the following.

- 1. If $f(x) \neq 0$ then
 - (i) $V(f \mod \phi) \ge V(f)$, and
 - (ii) $V(f \mod \phi) > V(f)$ if and only if $\phi \parallel_V f$.
- 2. Let a(x) and b(x) be polynomials with $\deg a < \deg \phi$ and $\deg b < \deg \phi$, and $\det a(x)b(x) = q(x)\phi + r(x)$ with $r(x) = a(x)b(x) \mod \phi$. Then $V(q\phi) \ge V(ab) = V(r).$
- 3. If a(x) and b(x) are polynomials with $\deg a < \deg \phi$ and $\deg b < \deg \phi$ then $W(a\phi^s \cdot b\phi^t) = W(a\phi^s) + W(b\phi^t).$
- 4. If the polynomials f(x), g(x), and f(x)g(x) have ϕ -adic expansions

$$f(x) = \sum_{j} f_{j}(x)\phi^{j}, \ g(x) = \sum_{k} g_{k}(x)\phi^{k}, \ f(x)g(x) = \sum_{m} h_{m}(x)\phi^{m}$$

respectively, and if \boldsymbol{s} and \boldsymbol{t} are the largest integers such that

$$W(f_s\phi^s) = W(f), \quad W(g_t\phi^t) = W(g)$$

 $respectively,\ then$

```
W(h_{s+t}\phi^{s+t}) = W(f) + W(g).
```

5. W is a valuation of $\mathbb{Q}[x]$.

Exercise. Let V and W be valuations of $\mathbb{Q}[x]$ such that $W(f) \ge V(f)$ for all f(x) and let $\phi(x)$ be a monic polynomial of minimum degree such that $W(\phi) > V(\phi)$. Show that $\phi(x)$ is a key polynomial over V, as follows.

- 1. Show that W(f) > V(f) if and only if $\phi \parallel_V f$.
- 2. Show that $\phi(x)$ is equivalence-irreducible in V.
- 3. Show that $\phi(x)$ is minimal in V.

4. Non-finite Valuations

Definition. A non-finite valuation of $\mathbb{Q}[x]$ is a map $W : \mathbb{Q}[x] \to \mathbb{Q} \cup \{\infty\}$ such that

- $W(0) = \infty$,
- W(fg) = W(f) + W(g),
- $W(f+g) \ge \min \{W(f), W(g)\}$

for all f(x), g(x) in $\mathbb{Q}[x]$.

Suppose G(x) is the defining polynomial for an algebraic extension \mathcal{K} of \mathbb{Q} , given by $\mathcal{K} = \mathbb{Q}(\xi)$ for some root ξ of G(x). We are interested in extending the *p*-adic valuation v_p to \mathcal{K} . Any such extension gives rise to a non-finite valuation W of $\mathbb{Q}[x]$, defined by

$$W(f) = v_p(f(\xi))$$

for $f(x) \in \mathbb{Q}[x]$. The non-finite valuation W can be approximated by a sequence of inductive valuations, in just the same way a discrete valuation of $\mathbb{Q}[x]$ can.

Note that W depends on the choice of ξ , and if $\mu(x)$ is the minimal polynomial of ξ over \mathbb{Q}_p then $W(f) = \infty$ if and only if $\mu(x)$ divides f(x) in $\mathbb{Q}_p[x]$.

Exercise. Assume $1 \le k \le n-1$. Show that

1. $V_n(\phi_k) = V_k(\phi_k)$, and

2. if deg $f < \deg \phi_{k+1}$ then $V_n(f) = V_k(f)$.

The G-projection of V_k

Suppose G(x) has ϕ_k -adic expansion

(5)
$$G(x) = g_m(x) \phi_k^m + g_{m-1}(x) \phi_k^{m-1} + \dots + g_0(x)$$

and that the expression $V_k(g_i\phi_k^i)$ is minimal for the single value i = e. By the exercise and the triangle law, if n > k then

$$V_n(G) = V_n(g_e \phi_k^e) = V_k(g_e \phi_k^e) = V_k(G)$$

and W cannot be the limit of the sequence V_0, V_1, V_2, \ldots

Definition. The difference

 $\max\left\{ \left. i \right. \left| \right. V_k(G) = V_k(g_i \phi_k^i) \right. \right\} \ - \ \min\left\{ \left. i \right. \left| \right. V_k(G) = V_k(g_i \phi_k^i) \right. \right\}$

from the expansion (5) is called the *G*-projection of V_k .

To approximate W we are constrained to choose only key polynomials ϕ_k and key values μ_k so that each valuation V_k will have positive G-projection.

Definition. V_k is called a k^{th} approximant to G if the G-projection of V_k is positive.

Key Values

The key polynomial ϕ_k having been determined the expansion (5) can be computed and its *level* k *Newton polygon*, the lower convex hull of the set

$$\{(i, V_{k-1}(g_i)) \mid i = 0, \ldots, m\},\$$

can be drawn.

The $G\mbox{-}\mathrm{projection}$ constraint obliges us to choose μ_k so that the lower convex hull of the set

$$\{(i, V_{k-1}(g_i) + i\mu_k) \mid i = 0, \dots, m\}$$

has a horizontal edge, and this is the case if and only if $-\mu_k$ is the slope of an edge of the level k Newton polygon.

It is also necessary to have $\mu_k > V_{k-1}(\phi_k)$.

Finding ϕ_k

Definition. A polynomial e(x) with ϕ_k -adic expansion

$$e(x) = e_m(x) \phi_k^m + e_{m-1}(x) \phi_k^{m-1} + \dots + e_0(x)$$

is an equivalence-unit in V_k if $V_k(e_0(x)) < V_k(e_j(x)\phi_k^j)$ for j = 1, ..., m.

Lemma (M₂). The polynomial ϕ_k is a key polynomial over V_k .

Theorem (M_2) . In the inductive valuation V_k every polynomial f(x) has a decomposition

$$f(x) \approx_{V_k} e(x) \psi_1(x) \psi_2(x) \cdots \psi_t(x)$$

as a product of homogeneous polynomials, with e(x) an equivalence-unit and each $\psi_i(x)$ a key polynomial, and this decomposition is unique except for the order of the factors.

Lemma (M₂). If V_k is a k^{th} approximant to G then $\phi_k \parallel_{V_{k-1}} G$.

Lemma (M₂). If G(x) is not itself a key polynomial over V_{k-1} then

$$G(x) \approx_{V_{k-1}} e(x) \psi_1(x) \cdots \psi_t(x)$$

with e(x) a homogeneous equivalence-unit and $\psi_1(x), \ldots, \psi_t(x)$ homogeneous key polynomials over V_{k-1} .

Lemma (M₂). If ϕ_k is chosen to be one of ψ_1, \ldots, ψ_t , but with $\phi_k \neq \phi_{k-1}$, and if the key value μ_k is chosen as described above, then

$$V_k = \left[V_{k-1}, \, \phi_k \to \mu_k \right]$$

is a k^{th} approximant to G.

5. Residue-classes

Definitions. A valuation V of $\mathbb{Q}[x]$ induces certain relations on $\mathbb{Q}[x]$.

$$\label{eq:congruence} \begin{array}{l} \textit{congruence in } V: a \equiv_{_V} b \iff V(b-a) > 0. \\ \textit{congruence-divisibility in } V: a \parallel_{_V} b \iff b \equiv_{_V} ca \ \text{for some } c(x) \in \mathbb{Q}[x]. \end{array}$$

Definitions. For a valuation V of $\mathbb{Q}[x]$, the valuation ring O_V of V, the prime ideal P_V of O_V , the residue-class $\llbracket a \rrbracket_V$ of a polynomial a(x) in O_V , and the residue-class ring Δ_V are given by

$$\begin{split} O_{V} &= \big\{ \, a(x) \in \mathbb{Q}[x] \mid V(a) \geq 0 \, \big\}, \\ P_{V} &= \big\{ \, a(x) \in \mathbb{Q}[x] \mid V(a) > 0 \, \big\}, \\ \big\| a \, \big\|_{V} &= \big\{ \, b(x) \in O_{V} \mid V(b-a) > 0 \, \big\}, \\ \Delta_{V} &= O_{V} / P_{V} = \big\{ \, \big\| a \, \big\|_{V} \mid a(x) \in O_{V} \, \big\}. \end{split}$$

Definition. We let Γ_V denote the *value-group* of *V*, *i.e.*,

 $\Gamma_V = V(\mathbb{Q}[x]).$

Definition. For $W = [V, \phi \rightarrow \mu]$ and f(x) a polynomial with $W(f) \in \Gamma_V$, a *W*-flattener of f is a polynomial $f^{\flat}_W(x)$ such that

$$V(f_W^{\flat}) = W(f_W^{\flat}) = -W(f).$$

Proposition (M₁). Let $W = [V, \phi \rightarrow \mu]$, let f(x) be a polynomial with $\phi \not\parallel_W f$, and let $f^{\flat}_w(x)$ be an arbitrary W-flattener of f.

(i) If $g(x) \in \mathbb{Q}[x]$ with W(g) = 0 then

$$f \parallel_W g \iff f_W^{\flat} f \parallel_W g.$$

(ii) The polynomial f(x) is equivalence-irreducible in W if and only if

$$f_W^{\flat}f \parallel_W gh \Longrightarrow f_W^{\flat}f \parallel_W g$$
 or $f_W^{\flat}f \parallel_W h$

for all polynomials g(x) and h(x) with W(g) = W(h) = 0.

Definitions. For $W = [V, \phi_w \to \mu_w]$ we define F_w , τ_w , $\phi_{ww}^{\tau_W \flat}$, y_w as follows.

 $\circ \ F_{_W}$ is the subring of $\Delta_{_W}$ given by

$$F_{\scriptscriptstyle W} \! = \big\{ \left[\!\!\left[f \, \right]\!\!\right]_{\scriptscriptstyle W} \, \big| \, V(f) \geq 0 \, \big\} = \big\{ \left[\!\left[f \, \right]\!\!\right]_{\scriptscriptstyle W} \, \big| \, f \in O_{\scriptscriptstyle V} \, \big\}.$$

 $\circ \ \tau_{\scriptscriptstyle W} \ \text{denotes the smallest positive integer such that} \ \tau_{\scriptscriptstyle W} \mu_{\scriptscriptstyle W} \in \Gamma_{\!\scriptscriptstyle V}.$

• $\phi_{WW}^{\tau_W \flat}(x)$ denotes an arbitrary *W*-flattener of $\phi_W^{\tau_W}$.

• y_W denotes the residue-class $[\![\phi_{WW}^{\tau_W \flat} \phi_W^{\tau_W}]\!]_W$.

Lemma (M₁). y_w is transcendental over F_w and $\Delta_w = F_w[y_w]$.

Lemma (M₁). If V is the (ϕ, μ) -augmentation of the valuation U and $\psi(x)$ is a key polynomial over V not equivalent in V to $\phi(x)$ then $V(\psi) \in \Gamma_{U}$.

Theorem (M₁). Let V be the (ϕ_V, μ_V) -augmentation of the valuation U, let W be the (ϕ_W, μ_W) -augmentation of V, with $\phi_W \not\approx_V \phi_V$, and let $\phi_{WV}^{\flat}(x)$ be an arbitrary V-flattener of ϕ_W . Then the following hold.

- (i) The polynomial $\psi_w(y_v) = \llbracket \phi_{wv}^{\flat} \phi_w \rrbracket_v$ is irreducible in $F_v[y_v]$.
- (ii) If θ_W is a root of ψ_W then $F_W = F_V(\theta_W)$.
- (iii) If $m = \deg \psi_w$ then $\deg \phi_w = m \tau_v \deg \phi_v$.