## Key Polynomials

As we have seen, the Round Two integral basis algorithm involves repeatedly solving $n^{2} \times n$ systems of linear equations and so (with the use of up-to-date matrix algorithms) would be expected to take no fewer than $O\left(n^{1+\log _{2} 7}\right)$ operations (with $1+\log _{2} 7 \approx 3.81$ ). The Round Four algorithm does considerably better, terminating after

$$
O\left(m^{1+\epsilon} n^{3}+m^{2+\epsilon} n^{2}\right)
$$

operations, where $m=v_{p}(\operatorname{disc} f)$. The behavior of Round Four is dominated by the cost of computing polynomial resultants, which are required in determining the $p$-adic values of the various elements that arise.

Another approach is to construct sequences of valuations, avoiding the explicit construction of individual elements but working instead with their minimal or characteristic polynomials. Determination of $p$-adic (and other) values is via Newton polygons, of both elementary and "higher order" types; computation of polynomial resultants is thus avoided.

## 1. Discrete Valuations of $\mathbb{Q}[x]$

Suppose $W$ is a (non-trivial) discrete valuation of $\mathbb{Q}[x]$. We can approximate $W$ by a sequence $V_{0}, V_{1}, V_{2}, \ldots$, of inductive valuations of $\mathbb{Q}[x]$.

We define the valuation $V_{0}$ as

$$
V_{0}\left(a_{n} x^{n}+\cdots+a_{0}\right)=\min \left\{W\left(a_{n}\right), \ldots, W\left(a_{0}\right)\right\} .
$$

Next we let $\phi_{1}(x)=x$ and $\mu_{1}=W(x)$ and define

$$
V_{1}\left(a_{n} x^{n}+\cdots+a_{0}\right)=\min \left\{V_{0}\left(a_{i}\right)+i \mu_{1} \mid i=0, \ldots, n\right\} .
$$

For $k>1$ we assume $W \neq V_{k-1}$. We choose a monic polynomial $\phi_{k}$ of minimal degree such that $W\left(\phi_{k}\right)>V_{k-1}\left(\phi_{k}\right)$ and let $\mu_{k}=W\left(\phi_{k}\right)$.

We define $V_{k}$ to be the $\left(\phi_{k}, \mu_{k}\right)$-augmentation of $V_{k-1}$, denoted

$$
\begin{equation*}
V_{k}=\left[V_{k-1}, \phi_{k} \rightarrow \mu_{k}\right] \tag{1}
\end{equation*}
$$

and given by

$$
\begin{equation*}
V_{k}(f)=\min \left\{V_{k-1}\left(f_{i}\right)+i \mu_{k} \mid i=0, \ldots, n\right\} \tag{2}
\end{equation*}
$$

for $f(x)$ with $\phi_{k}$-adic expansion

$$
\begin{equation*}
f(x)=f_{n}(x) \phi_{k}^{n}+f_{n-1}(x) \phi_{k}^{n-1}+\cdots+f_{0}(x) \tag{3}
\end{equation*}
$$

Each valuation in the chain $V_{0}, V_{1}, \ldots, V_{k}$ is called an inductive valuation. If the construction of the successive inductive valuations does not terminate with $W=V_{k}$ then we define the valuation $V_{\infty}$ by

$$
V_{\infty}(f)=\lim _{k \rightarrow \infty} V_{k}(f)
$$

for each $f(x)$ in $\mathbb{Q}[x]$.
If $W(f)>V_{k}(f)$ for all $k$ then $V_{k+1}(f)>V_{k}(f)$ for all $k$ and, since $W$ is discrete, this implies the limit is $\infty$. But this limit is bounded by $W(f)$, hence $W(f)=\infty$ and $f=0$. Otherwise $W(f)=V_{k}(f)$ for all $k \geq t$ for some $t$. Thus $W=V_{\infty}$.

Theorem $\left(\mathrm{M}_{1}\right)$. Every non-trivial discrete valuation of $\mathbb{Q}[x]$ can be represented either as an inductive valuation or as the limit of an infinite sequence of inductive valuations.

## 2. Homogeneous Form

Definitions. A valuation $V$ of $\mathbb{Q}[x]$ induces certain relations on $\mathbb{Q}[x]$.

$$
\text { equivalence in } V: a \approx_{V} b \Longleftrightarrow V(b-a)>V(b) .
$$

equivalence-divisibility in $V: a \|_{V} b \Longleftrightarrow b \approx_{V} c a$ for some $c(x) \in \mathbb{Q}[x]$.

Theorem $\left(\mathrm{M}_{1}\right)$. In the inductive valuation $V_{k}$ any nonzero polynomial $f(x)$ in $\mathbb{Q}[x]$ has a unique $\left(\phi_{1}, \ldots, \phi_{k}\right)$-adic expansion

$$
\begin{equation*}
f(x)=\sum_{j} c_{j} p^{m_{0 j}} \phi_{1}^{m_{1 j}} \phi_{2}^{m_{2 j}} \cdots \phi_{k}^{m_{k j}} \tag{4}
\end{equation*}
$$

with $c_{j} \in \mathbb{Q}, v_{p}\left(c_{j}\right)=0$, and $0 \leq m_{i j}<\operatorname{deg} \phi_{i+1} / \operatorname{deg} \phi_{i}$ for $i=1, \ldots, k-1$.

The polynomial $f(x)$ is homogeneous in $V_{k}$ if all terms in the expansion (4) have the same value in $V_{k}$ and each coefficient $c_{j}$ belongs to $\{1, \ldots, p-1\}$.

Each class of polynomials equivalent in $V_{k}$ contains a unique representative in homogeneous form. The representative of the class of a polynomial $f(x)$ is its $k$-homogeneous part, formed by omitting from the expansion (4) all terms with value greater than $V_{k}(f)$ and in each remaining term replacing the coefficient $c_{j}$ by $c_{j} \bmod p$.

We denote the $k$-homogeneous part of $f(x)$ by $f^{\left(V_{k}\right)}$. In general,

$$
f \approx_{V_{k}} f^{\left(V_{k}\right)}, \quad V_{k}(f)=V_{k}\left(f^{\left(V_{k}\right)}\right), \quad f \approx_{V_{k}} g \text { if and only if } f^{\left(V_{k}\right)}=g^{\left(V_{k}\right)} .
$$

Exercises. Let $V_{k}$ defined as in section 1. Prove the following.

1. $V_{k}$ is a (discrete) non-archimedean valuation of $\mathbb{Q}[x]$, i.e.,

- $V_{k}(f)=\infty$ if and only if $f=0$,
- $V_{k}(f g)=V_{k}(f)+V_{k}(g)$,
- $V_{k}(f+g) \geq \min \left\{V_{k}(f), V_{k}(g)\right\}$.

2. $W(f) \geq V_{k}(f)$ for all $f(x)$ in $\mathbb{Q}[x]$.
3. If $\operatorname{deg} f<\operatorname{deg} \phi_{k}$ then $W(f)=V_{k}(f)$.
4. $W\left(\phi_{i}\right)=V_{k}\left(\phi_{i}\right)$ for $i=1, \ldots, k$.
5. $W(f)>V_{k-1}(f)$ if and only if $\phi_{k} \|_{V_{k-1}} f$.
6. $V_{k}(f)>V_{k-1}(f)$ if and only if $\phi_{k} \|_{V_{k-1}} f$.
7. $\phi_{k}(x) \not \overbrace{V_{k-1}} \phi_{k-1}(x)$.
8. If $\phi_{k} \|_{v_{k-1}} f$ and $f \neq 0$ then $\operatorname{deg} f \geq \operatorname{deg} \phi_{k}$.
9. If $\phi_{k} \|_{V_{k-1}}$ fg then $\phi_{k} \|_{V_{k-1}} f$ or $\phi_{k} \|_{V_{k-1}} g$.

Note: The exercises appear as lemmas and theorems in MacLane's 1936 papers.

## Bibliography

[ $\mathrm{M}_{1}$ ] S. MacLane, A construction for absolute values in polynomial rings, Transactions of the American Mathematical Society 40(3) (1936) 363-395.
$\left[\mathrm{M}_{2}\right]$ S. MacLane, A construction for prime ideals as absolute values of an algebraic field, Duke Mathematical Journal 2 (1936) 492-510.

## 3. Key Polynomials and Augmented Valuations

The construction of inductive valuations outlined in the previous section relies on the properties of key polynomials.

Definition. A key polynomial over a valuation $V$ of $\mathbb{Q}[x]$ is a non-constant monic polynomial $\phi(x)$ in $\mathbb{Z}[x]$ that is minimal in $V$, i.e.,

$$
\phi \|_{V} f \text { and } f \neq 0 \Longrightarrow \operatorname{deg} f \geq \operatorname{deg} \phi
$$

and equivalence-irreducible in $V$, i.e.,

$$
\phi\left\|_{V} f g \Longrightarrow \phi\right\|_{V} f \text { or } \phi \|_{V} g
$$

Definition. For $V$ a valuation of $\mathbb{Q}[x], \phi(x)$ a non-constant polynomial in $\mathbb{Q}[x]$, and $\mu \in \mathbb{Q}$, the $(\phi, \mu)$-augmentation of $V$ is the map

$$
W=[V, \phi \rightarrow \mu]
$$

given by

$$
W(f)=\min \left\{V\left(f_{i}\right)+i \mu \mid i=0, \ldots, n\right\}
$$

for $f(x)$ with $\phi$-adic expansion

$$
f(x)=f_{n}(x) \phi^{n}+f_{n-1}(x) \phi^{n-1}+\cdots+f_{0}(x)
$$

Exercises. Let $\phi(x)$ be a key polynomial over $V$, let $\mu>V(\phi)$, and let $W$ be the $(\phi, \mu)$-augmentation of $V$. Prove the following.

1. If $f(x) \neq 0$ then
(i) $V(f \bmod \phi) \geq V(f)$, and
(ii) $V(f \bmod \phi)>V(f)$ if and only if $\phi \|_{V} f$.
2. Let $a(x)$ and $b(x)$ be polynomials with $\operatorname{deg} a<\operatorname{deg} \phi$ and $\operatorname{deg} b<\operatorname{deg} \phi$, and let $a(x) b(x)=q(x) \phi+r(x)$ with $r(x)=a(x) b(x) \bmod \phi$. Then

$$
V(q \phi) \geq V(a b)=V(r)
$$

3. If $a(x)$ and $b(x)$ are polynomials with $\operatorname{deg} a<\operatorname{deg} \phi$ and $\operatorname{deg} b<\operatorname{deg} \phi$ then

$$
W\left(a \phi^{s} \cdot b \phi^{t}\right)=W\left(a \phi^{s}\right)+W\left(b \phi^{t}\right)
$$

4. If the polynomials $f(x), g(x)$, and $f(x) g(x)$ have $\phi$-adic expansions

$$
f(x)=\sum_{j} f_{j}(x) \phi^{j}, g(x)=\sum_{k} g_{k}(x) \phi^{k}, \quad f(x) g(x)=\sum_{m} h_{m}(x) \phi^{m}
$$

respectively, and if $s$ and $t$ are the largest integers such that

$$
W\left(f_{s} \phi^{s}\right)=W(f), \quad W\left(g_{t} \phi^{t}\right)=W(g)
$$

respectively, then

$$
W\left(h_{s+t} \phi^{s+t}\right)=W(f)+W(g)
$$

5. $W$ is a valuation of $\mathbb{Q}[x]$.

Exercise. Let $V$ and $W$ be valuations of $\mathbb{Q}[x]$ such that $W(f) \geq V(f)$ for all $f(x)$ and let $\phi(x)$ be a monic polynomial of minimum degree such that $W(\phi)>V(\phi)$. Show that $\phi(x)$ is a key polynomial over $V$, as follows.

1. Show that $W(f)>V(f)$ if and only if $\phi \|_{V} f$.
2. Show that $\phi(x)$ is equivalence-irreducible in $V$.
3. Show that $\phi(x)$ is minimal in $V$.

## 4. Non-finite Valuations

Definition. A non-finite valuation of $\mathbb{Q}[x]$ is a map $W: \mathbb{Q}[x] \rightarrow \mathbb{Q} \cup\{\infty\}$ such that

- $W(0)=\infty$,
- $W(f g)=W(f)+W(g)$,
- $W(f+g) \geq \min \{W(f), W(g)\}$
for all $f(x), g(x)$ in $\mathbb{Q}[x]$.
Suppose $G(x)$ is the defining polynomial for an algebraic extension $\mathcal{K}$ of $\mathbb{Q}$, given by $\mathcal{K}=\mathbb{Q}(\xi)$ for some root $\xi$ of $G(x)$. We are interested in extending the $p$-adic valuation $v_{p}$ to $\mathcal{K}$. Any such extension gives rise to a non-finite valuation $W$ of $\mathbb{Q}[x]$, defined by

$$
W(f)=v_{p}(f(\xi))
$$

for $f(x) \in \mathbb{Q}[x]$. The non-finite valuation $W$ can be approximated by a sequence of inductive valuations, in just the same way a discrete valuation of $\mathbb{Q}[x]$ can.

Note that $W$ depends on the choice of $\xi$, and if $\mu(x)$ is the minimal polynomial of $\xi$ over $\mathbb{Q}_{p}$ then $W(f)=\infty$ if and only if $\mu(x)$ divides $f(x)$ in $\mathbb{Q}_{p}[x]$.

Exercise. Assume $1 \leq k \leq n-1$. Show that

1. $V_{n}\left(\phi_{k}\right)=V_{k}\left(\phi_{k}\right)$, and
2. if $\operatorname{deg} f<\operatorname{deg} \phi_{k+1}$ then $V_{n}(f)=V_{k}(f)$.

## The $\boldsymbol{G}$-projection of $\boldsymbol{V}_{\boldsymbol{k}}$

Suppose $G(x)$ has $\phi_{k}$-adic expansion

$$
\begin{equation*}
G(x)=g_{m}(x) \phi_{k}^{m}+g_{m-1}(x) \phi_{k}^{m-1}+\cdots+g_{0}(x) \tag{5}
\end{equation*}
$$

and that the expression $V_{k}\left(g_{i} \phi_{k}^{i}\right)$ is minimal for the single value $i=e$. By the exercise and the triangle law, if $n>k$ then

$$
V_{n}(G)=V_{n}\left(g_{e} \phi_{k}^{e}\right)=V_{k}\left(g_{e} \phi_{k}^{e}\right)=V_{k}(G)
$$

and $W$ cannot be the limit of the sequence $V_{0}, V_{1}, V_{2}, \ldots$
Definition. The difference

$$
\max \left\{i \mid V_{k}(G)=V_{k}\left(g_{i} \phi_{k}^{i}\right)\right\}-\min \left\{i \mid V_{k}(G)=V_{k}\left(g_{i} \phi_{k}^{i}\right)\right\}
$$

from the expansion (5) is called the $G$-projection of $V_{k}$.
To approximate $W$ we are constrained to choose only key polynomials $\phi_{k}$ and key values $\mu_{k}$ so that each valuation $V_{k}$ will have positive $G$-projection.

Definition. $V_{k}$ is called a $k^{t h}$ approximant to $G$ if the $G$-projection of $V_{k}$ is positive.

## Key Values

The key polynomial $\phi_{k}$ having been determined the expansion (5) can be computed and its level $k$ Newton polygon, the lower convex hull of the set

$$
\left\{\left(i, V_{k-1}\left(g_{i}\right)\right) \mid i=0, \ldots, m\right\}
$$

can be drawn.
The $G$-projection constraint obliges us to choose $\mu_{k}$ so that the lower convex hull of the set

$$
\left\{\left(i, V_{k-1}\left(g_{i}\right)+i \mu_{k}\right) \mid i=0, \ldots, m\right\}
$$

has a horizontal edge, and this is the case if and only if $-\mu_{k}$ is the slope of an edge of the level $k$ Newton polygon.

It is also necessary to have $\mu_{k}>V_{k-1}\left(\phi_{k}\right)$.

## Finding $\phi_{k}$

Definition. A polynomial $e(x)$ with $\phi_{k}$-adic expansion

$$
e(x)=e_{m}(x) \phi_{k}^{m}+e_{m-1}(x) \phi_{k}^{m-1}+\cdots+e_{0}(x)
$$

is an equivalence-unit in $V_{k}$ if $V_{k}\left(e_{0}(x)\right)<V_{k}\left(e_{j}(x) \phi_{k}^{j}\right)$ for $j=1, \ldots, m$.
Lemma $\left(\mathrm{M}_{2}\right)$. The polynomial $\phi_{k}$ is a key polynomial over $V_{k}$.
Theorem $\left(\mathrm{M}_{2}\right)$. In the inductive valuation $V_{k}$ every polynomial $f(x)$ has a decomposition

$$
f(x) \approx_{V_{k}} e(x) \psi_{1}(x) \psi_{2}(x) \cdots \psi_{t}(x)
$$

as a product of homogeneous polynomials, with $e(x)$ an equivalence-unit and each $\psi_{i}(x)$ a key polynomial, and this decomposition is unique except for the order of the factors.

Lemma $\left(\mathrm{M}_{2}\right)$. If $V_{k}$ is a $k^{\text {th }}$ approximant to $G$ then $\phi_{k} \|_{V_{k-1}} G$.
Lemma $\left(\mathrm{M}_{2}\right)$. If $G(x)$ is not itself a key polynomial over $V_{k-1}$ then

$$
G(x) \approx_{V_{k-1}} e(x) \psi_{1}(x) \cdots \psi_{t}(x)
$$

with $e(x)$ a homogeneous equivalence-unit and $\psi_{1}(x), \ldots, \psi_{t}(x)$ homogeneous key polynomials over $V_{k-1}$.

Lemma $\left(\mathrm{M}_{2}\right)$. If $\phi_{k}$ is chosen to be one of $\psi_{1}, \ldots, \psi_{t}$, but with $\phi_{k} \neq \phi_{k-1}$, and if the key value $\mu_{k}$ is chosen as described above, then

$$
V_{k}=\left[V_{k-1}, \phi_{k} \rightarrow \mu_{k}\right]
$$

is a $k^{\text {th }}$ approximant to $G$.

## 5. Residue-classes

Definitions. A valuation $V$ of $\mathbb{Q}[x]$ induces certain relations on $\mathbb{Q}[x]$.

$$
\text { congruence in } V: a \equiv_{V} b \Longleftrightarrow V(b-a)>0
$$

congruence-divisibility in $V: a \|_{V} b \Longleftrightarrow b \equiv_{V} c a$ for some $c(x) \in \mathbb{Q}[x]$.

Definitions. For a valuation $V$ of $\mathbb{Q}[x]$, the valuation ring $O_{V}$ of $V$, the prime ideal $P_{V}$ of $O_{V}$, the residue-class $\llbracket a \rrbracket_{V}$ of a polynomial $a(x)$ in $O_{V}$, and the residue-class ring $\Delta_{V}$ are given by

$$
\begin{aligned}
O_{V} & =\{a(x) \in \mathbb{Q}[x] \mid V(a) \geq 0\} \\
P_{V} & =\{a(x) \in \mathbb{Q}[x] \mid V(a)>0\} \\
\llbracket a \rrbracket_{V} & =\left\{b(x) \in O_{V} \mid V(b-a)>0\right\} \\
\Delta_{V} & =O_{V} / P_{V}=\left\{\llbracket a \rrbracket_{V} \mid a(x) \in O_{V}\right\} .
\end{aligned}
$$

Definition. We let $\Gamma_{V}$ denote the value-group of $V$, i.e.,

$$
\Gamma_{V}=V(\mathbb{Q}[x]) .
$$

Definition. For $W=[V, \phi \rightarrow \mu]$ and $f(x)$ a polynomial with $W(f) \in \Gamma_{V}$, a $W$-flattener of $f$ is a polynomial $f_{W}^{b}(x)$ such that

$$
V\left(f_{W}^{b}\right)=W\left(f_{W}^{b}\right)=-W(f)
$$

Proposition $\left(\mathrm{M}_{1}\right)$. Let $W=[V, \phi \rightarrow \mu]$, let $f(x)$ be a polynomial with $\phi \not_{W} f$, and let $f_{W}^{b}(x)$ be an arbitrary $W$-flattener of $f$.
(i) If $g(x) \in \mathbb{Q}[x]$ with $W(g)=0$ then

$$
f\left\|_{W} g \Longleftrightarrow f_{W}^{b} f\right\|_{W} g .
$$

(ii) The polynomial $f(x)$ is equivalence-irreducible in $W$ if and only if

$$
f_{W}^{b} f\left\|_{W} g h \Longrightarrow f_{W}^{b} f\right\|_{W} g \text { or } f_{W}^{b} f \|_{W} h
$$

for all polynomials $g(x)$ and $h(x)$ with $W(g)=W(h)=0$.

Definitions. For $W=\left[V, \phi_{W} \rightarrow \mu_{W}\right]$ we define $F_{W}, \tau_{W}, \phi_{W W}^{\tau_{W}}, y_{W}$ as follows.

- $F_{W}$ is the subring of $\Delta_{W}$ given by

$$
F_{W}=\left\{\llbracket f \rrbracket_{W} \mid V(f) \geq 0\right\}=\left\{\llbracket f \rrbracket_{W} \mid f \in O_{V}\right\}
$$

- $\tau_{W}$ denotes the smallest positive integer such that $\tau_{W} \mu_{W} \in \Gamma_{V}$.
- $\phi_{W W}^{\tau_{W} b}(x)$ denotes an arbitrary $W$-flattener of $\phi_{W}^{\tau_{W}}$.
- $y_{W}$ denotes the residue-class $\llbracket \phi_{W W}^{\tau_{W}^{b}} \phi_{W}^{\tau_{W}} \rrbracket_{W}$.

Lemma $\left(\mathrm{M}_{1}\right) . y_{W}$ is transcendental over $F_{W}$ and $\Delta_{W}=F_{W}\left[y_{W}\right]$.

Lemma $\left(\mathrm{M}_{1}\right)$. If $V$ is the $(\phi, \mu)$-augmentation of the valuation $U$ and $\psi(x)$ is a key polynomial over $V$ not equivalent in $V$ to $\phi(x)$ then $V(\psi) \in \Gamma_{U}$.

Theorem $\left(\mathrm{M}_{1}\right)$. Let $V$ be the $\left(\phi_{V}, \mu_{V}\right)$-augmentation of the valuation $U$, let $W$ be the $\left(\phi_{W}, \mu_{W}\right)$-augmentation of $V$, with $\phi_{W} \not \overbrace{V} \phi_{V}$, and let $\phi_{W V}^{b}(x)$ be an arbitrary $V$-flattener of $\phi_{W}$. Then the following hold.
(i) The polynomial $\psi_{W}\left(y_{V}\right)=\llbracket \phi_{W V}^{b} \phi_{W} \rrbracket_{V}$ is irreducible in $F_{V}\left[y_{V}\right]$.
(ii) If $\theta_{W}$ is a root of $\psi_{W}$ then $F_{W}=F_{V}\left(\theta_{W}\right)$.
(iii) If $m=\operatorname{deg} \psi_{W}$ then $\operatorname{deg} \phi_{W}=m \tau_{V} \operatorname{deg} \phi_{V}$.

