
Key Polynomials
As we have seen, the Round Two integral basis algorithm involves repeatedly solv-
ing n2 × n systems of linear equations and so (with the use of up-to-date matrix
algorithms) would be expected to take no fewer than O(n1+log27) operations (with
1 + log2 7 ≈ 3.81). The Round Four algorithm does considerably better, terminating
after

O
(
m1+εn3 +m2+εn2

)
operations, where m = vp(disc f). The behavior of Round Four is dominated by the
cost of computing polynomial resultants, which are required in determining the p-adic
values of the various elements that arise.

Another approach is to construct sequences of valuations, avoiding the explicit con-
struction of individual elements but working instead with their minimal or character-
istic polynomials. Determination of p-adic (and other) values is via Newton polygons,
of both elementary and “higher order” types; computation of polynomial resultants
is thus avoided.

1. Discrete Valuations of QQQ[x]

Suppose W is a (non-trivial) discrete valuation of Q[x]. We can approximate W by
a sequence V0, V1, V2, . . . , of inductive valuations of Q[x].

We define the valuation V0 as

V0(anx
n + · · ·+ a0) = min

{
W (an), . . . , W (a0)

}
.

Next we let φ1(x) = x and µ1 = W (x) and define

V1(anx
n + · · ·+ a0) = min

{
V0(ai) + iµ1

∣∣ i = 0, . . . , n
}
.

For k > 1 we assume W 6= Vk−1. We choose a monic polynomial φk of minimal
degree such that W (φk) > Vk−1(φk) and let µk = W (φk).

We define Vk to be the (φk, µk)-augmentation of Vk−1, denoted

(1) Vk =
[
Vk−1, φk → µk

]
and given by

(2) Vk(f) = min
{
Vk−1(fi) + iµk

∣∣ i = 0, . . . , n
}

for f(x) with φk-adic expansion

(3) f(x) = fn(x)φn
k + fn−1(x)φn−1

k + · · ·+ f0(x).

Each valuation in the chain V0, V1, . . . , Vk is called an inductive valuation. If the
construction of the successive inductive valuations does not terminate with W = Vk

then we define the valuation V∞ by

V∞(f) = lim
k→∞

Vk(f)

for each f(x) in Q[x].

If W (f) > Vk(f) for all k then Vk+1(f) > Vk(f) for all k and, since W is discrete,
this implies the limit is ∞. But this limit is bounded by W (f), hence W (f) = ∞
and f = 0. Otherwise W (f) = Vk(f) for all k ≥ t for some t. Thus W = V∞.

Theorem (M1). Every non-trivial discrete valuation of Q[x] can be represented
either as an inductive valuation or as the limit of an infinite sequence of inductive
valuations.
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2. Homogeneous Form

Definitions. A valuation V of Q[x] induces certain relations on Q[x].

equivalence in V : a ≈V b ⇐⇒ V (b− a) > V (b).

equivalence-divisibility in V : a ‖V b ⇐⇒ b ≈
V ca for some c(x) ∈ Q[x].

Theorem (M1). In the inductive valuation Vk any nonzero polynomial f(x) in Q[x]
has a unique (φ1, . . . , φk)-adic expansion

(4) f(x) =
∑

j
cj p

m0jφ
m1j

1 φ
m2j

2 · · · φmkj

k

with cj ∈ Q, vp(cj) = 0, and 0 ≤ mij < deg φi+1/deg φi for i = 1, . . . , k − 1.

The polynomial f(x) is homogeneous in Vk if all terms in the expansion (4) have the
same value in Vk and each coefficient cj belongs to {1, . . . , p− 1}.

Each class of polynomials equivalent in Vk contains a unique representative in homoge-
neous form. The representative of the class of a polynomial f(x) is its k-homogeneous
part, formed by omitting from the expansion (4) all terms with value greater than
Vk(f) and in each remaining term replacing the coefficient cj by cj mod p.

We denote the k-homogeneous part of f(x) by f (Vk). In general,

f ≈Vk
f (Vk), Vk(f) = Vk(f (Vk)), f ≈Vk

g if and only if f (Vk) = g(Vk).

Exercises. Let Vk defined as in section 1. Prove the following.

1. Vk is a (discrete) non-archimedean valuation of Q[x], i.e.,

◦ Vk(f) = ∞ if and only if f = 0,

◦ Vk(fg) = Vk(f) + Vk(g),

◦ Vk(f + g) ≥ min
{
Vk(f), Vk(g)

}
.

2. W (f) ≥ Vk(f) for all f(x) in Q[x].

3. If deg f < deg φk then W (f) = Vk(f).

4. W (φi) = Vk(φi) for i = 1, . . . , k.

5. W (f) > Vk−1(f) if and only if φk ‖Vk−1
f .

6. Vk(f) > Vk−1(f) if and only if φk ‖Vk−1
f .

7. φk(x) 6≈Vk−1
φk−1(x).

8. If φk ‖Vk−1
f and f 6= 0 then deg f ≥ deg φk.

9. If φk ‖Vk−1
fg then φk ‖Vk−1

f or φk ‖Vk−1
g.

Note: The exercises appear as lemmas and theorems in MacLane’s 1936 papers.
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3. Key Polynomials and Augmented Valuations

The construction of inductive valuations outlined in the previous section relies on the
properties of key polynomials.

Definition. A key polynomial over a valuation V of Q[x] is a non-constant monic
polynomial φ(x) in Z[x] that is minimal in V , i.e.,

φ ‖V f and f 6= 0 =⇒ deg f ≥ deg φ,

and equivalence-irreducible in V , i.e.,

φ ‖V fg =⇒ φ ‖V f or φ ‖V g.

Definition. For V a valuation of Q[x], φ(x) a non-constant polynomial in Q[x], and
µ ∈ Q, the (φ, µ)-augmentation of V is the map

W =
[
V, φ→ µ

]
given by

W (f) = min {V (fi) + iµ | i = 0, . . . , n }

for f(x) with φ-adic expansion

f(x) = fn(x)φn + fn−1(x)φn−1 + · · ·+ f0(x).

Exercises. Let φ(x) be a key polynomial over V , let µ > V (φ), and let W be
the (φ, µ)-augmentation of V . Prove the following.

1. If f(x) 6= 0 then

(i) V (f mod φ) ≥ V (f), and

(ii) V (f mod φ) > V (f) if and only if φ ‖V f .

2. Let a(x) and b(x) be polynomials with deg a < deg φ and deg b < deg φ, and
let a(x)b(x) = q(x)φ+ r(x) with r(x) = a(x)b(x) mod φ. Then

V (qφ) ≥ V (ab) = V (r).

3. If a(x) and b(x) are polynomials with deg a < deg φ and deg b < deg φ then

W (aφs · bφt) = W (aφs) +W (bφt).

4. If the polynomials f(x), g(x), and f(x)g(x) have φ-adic expansions

f(x) =
∑

j fj(x)φj , g(x) =
∑

k gk(x)φk, f(x)g(x) =
∑

m hm(x)φm

respectively, and if s and t are the largest integers such that

W (fsφ
s) = W (f), W (gtφ

t) = W (g)

respectively, then
W (hs+tφ

s+t) = W (f) +W (g).

5. W is a valuation of Q[x].

Exercise. Let V andW be valuations of Q[x] such thatW (f) ≥ V (f) for all f(x)
and let φ(x) be a monic polynomial of minimum degree such that W (φ) > V (φ).
Show that φ(x) is a key polynomial over V , as follows.

1. Show that W (f) > V (f) if and only if φ ‖V f .

2. Show that φ(x) is equivalence-irreducible in V .

3. Show that φ(x) is minimal in V .
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4. Non-finite Valuations

Definition. A non-finite valuation of Q[x] is a map W : Q[x] → Q ∪{∞} such that

• W (0) = ∞,

• W (fg) = W (f) +W (g),

• W (f + g) ≥ min
{
W (f), W (g)

}
for all f(x), g(x) in Q[x].

Suppose G(x) is the defining polynomial for an algebraic extension K of Q, given
by K = Q(ξ) for some root ξ of G(x). We are interested in extending the p-adic
valuation vp to K. Any such extension gives rise to a non-finite valuation W of Q[x],
defined by

W (f) = vp(f(ξ))
for f(x) ∈ Q[x]. The non-finite valuation W can be approximated by a sequence of
inductive valuations, in just the same way a discrete valuation of Q[x] can.

Note that W depends on the choice of ξ, and if µ(x) is the minimal polynomial of ξ
over Qp then W (f) =∞ if and only if µ(x) divides f(x) in Qp[x].

Exercise. Assume 1 ≤ k ≤ n− 1. Show that

1. Vn(φk) = Vk(φk), and

2. if deg f < deg φk+1 then Vn(f) = Vk(f).

The G-projection of Vk

Suppose G(x) has φk-adic expansion

(5) G(x) = gm(x)φm
k + gm−1(x)φm−1

k + · · ·+ g0(x)

and that the expression Vk(giφ
i
k) is minimal for the single value i = e. By the exercise

and the triangle law, if n > k then

Vn(G) = Vn(geφ
e
k) = Vk(geφ

e
k) = Vk(G)

and W cannot be the limit of the sequence V0, V1, V2, . . . .

Definition. The difference

max
{
i
∣∣ Vk(G) = Vk(giφ

i
k)

}
− min

{
i
∣∣ Vk(G) = Vk(giφ

i
k)

}
from the expansion (5) is called the G-projection of Vk.

To approximate W we are constrained to choose only key polynomials φk and key
values µk so that each valuation Vk will have positive G-projection.

Definition. Vk is called a kthapproximant to G if the G-projection of Vk is positive.

Key Values

The key polynomial φk having been determined the expansion (5) can be computed
and its level k Newton polygon, the lower convex hull of the set{ (

i, Vk−1(gi)
) ∣∣ i = 0, . . . , m

}
,

can be drawn.

The G-projection constraint obliges us to choose µk so that the lower convex hull of
the set { (

i, Vk−1(gi) + iµk

) ∣∣ i = 0, . . . , m
}

has a horizontal edge, and this is the case if and only if −µk is the slope of an edge
of the level k Newton polygon.

It is also necessary to have µk > Vk−1(φk).

Finding φk

Definition. A polynomial e(x) with φk-adic expansion

e(x) = em(x)φm
k + em−1(x)φm−1

k + · · ·+ e0(x)

is an equivalence-unit in Vk if Vk

(
e0(x)

)
< Vk

(
ej(x)φ

j
k

)
for j = 1, . . . , m.

Lemma (M2). The polynomial φk is a key polynomial over Vk.

Theorem (M2). In the inductive valuation Vk every polynomial f(x) has a decom-
position

f(x) ≈Vk
e(x)ψ1(x)ψ2(x) · · · ψt(x)

as a product of homogeneous polynomials, with e(x) an equivalence-unit and each
ψi(x) a key polynomial, and this decomposition is unique except for the order of the
factors.

Lemma (M2). If Vk is a kthapproximant to G then φk ‖Vk−1
G.

Lemma (M2). If G(x) is not itself a key polynomial over Vk−1 then

G(x) ≈Vk−1
e(x)ψ1(x) · · · ψt(x)

with e(x) a homogeneous equivalence-unit and ψ1(x), . . . , ψt(x) homogeneous key
polynomials over Vk−1.

Lemma (M2). If φk is chosen to be one of ψ1, . . . , ψt, but with φk 6= φk−1, and if
the key value µk is chosen as described above, then

Vk =
[
Vk−1, φk → µk

]
is a kthapproximant to G.
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5. Residue-classes

Definitions. A valuation V of Q[x] induces certain relations on Q[x].

congruence in V : a ≡V b ⇐⇒ V (b− a) > 0.

congruence-divisibility in V : a |||V b ⇐⇒ b ≡
V ca for some c(x) ∈ Q[x].

Definitions. For a valuation V of Q[x], the valuation ring OV of V , the prime ideal
PV of OV , the residue-class [[a ]]V of a polynomial a(x) in OV , and the residue-class
ring ∆

V
are given by

O
V

=
{
a(x) ∈ Q[x]

∣∣ V (a) ≥ 0
}
,

P
V

=
{
a(x) ∈ Q[x]

∣∣ V (a) > 0
}
,

[[a ]]
V

= { b(x) ∈ O
V
| V (b− a) > 0 },

∆V = OV /PV =
{

[[a ]]V
∣∣ a(x) ∈ OV

}
.

Definition. We let ΓV denote the value-group of V, i.e.,

ΓV = V (Q[x]).

Definition. For W = [V, φ → µ ] and f(x) a polynomial with W (f) ∈ ΓV , a
W-flattener of f is a polynomial f [

W
(x) such that

V (f [
W

) = W (f [
W

) = −W (f).

Proposition (M1). Let W = [V, φ → µ ], let f(x) be a polynomial with φ ∦W f ,
and let f [

W
(x) be an arbitrary W -flattener of f .

(i) If g(x) ∈ Q[x] with W (g) = 0 then

f ‖W g ⇐⇒ f [
W
f |||W g.

(ii) The polynomial f(x) is equivalence-irreducible in W if and only if

f [
W
f |||W gh =⇒ f [

W
f |||W g or f [

W
f |||W h

for all polynomials g(x) and h(x) with W (g) = W (h) = 0.

Definitions. For W = [V, φW → µW ] we define FW , τW , φτW [
WW

, yW as follows.

◦ FW is the subring of ∆W given by

FW =
{

[[f ]]W
∣∣ V (f) ≥ 0

}
=

{
[[f ]]W

∣∣ f ∈ OV

}
.

◦ τ
W

denotes the smallest positive integer such that τ
W
µ

W
∈ ΓV .

◦ φτW [
WW

(x) denotes an arbitrary W -flattener of φτW
W

.

◦ yW denotes the residue-class [[φτW [
WW

φτW
W

]]W .

Lemma (M1). yW is transcendental over FW and ∆W = FW [yW ].

Lemma (M1). If V is the (φ, µ)-augmentation of the valuation U and ψ(x) is a key
polynomial over V not equivalent in V to φ(x) then V (ψ) ∈ ΓU .

Theorem (M1). Let V be the (φV , µV )-augmentation of the valuation U, let W be
the (φW , µW )-augmentation of V, with φW 6≈V φV , and let φ[

WV
(x) be an arbitrary

V -flattener of φW . Then the following hold.

(i) The polynomial ψW(yV) = [[φ[
WV

φW ]]V is irreducible in FV [yV ].

(ii) If θ
W

is a root of ψ
W

then F
W

= F
V
(θ

W
).

(iii) If m = degψW then deg φW = mτV deg φV .
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