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1. Introduction. The difficulties of actually constructing the prime ideal fac-
tors of a rational prime p in an algebraic field have had a considerable influence
upon the development of ideal theory. One of the most practical of the methods
for this construction consists of three successive “approximations” to the prime
factors of p in terms of certain Newton Polygons, similar to the polygons used in
the expansion of algebraic functions. This method, due to Ore,1 is directly appli-
cable in all but certain exceptional cases. The present paper extends the method
to all cases by making not three but any number of successive approximations.
To formulate this extension simply, it is necessary to replace the prime ideals by
certain corresponding “absolute values”, which succinctly express the essential
properties of the Newton polygons. In terms of these values, the successive ap-
proximations are a natural application of a method of finding possible “absolute
values” for polynomials.

To introduce these absolute values, consider the ring o of all algebraic integers of
an algebraic number field, and let p be a prime ideal in o. Since every integer α
of the field can be written in the form (α) = pm ·b, where b is an ideal prime to p,
we can write the exact exponent m to which p divides α as a function W (α) = m.
Because of the unique decomposition theorem,

(1) W (α ·β) = W (α) +W (β), W (α+ β) ≥ min
(
W (α), W (β)

)
.

Any function V (α) which has these two properties is called a non-archimedean
value or a “Bewertung”2 of the ring o, while the particular function W obtained
from p may be called a p-adic value. Every value V of o is a constant multiple3

of some p-adic value W . Hence absolute values can replace prime ideals.

In the same way every non-archimedean value V0 of the rational integers is a
“p-adic” value for some rational prime p; that is, for any integer a, V0(a) is mδ,

1Ø. Ore, Zur Theorie der algebraischen Körper, Acta Math, 44 (1924) 219–314; Ø. Ore,
Newtonsche Polygone in der Theorie der algebraischen Körper, Math Annalen, 99 (1928) 84–
117. These papers will be cited as Ore I and Ore II, respectively.

2W. Krull, Idealtheorie, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd 4, Heft 3.
This text, cited henceforth as Krull I, contains further references on absolute values.

3E. Artin, Ueber die Bewertungen algebraischer Zahlkörper, Jour für Math 167 (1932) 157–
159. The theorem may be proved thus: Given V , first show that any rational integer n =
1 + 1 + · · · + 1 has a non-negative value and then from (1) that every algebraic integer has a
non-negative value. If the value of an ideal b be defined as the minimum of V (α) for α ∈ b,
then one and only one prime ideal p can have a positive value, and V must be p-adic. A similar
theorem holds when o is an abstract ring in which the usual prime-ideal decomposition holds.
(B. L. van der Waerden, Moderne Algebra 2, §100.)

where m is the highest power of p dividing a and δ is a constant > 0. If p is
a prime ideal factor of p in an algebraic field, every p-adic value W , considered
only as a value of the rational integers, coincides with one of the p-adic values V0.
Thus W is an “extension” of V0.

The equivalence of prime ideals to values enables us to state the problem of
constructing the prime ideal factors of a rational prime in the following generalized
form (with a notation to be used throughout the paper): Given a field K and a
separable extension K(θ) generated by a root θ of the irreducible polynomial G(x);
given also a “discrete” (see §2) value V0 of K, to construct all extensions W of
V0 in K(θ).

This problem will first be reduced in §2 to that of constructing for the ring
of polynomials with coefficients in K those values V which are extensions of
V0 and which assign the defining equation G(x) the value +∞. All values of
this polynomial ring can be constructed4 by successive approximations, which
consist essentially in determining first the values of the polynomials of lowest
degree (in x and in p). The salient features of this method are summarized in
§2. Those approximations which can ultimately give G the desired value +∞ we
call “approximants” to G (see §3). Each such approximant is itself a value Vk of
the polynomial ring and can be constructed from a previous approximant Vk−1
by using a unique “equivalence” decomposition of G(x) (see §4) and a “Newton
polygon” of G(x) with respect to Vk−1 (see §5). After a finite number of steps
(§8) we obtain a set of approximants corresponding to the desired values or prime
ideals of K(θ). The proof of this fact uses the integers of K (§7) and the exponents
of prime ideals (§6). The computation of the degrees of prime ideals in §9 yields a
constructive proof of the usual relation betwen degrees and exponents. Finally, the
theorems of §10 summarize the results. A comparison with previous methods is
also made. We note that some of the concepts resemble those used by Ostrowski5

and by Deuring and Krull6 in the (non-constructive) theory of Galois fields with
absolute values.

2. Non-finite values of polynomial rings. A non-archimedean exponential
absolute value of a ring S is a function V , such that, for a in S, V (a) is a uniquely
defined real number or +∞, with the properties

(1) V (ab) = V (a) + V (b), V (a+ b) ≥ min
(
V (a), V (b)

)
4S. MacLane, A construction for absolute values in polynomial rings, to appear in the Trans

Amer Math Soc. Cited henceforth as M. All theorems from M required in the sequel will be
explicitly stated, so that we refer to M only for certain proofs.

5A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper (Die Theorie der
Teilbarkeit in allgemeinen Körpern), Math Zeit 39 (1934) 269–404.

6M. Deuring, Verzweigungstheorie bewerteter Körper, Math Ann 105 (1931) 277–307.
W. Krull, Galoissche Theorie bewerteter Körper, S B München Akad Wiss (1930) 225–238.
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for all a and b in S. These properties are called the “product” and “triangle”
laws respectively. If we exclude the trivial cases when V (a) = 0 for all a or
V (a) =∞ for all a, the laws (1) imply that V (1) = V (−1) = 0, that the equality
in the triangle law of (1) must hold whenever V (a) 6= V (b), and that V (0) = +∞.
Contrary to previous usage, our definition allows elements not 0 to have the value
+∞. However, if V (a) 6= ∞ for all a 6= 0, we shall call V a finite value. Since
V (a−1) = −V (a), every value V of a field must be finite. A value V is discrete if
every V (a) is an integral multiple of some fixed δ > 0. The original value V0 of
K is discrete by assumption.

Two elements a and b of S are equivalent in V if and only if either V (a − b) >
V (a) = V (b) or V (a) = V (b) = ∞. We write a ≈V b for this equivalence. It is a
reflexive, symmetric and transitive relation. An element a is equivalence-divisible
by b in V if and only if there is a c in S such that a ≈

V
cb. For this divisibility

we write b ‖V a.

A value V of a ring S is an extension of a value V0 of a subring of S if V (a)
and V0(a) are identical for all a in the subring. Our original problem can now
be reduced to one concerning the polynomial ring K[x], which consists of all
polynomials in x with coefficients in K.

Theorem 2.1. There is a one-to-one correspondence between the values W of
K(θ) and those values V of K[x] for which V

(
G(x)

)
=∞. Corresponding values

V and W are extensions of identical values of K.

The proof depends on the homomorphism of K[x] to K(θ). If the value V with
V
(
G(x)

)
=∞ is given, two polynomials congruent mod G(x) must have the same

value, so that the value W for any f(θ) can be defined by W
(
f(θ)

)
= V

(
f(x)

)
.

The same equation serves to define V when W is given.

The method of the paper M for constructing finite values of K[x] applies without
essential change for non-finite values. It consists fundamentally in the formation
of a sequence of simple values

(2) V1, V2, V3, . . . , Vk−1, Vk, . . . .

To obtain any Vk in (2) from the preceding Vk−1, we assign a new value µk to a
suitable polynomial φk = φk(x). The following conditions7 must hold:

2.21 φk is equivalence-irreducible in Vk−1; that is, φk ‖Vk−1
f(x) g(x)

always implies φk ‖Vk−1
f(x) or φk ‖Vk−1

g(x);

7Functions f(x), g(x) or simply f and g, etc., will always represent polynomials in K[x],
while deg f(x) stands for the degree of f(x). If f = 0, deg f is meaningless, and statements
about deg f are taken to be vacuously true.

2.22 φk is minimal in Vk−1; that is, φk ‖Vk−1
g(x) always implies that

deg φk ≤ deg g(x);

2.23 φk has the leading coefficient 1 and deg φk > 0;

2.24 µk > Vk−1(φk).

When these are true, we call φk a key polynomial and µk a key value of φk over
Vk−1. Given such “key” quantities the new value Vk of any polynomial f(x) is
determined from Vk−1 by first finding the expansion of f(x)

(3) f(x) = fm(x)φmk + fm−1(x)φm−1k + · · ·+ f0(x), deg fi(x) < deg φk

in powers of φk(x) with coefficients of degree less than that of φk, then setting

(4) Vk
(
f(x)

)
= min

[
Vk−1(fm)+mµk, Vk−1(fm−1)+(m−1)µk, . . . , Vk−1(f0)

]
.

The so-defined function Vk is always a value of K[x]. We say that Vk is obtained
by augmenting Vk−1, and write

(5) Vk =
[
Vk−1, Vk(φk) = µk

]
.

To apply the condition 2.22 it is convenient to note (M, Theorem 9.3):

2.3 The polynomial f(x) with the expansion (3) is minimal in Vk if and only if
fm(x) is a constant from K and Vk

(
f(x)

)
= Vk

(
fm(x)φmk

)
. In particular,

the product of two minimal polynomials is itself minimal.

The construction of any value V of K[x] starts with a “first stage” value V1 which
is defined as in equation (4), except that the first key polynomial φ1 is now taken
to be x itself and µ1 is arbitrary; while the value Vk−1 used for the coefficients fi,
which are now constants, is simply the originally given value V0 for K. Given such
a V1, new values can now be defined by repeatedly augmenting V1. A sequence
(2) in which each Vi arises by augmenting Vi−1 with a pair of keys φi and µi from
Vi−1 is called an augmented sequence. Each Vk of such a sequence is an inductive
value, and may be symbolized as

(6) Vk =
[
V0, V1(x) = µ1, V2(φ2) = µ2, . . . , Vk(φk) = µk

]
.

We assume in addition the conditions (M, Definition 6.1)

2.41 deg φi ≥ deg φi−1 (i = 2, 3, . . . );

2.42 φi 6≈Vi−1
φk−1 (i = 2, 3, . . . ).
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The last key value µk may be +∞, but then there is no key over Vk satisfying these
conditions, so that no further augmented value is possible. An infinite augmented
sequence (2) also gives a limit value, defined by

V∞
(
f(x)

)
= lim
k→∞

Vk
(
f(x)

)
(for all f(x)).(7)

We will consider only those inductive or limit values which are extensions of the
originally given V0.

To put the values of K[x] in a normal form, we first choose in K a complete set of
“representatives” with respect to V0, such that each element of K is equivalent in
V0 to one and only one representative. If next the coefficients of the expansion (3)
are expanded repeatedly with respect to φk−1, φk−2, . . . , then f(x) is expressed
uniquely in the form

f(x) =
∑

j
aj φ

m1j

1 φ
m2j

2 · · ·φmkj

k (aj ∈ K).(8)

The exponent mij is always less than (deg φi+1)/(deg φi), for i = 1, . . . , k−1 (see
M, §16). If all terms in (8) have the same value in Vk, and if each aj is one of the
previously specified representatives, then f(x) is in a sense homogeneous in Vk.
Any polynomial is equivalent in Vk to a homogeneous polynomial. Henceforth we
require in any inductive or limit value (6) that each φi be homogeneous in the
previously constructed Vi−1. Then, since the given V0 is discrete, every extension
of V0 to K[x] can be uniquely represented as an inductive or limit value (M, §8,
§16).

3. Approximants to non-finite values. Our program requires the construc-
tion of values V of K[x] for which V

(
G(x)

)
= ∞. Any such V can be obtained

from a sequence of suitable inductive values Vk. A Vk which might be so used
to construct a V with V (G) = ∞ will be called an “approximant”, in an ex-
plicit sense now to be given. This involves the way in which Vi(G) increases in
a sequence of inductive values Vi, i = 1, . . . , k. This increase is described by M,
Theorems 5.1, 6.4, and 6.5, for any f(x) and any i 6= k:

3.11 Vk(f) ≥ Vi(f);

3.12 Vk(f) > Vi(f) if and only if φi+1 ‖Vi
f ;

3.13 Vk(φi) = Vi(φi), and Vk(f) = Vi(f) whenever deg f < deg φi+1.

Further analysis uses the expansion of G(x) in φk:

(1) G(x) = gm(x)φmk + gm−1(x)φm−1k + · · ·+ g0(x).

Among the exponents j for which Vk(G) = Vk(gjφ
j
k), let α be the largest and β

the smallest. The difference α − β, which depends on both Vk and G, will be
called the projection of Vk (symbol: projGVk). One application is

Lemma 3.2. If projGVk = 0, then no V with V (G) > Vk(G) can be obtained by
augmenting Vk.

Proof. The value of each term in (1) is by 3.13 the same in any V as in Vk.
By hypothesis there is but one term of minimum value, so that the triangle law
(§2, (1)) proves V (G) = V (gαφ

α
k ) = Vk(G).

Since we want only those values Vk leading to V (G) =∞, we are led to

Definition 3.3. A k-th approximant to G(x) over V0 is a k-th stage homogeneous
finite inductive value of K[x] which is an extension of V0 and which has a positive
projection.

Lemma 3.4. If Vk, given as in §2, (6), is a k-th approximant to G(x), then so
is Vi for i = 1, . . . , k − 1. Furthermore φk ‖Vk−1

G(x) and

Vk
(
G(x)

)
> Vk−1

(
G(x)

)
> · · · > V1

(
G(x)

)
.

First note that in the expansion (1) of G(x)

(2) Vk−1(G) = min
[
Vk−1(gmφ

m
k ), Vk−1(gm−1φ

m−1
k ), . . . , Vk−1(g0)

]
,

much as in the definition of Vk. For were Vk−1(G) to exceed the indicated mini-
mum, then by the triangle law Vk−1(giφ

i
k) would equal this minimum for at least

two i’s. Were γ the largest such i, then

−gγφγk ≈Vk−1
gγ−1φ

γ−1
k + · · ·+ g0.

Then φγk would be an equivalence-divisor of the polynomial on the right, which
is of smaller degree than φγk , a contradiction because φk and hence φγk is minimal
(see §2, 2.3).

By hypothesis projGVk > 0, so that there is an α > 0 with Vk(G) = Vk(gαφ
α
k ).

As Vk−1(φk) < Vk(φk), we have by (2) and 3.13

Vk−1(G) ≤ Vk−1(gαφ
α
k ) < Vk(gαφ

α
k ) = Vk(G).

Hence by 3.12 φk ‖Vk−1
G, and the remaining conclusions follow by Lemma 3.2.

Another useful fact is

Lemma 3.5. Let a(x) be a minimal polynomial in Vk, and r(x) the remainder
of the division of a polynomial f(x) by a(x). Then Vk(r) > Vk(f) if and only if
a(x) ‖Vk

f(x).

The proof is exactly like that of M, Lemma 4.3.
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4. Unique equivalence-decomposition. The construction of an approximant
Vk+1 from a given approximant Vk must by Lemma 3.4 use a key polynomial φk+1

which is an equivalence factor of G(x). These factors can be found from the unique
equivalence-decomposition of G(x), the existence of which will now be established
by a modified euclidean algorithm.8 We first introduce for any Vk an “effective
degree” thus: if f(x) is any polynomial, expanded in powers of φk as in §2, (3),
the largest exponent i for which Vk(f) = Vk(fiφ

i
k) is the effective degree of f in φk

and is denoted Dφk
(f). Equivalent polynomials have the same effective degree.

The proof of the product law (§2, (1)) for any inductive Vk (see M, §4, end) shows
that

(1) Dφk
(fg) = Dφk

(f) +Dφk
(g).

If we call a polynomial of effective degree zero an equivalence-unit, then e(x) is an
equivalence unit if and only if there is an “equivalence-reciprocal” h(x) such that
e(x)h(x) ≈Vk

1. For if e(x) has such a reciprocal, then (1) proves that Dφk
(e) = 0.

Conversely, if Dφk
(e) = 0, then, by definition of Dφk

, e(x) is equivalent to the last
term e0(x) in the expansion of e in powers of φk. As deg e0 < deg φk, e0 is prime
to φk, so that there are polynomials g(x) and h(x) with g(x)φk + h(x)e0(x) = 1.
Using the minimal property of φk, we then conclude that h(x)e(x) ≈Vk

1.

Lemma 4.1. Any polynomial f(x) can be represented as f(x) ≈Vk
e(x)a(x), where

e(x) is a unit and a(x) is minimal and has the first coefficient 1. In addition,
f(x) and a(x) have the same equivalence-divisors.

Proof. Expand f(x) as in §2, (3), pick out the first term fα(x)φαk of minimum
value, and find the equivalence-reciprocal h(x) for the equivalence-unit fα(x).
Then expand the polynomial h(x) ·f(x) and drop out all terms not of minimum
value. There remains an equivalent polynomial a(x), with an expansion beginning
with φαk . This a(x) is minimal, and we have f(x) ≈Vk

fα(x) ·a(x), as required.

To carry out the euclidean algorithm for two polynomials f(x) and g(x) with
Dφk

(f) ≥ Dφk
(g), write g(x) ≈Vk

e1(x)a1(x) in accordance with Lemma 4.1 and
divide f(x) by a1(x), getting

f(x) = q(x) ·a1(x) + r2(x) Dφk
(r2) < Dφk

(a1).(2)

If Vk(r2) > Vk(f), a1 and hence g is an equivalence-divisor of f . Otherwise, since
a1 is minimal, Vk(r2) = Vk(f) and all three terms in (2) have the same value.
Repeat this process with a1(x) and r2(x) ≈Vk

e2(x)a2(x), etc., until a remainder

8A similar algorithm has been used by A. Fraenkel, Ueber einfache Erweiterungen zerlegbarer
Ringe, Jour für Math 151 (1920) 120–166. Compare Ore I, Theorem 6.

exceeding the dividend in value is obtained. The preceding remainder d(x) is the
greatest common equivalence-divisor of f(x) and g(x). As usual,

(3) d(x) ≈Vk
s(x)f(x) + t(x)g(x)

for suitable s(x) and t(x). To establish (3), it is convenient to note that, unless
g(x) ‖Vk

f(x), all the terms in (3) must be of the same value in Vk.

The properties of equivalence-irreducible polynomials are now obtained as usual
from (3). A decomposition of any f(x) into such irreducible factors must exist
(because of Dφk

). If we factor out a suitable unit, these irreducible factors can
as in Lemma 4.1 be made minimal and hence key polynomials (§2, Conditions
2.21–2.23).

Theorem 4.2. In an inductive value Vk every polynomial f(x) has a decompo-
sition

(4) f(x) ≈Vk
e(x)ψ1(x)ψ2(x) · · · ψt(x)

where e(x) is a unit and each ψi(x) is a key polynomial. This decomposition is
unique, except for the order of the factors and except that e(x) may be replaced
by any equivalent unit and ψi(x) by any equivalent key.

If we require the factors ψi(x) to be homogeneous in Vk (see §2, (8)), they are
then unique. Note also that φk itself may occur as a factor, by

Lemma 4.3. In an inductive Vk, φk is a key polynomial.

Proof. Since φk is a key in Vk−1, it has the first coefficient 1. Furthermore
Dφk

(φk) = 1, hence in any factorization of φk one factor is a unit, so that φk
is equivalence-irreducible. Finally, φk is minimal in Vk.

In many cases the construction of the unique equivalence-decomposition (4) for
a given polynomial f(x) in a given Vk can be carried out in a finite number of
steps.

Theorem 4.4. The decomposition (4) is constructive when K is the field of
rationals.

The original value V0 is then associated with a rational prime p, so that every
rational number is equivalent in V0 to one of the numbers c ·pm, c = 0, 1, . . . , p−1;
V0(p) = 1. Hence the complete set of representatives for V0 (see §2, end) includes
but a finite number of representatives of each possible value9 m.

9Theorem 4.4 is true for any K and V0 with this property.
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There are but a finite number of minimal homogeneous polynomials b(x) of a
given degree d and with first coefficient 1. For any such b(x) may be expanded
in powers of x, φ2, . . . , φk as in §2, (8) with a highest coefficient 1 of value 0.
Because of the homogeneity, this determines the value of every other non-zero
coefficient in the expansion. Since these coefficients are representatives, there is
but a finite number of possibilities for each coefficient, and hence but a finite
number of polynomials b(x).

If f(x) is to be decomposed, write f(x) ≈Vk
e(x)a(x) by Lemma 4.2, find all

minimal homogeneous polynomials b(x) of degree less than that of a(x) as above
and by trial find which products, if any, are equivalent to a(x).

The decomposition (4) can often be constructed by first decomposing the residue-
class of f(x) (cf. §9 and M, part II). We can assume that all factors φk, if any,
have already been removed from f . Then Vk

(
f(x)

)
will be in the previous value-

group Γk−1 (M, Lemma 9.2), so that there is a unit polynomial f [Vk(x) such that

Vk(f [Vkf) = 0. In the value Vk the residue-class of any polynomial g(x) is denoted
by [[g ]]Vk

and is itself a polynomial in a new variable y (M, Theorem 12.1). In

particular, [[f [Vkf ]]Vk
is a polynomial with a decomposition

(5) [[f [Vkf ]]Vk
= α1(y)α2(y) · · · αt(y)

into irreducible polynomials αi(y). But there is essentially just one key poly-
nomial ψi(x) in Vk with the residue-class [[ψ′iψi ]]Vk

= αi, for a suitable unit ψ′i
(M, Theorem 13.1). Since the residue-class of a product is the product of the
residue-classes

[[f [Vkf ]]Vk
= [[ψ′1ψ1ψ

′
2ψ2 · · · ψ′tψt ]]Vk

,

and since polynomials in the same residue-class are congruent,

f [Vkf ≡ ψ
′
1ψ
′
2 · · · ψ′t ψ1 ψ2 · · · ψt (mod Vk).

If we multiply by an equivalence-reciprocal of f [Vk , we get the decomposition (4).
Consequently, (4) can be constructed in this way whenever (5) can be found; that
is, whenever polynomials can be constructively factored in the residue-class field
of V0 in K (see §9). In particular, this method applies when K is the field of
rationals.

5. The construction of approximants. If

(1) G(x) = anx
n + an−1x

n−1 + · · ·+ a0,

the key µ1 of any first approximant V1 = [V0, V1(x) = µ1 ] must by Definition 3.3
be so chosen that, for suitable α > β,

αµ1 + V0(aα) = βµ1 + V0(aβ) ≤ iµi + V0(ai) (i = 0, . . . , n),(2)

where the inequality holds for i > α or β > i. To interpret this, plot the points
Pi =

(
n − i, V0(ai)

)
in a cartesian plane. Then (2) states that the line PαPβ

has slope µ1 and that all the points Pi are either above this line or on the line
between Pα and Pβ . The line segments PαPβ with this property for some µ1

form a convex broken line stretching from Pn to P0. This broken line segment
is called the Newton polygon of the points Pi, while none of the points lie below
the polygon. We have shown that each first approximant V1 corresponds to a
side of this polygon of slope µ1 = V1(x) and of horizontal projection equal to the
“projection” of V1. Hence

(3)
∑

projGV1 = degG,

the sum being taken over all first approximants V1.

Next, given any (k − 1)-th approximant Vk−1 we wish to construct all k-th ap-
proximants Vk which can be obtained by augmenting Vk−1. Consider first the
“terminating case” when G(x) is a homogeneous key polynomial10 over Vk−1.
Then by Lemma 3.4 the key polynomial φk must be an equivalence-divisor of the
equivalence-irreducible G(x), whence φk = G. We obtain no finite approximants,
but only the non-finite value Vk =

[
Vk−1, Vk

(
G(x)

)
=∞

]
, which by Theorem 2.1

corresponds to a value of K(θ).

Suppose instead that G(x) is not a homogeneous key polynomial over Vk−1. Then
by Theorem 4.2 and Lemma 4.3

(4) G(x) ≈Vk−1
e(x)φk−1(x)n0 ψ1(x)n1 · · · ψt(x)nt ,

where the ψi(x) are homogeneous keys over Vk−1, all different and different from
G(x) and φk−1, while the exponents ni are all positive, except perhaps for n0. An
augmented Vk must have a key φk with φk ‖Vk−1

G(x) (Lemma 3.4) and φk 6= φk−1
(§2, Condition 2.42). Hence φk is one of ψ1, . . . , ψt.

If one of these factors ψi has been selected as φk, then G(x) has as in §3, (1)
an expansion with coefficients gi(x). To determine the new value µk = Vk(φk)
to be assigned to φk, we again use a point Qi =

(
m − i, Vk−1

(
gi(x)

))
for each

term in the expansion and construct the Newton polygon for these points. The
requirement that projGVk > 0 again means that µk must be the slope of some
side of this polygon. An inductive value requires also that µk > Vk−1(φk), so that
we use only the principal part11 of the polygon, composed of those sides of slope
µ > Vk−1(φk).

10For convenience, we assume henceforth that the first coefficient in (1) is an = 1.
11In special cases, this has been called a “Haputpolygon” by Ore (Ore I, p 229; Ore II, p

88) and a “verkürztes Polygon” by Rella, Ordnungsbestimmungen in Integritätsbereichen und
Newtonsche Polygone, Jour für Math 158 (1927) 33–48.
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Theorem 5.1. If Vk−1 is a (k − 1)-th approximant in which G(x) is not a ho-
mogeneous key, then the k-th approximants which can be derived by augmenting
Vk−1 are all values Vk = [Vk−1, Vk(φk) = µk ] in which φk 6= φk−1 is any one of
the keys in the decomposition (4) of G(x), while, for given φk, µk is the slope of
any side of the principal Newton polygon of G(x) with respect to φk and Vk−1.
Furthermore

(5)
∑(

projGVk
)
·
(
deg φ(Vk)

)
=
(
projGVk−1

)
·
(
deg φ(Vk−1)

)
,

where the sum is taken over all such augmented Vk, and where φ(V ) represents
the last key of V . Hence there is at least one approximant Vk from Vk−1.

It remains to prove (5). On the left side of (5) suppose first that φk is the factor
ψ1 in (4), and consider the power n = n1 to which φk divides G. Since φk and
hence φnk is minimal in Vk−1, the remainder

r(x) = gn−1 φ
n−1
k + gn−2 φ

n−2
k + · · ·+ g0

obtained on dividing G by φnk must by Lemma 3.5 have Vk−1(r) = Vk−1(G).
Calculation of Vk−1(r) as in §3, (2) gives

(6) min
[
Vk−1(gn−1φ

n−1
k ), . . . , Vk−1(g0)

]
> Vk−1(gnφ

n
k ) = Vk−1(G),

with the equality because n is the largest exponent with φnk ‖Vk−1
G. If we set

ν = Vk−1(φk) and use §3, (2), this becomes

Vk−1(gn) + nν ≤ Vk−1(gj) + jν (j = n+ 1, . . . , m)

< Vk−1(gi) + iν (i = 0, . . . , n− 1).

Geometrically, this means that the line L of slope ν through the point Qn lies
above none of the points Qj and lies below Qn−1, . . . , Q0. The convex Newton
polygon is hence above or on L, so that the principal polygon, containing those
sides of slope exceeding ν, consists of the sides joining Qn to Q0. The horizontal
projection of the principal polygon for φk = ψ1 is therefore n = n1.

However, projGVk is by definition (§3) the projection of the corresponding side
of the principal polygon. Hence a sum taken over those Vk with ψ1 as the last
key gives

∑
projGVk = n1. Similar equations for all ψi yield

(7)
∑

(projGVk) ·(deg φk) = n1 degψ1 + · · ·+ nt degψt = deg(ψn1
1 · · · ψ

nt
t ).

But ψn1
1 · · · ψ

nt
t is minimal, so that its effective and actual degrees in φ = φk−1

must agree. Thus

(8) deg(ψn1
1 · · · ψ

nt
t ) = Dφk−1

(ψn1
1 · · · ψ

nt
t ) ·(deg φk−1).

Because of (4) the effective degree is

(9) Dφk−1
(ψn1

1 · · · ψ
nt
t ) = Dφk−1

(G)−Dφk−1
(φn0

k−1) = Dφk−1
(G)− n0.

If the expansion of G(x) is
∑
hi(x)φik−1, then Dφk−1

(G) is by definition the ex-
ponent of the first term of minimum value, while n0, the highest power with
φn0

k−1 ‖Vk−1
G, is by the argument used in (6) simply the exponent of the last term

of minimum value in the expansion of G(x). By the definition of the projection,

(10) Dφk−1
(G)− n0 = projGVk−1.

The last four equations combine to give the result (5). By induction on k we
obtain from (3) and (5) the following result.

Theorem 5.2. If the “terminating” case does not occur by the k-th stage, there
is a finite number of k-th approximants, such that12

(11)
∑(

projGVk
)
·
(
deg φ(Vk)

)
= degG,

the sum being taken over all k-th approximants Vk.

Theorem 5.3 (Terminating case). If there is a non-finite homogeneous inductive
value Vk with Vk(G) =∞, then for i < k the value Vi from which Vk is obtained
is the only i-th approximant.

Proof. By Lemma 3.2, Vk−1, and hence by Lemma 3.4 each Vi, is an approximant.
Since Vk(G) = ∞ and G is irreducible, G must be the last key of Vk, whence G
is minimal in Vk−1 (see §2, 2.3):

G(x) = φmk−1 + gm−1(x)φm−1k−1 + · · ·+ g0(x).

Since G is minimal and (§2, 2.42) φk−1 ∦Vk−1
G, the first and last terms here take

on the minimum value Vk−1(G), so that projGVk−1 = m. Thus

degG = m deg φk−1 = (projGVk−1) ·(deg φk−1),

and by (11) Vk−1 is the only (k − 1)-th approximant. Hence each Vi is the only
i-th approximant.

6. Exponents for values. To estimate the growth of µk we need “value-
groups”. If in an algebraic number field the prime ideal p is a factor of the
rational prime p, and if the corresponding p-adic value W is an extension of the
p-adic value V0, then the highest power e to which p divides p is characterized

12An invariant interpretation of (11) will be given in §9.
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by V0(p) = eW (p). Hence the group of all numbers used as p-adic values is a
subgroup of index e in the group of p-adic values. For any value V of a ring S,
the additive group Γ which contains all real numbers V (b) − V (c) for b and c in
S is called the value group of V . This group is cyclic if and only if the value V
is discrete (§2). If V is an extension of V0 to K[x] or to K(θ), the value group
Γ0 of V0 must be a subgroup of the value group Γ of V . The order of the factor
group Γ/Γ0 is called the exponent,13 exp(V ).

Now compute this exponent for an inductive value Vk with a value-group Γk. The
definition of §2, (4) indicates that every number in Γk has the form γ + n ·µk,
where n is an integer and γ is in Γk−1. If we consider only the case when µk is
commensurable with Γk−1 (by M, Theorem 6.7, this is true whenever Vk can be
augmented to some Vk+1), there is a unique smallest positive integer τk with the
property that τkµk ∈ Γk−1. By group theory

order(Γk/Γk−1) = τk,(1)

exp(Vk) = τ1 · τ2 · · · τk,(2)

where τi for i = 1, . . . , k is similarly defined. The assumption that µk is com-
mensurable also proves Γk is discrete. If µk = ∞, the formulas still hold if we
take τk = 1.

In the course of §8 we shall need an estimate for exp(Vk). Since each key poly-
nomial φi+1 is homogeneous (§2) in Vi, any two terms in the expansion of φi+1

in powers of φi must be of equal value, so that this expansion appears as a poly-
nomial in φrii (M, §11). Consequently deg φi+1 ≥ τi deg φi. Combining these
inequalities for all i, we find

(3) deg φk ≥ τ1τ2 · · · τk = exp(Vk−1).

7. Integral key polynomials. It is often convenient to use keys with “integral”
coefficients. Here an integer14 with respect to V0 is an element a ∈ K with
V0(a) ≥ 0. All such integers form a ring, and every element of K is a quotient of
two such integers. After the usual transformations we can assume that G(x) has
V0-integers as coefficients and the first coefficient 1. The Newton polygon of the
first stage then must give a µ1 ≥ 0, so that Vk(x) ≥ 0 for every approximant.

Theorem 7.1. In a homogeneous Vk+1 with Vk+1(x) ≥ 0, we have

(1) 0 ≤ µ1 < µ2 < · · · < µk < µk+1,

and the keys φi are all polynomials in x with V0-integers as coefficients.

13Similarly defined in Deuring, op cit, p 281 and Ostrowski, op cit, p 322.
14Cf. Ostrowski, op cit, p 288, or the “Bewertungsring” in Krull, Idealtheorie, p 101.

The last key φk+1 is minimal (2.3), so has a leading term φuk

k and a homogeneous
expansion as in §2, (8):

φk+1 = φuk

k +
∑

j
aj φ

m1j

1 φ
m2j

2 · · · φmkj

k (aj ∈ K, mkj < uk),(2)

where, if ni stands for deg φi, the degrees mij are limited by

mij < ni+1/ni (all j, i = 1, 2, . . . , k − 1).(3)

Since φk+1 is homogeneous, all terms in (2) have the same value. Hence

(4) µk+1 > Vk(φk+1) = ukµk = (nk+1µk)/nk.

Since µ1 ≥ 0, (4) for every k gives (1). We next estimate the terms of (2).

Lemma 7.2. In any Vk with Vk(x) ≥ 0, a term

T = φm1
1 φm2

2 · · ·φ
mk−1

k−1 , (mi < ni+1/ni for all i)

has a value Vk(T ) ≤ Vk(φk).

This inequality can also be written as

m1µ1 + · · ·+mk−1µk−1 ≤ µk.

It is true for k = 1 or 2, by hypothesis and (4). If we assume it for k − 1, then,
since nk/nk−1 is integral,

k−1∑
i=1

miµi = mk−1µk−1 +

k−2∑
i=1

miµi ≤ (mk−1 + 1)µk−1 ≤
nk
nk−1

µk−1 < µk.

Theorem 7.1 now follows by induction. It is true for k = 1. If all the keys of
Vk have V0-integral coefficients, all terms in the expansion (2) of φk+1 have the
same value. But φ

m1j

1 · · · φmkj

k = T ·φmkj

k has by the lemma a value not exceeding

Vk(φ
mkj+1
k ) = Vk(φuk

k ). Hence the coefficient aj has a non-negative value, and aj
is V0-integral.

Note. If K is the field of rational numbers, G(x) with leading coefficient 1 can be
so chosen that all its coefficients are ordinary integers (with non-negative value
in every V0). The same proof then shows that all φk have ordinary integers as
coefficients, provided only that the representatives (§2) for each p-adic value V0
are chosen as the numbers c ·pm, c = 0, . . . , p − 1. Similar results hold when K
is an algebraic number field.

8. The finiteness theorem. Each k-th approximant may give rise to one
or more (k + 1)-th approximants, so that the number of k-th approximants can
increase with k. Ultimately, the number of approximants stops increasing, but
for a finite construction we must be able to tell how soon this is the case:
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Theorem 8.1. One can find an integer k′ so large that each k′-th approximant
has the projection 1. As a result, only one (k+1)-th approximant can be obtained
by augmenting any given k-th approximant, for any k ≥ k′.

The second conclusion follows from the first, because in §5, (5), deg φk cannot
decrease (§2, Condition 2.41). To establish the first conclusion, we will show that
a projection not 1 gives G a multiple factor “mod µk”, in the sense in which h(x)
is a common factor “mod ν” in

Lemma 8.2. If, in any homogeneous Vk with Vk(x) ≥ 0, f(x) and g(x) are
polynomials with V0-integral coefficients and a resultant R(f, g), if there are poly-
nomials h(x), a(x), and b(x) with

Vk(f − ha) ≥ ν, Vk(g − hb) ≥ ν, (ν real),

and if h(x) is not a unit in Vk, then Vk
(
R(f, g)

)
≥ ν.

Proof. Since R(f, g) = 0 would imply Vk(R) =∞, we can assume R(f, g) 6= 0, so
that there exist c(x) and d(x), with V0-integral coefficients, such that

c(x)f(x) + d(x)g(x) = R(f, g)

(van der Waerden, Moderne Algebra 2, page 4). Hence

R(f, g) = (ca+ db)h+ c(f − ha) + d(g − hb).

Since Vk(x) ≥ 0 and therefore Vk(c) ≥ 0 and Vk(d) ≥ 0, the last two terms here
have values not less than ν. Were Vk(R) < ν, we should have

R(f, g) ≈Vk
(ca+ db)h.

Since R is a constant, this makes h a unit (see §4), contrary to hypothesis.

To apply this lemma when R is a discriminant, use

Lemma 8.3. In any homogeneous Vk with Vk(x) ≥ 0 and Vk(φk) = µk the
derivative f ′(x) of any polynomial f(x) has a value Vk

(
f ′(x)

)
≥ Vk

(
f(x)

)
− µk.

For k = 1 the result follows readily, since the value of a natural integer 1 + · · ·+ 1
is never negative. If the lemma is true for Vk−1, and if f(x) has the expansion∑
fj(x)φjk as in §2, (3), then

f ′(x) =
∑

f ′j(x)φjk +
∑

jfj(x)φj−1k φ′k(x).

The value of the first sum exceeds Vk(f)−µk because of the induction assumption
and because µk > µk−1. The value of the second sum is ≥ Vk(f) − µk, since
Vk(j) ≥ 0 and Vk(φ′k) ≥ 0, the latter because φk has V0-integral coefficients by
Theorem 7.1.

To establish Theorem 8.1, consider a Vk with a projection α − β > 1. The
expansion of §3, (1), used to define this projection gives

Vk−1(gα) + αµk ≤ Vk−1(gi) + iµk (i = 0, . . . , m).(1)

Division of G(x) by φαk yields, in terms of this expansion,

(2) G(x) = q(x)φαk + r(x), r(x) =

α−1∑
i=0

gi(x)φik.

For this remainder r(x) the triangle law (§2, (1)) and (1) show

Vk−1(r) ≥ min
i

[
Vk−1(gi) + i ·Vk−1(φk)

]
≥ min

i

[
Vk−1(gα) + (α− i)µk + i ·Vk−1(φk)

]
,

where i ranges from 0 to α−1. Since µk > Vk−1(φk), the minimum is at i = α−1:

Vk−1(r) ≥ Vk−1(gα) + µk + (α− 1)Vk(φk). [Vk−1(φk)? ](3)

As the divisor φαk has V0-integral coefficients and first coefficient 1, the quo-
tient and gα(x) likewise have integral coefficients, whence Vk−1(gα) ≥ 0, since
Vk−1(x) ≥ 0. Further, (4) of §7 proves Vk−1(φk) ≥ µk−1, while α ≥ projGVk was
assumed to exceed 1, so that (3) becomes

(4) Vk−1(r) ≥ µk + µk−1.

Differentiation of (2), with Lemma 8.3, now proves

Vk−1
(
G′ − (αqφ′k + q′φk)φα−1k

)
≥ µk; Vk

(
G− qφαk

)
≥ µk.

Thus G and G′ have a “common factor” φα−1k , with α− 1 > 0. This factor is not
a unit because φk is minimal in Vk−1. Thus Lemma 8.2 with §3, (1) gives

Vk−1
(
R(G,G′)

)
≥ µk ≥ µk−1 (k > 1).(5)

For large k this is impossible. For if Γk−1, the cyclic value group of Vk−1, has
the generator δk−1 > 0, while the group Γ0 for V0 is generated by δ0 > 0, then,
because of §6, (3), and §5, (2),

(6) δ0/δk−1 = expVk−1 ≤ deg φk ≤ (degG)/(projGVk).
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Hence δk−1 is bounded below by δ0/ degG. But the sequence µi for i ≤ k− 1 lies
in Γk−1 and is increasing (§7, (1)), so that it increases by steps of at least δk−1.
Therefore µk−1→∞ with k. But the field K(θ) was assumed separable, so that
G has no multiple roots, whence R(G,G′) 6= 0 and Vk−1(R) = V0(R) is finite.
Thus the inequality (5) is impossible for large k, and the assumption projGVk > 1
is untenable for large k.

This proof can be used to estimate how soon projGVk becomes 1.

If one combines (5) and (6) as indicated above, then

Vk−1
(
R(G,G′)

)
≥
(
(k − 2)δ0 · projGVk

)
/(degG).

This gives an upper bound for any k with projGVk > 1. If we use the worst value,
projGVk = 2, in this bound and compute k′ as the next larger integer, we find
that the integer k′ of Theorem 8.1 may be taken as

(7) k′ =
[ρn

2

]
+ 3,

where n is the degree of G(x) and ρ the integer determined by V0
(
R(G,G′)

)
= ρδ0.

Several improvements in this estimate are possible: (i), the term µk − µk−1,
neglected in (5), can be estimated as not less than δ0/n; (ii), if n is odd and
projGVk = 2, the last inequality of (6) can be improved, while the remaining
cases of projGVk ≥ 3 or n even, projGVk = 2 can be treated by the original
method. If this is carried out, one finds

(8) k′ = ρ
[n

2

]
+ 2.

The whole argument can now be repeated with projGVk replaced by the projection
of the principal polygon for φk. This shows that once φk is chosen for k ≥ k′,
the principal polygon has only one side, so that µk is completely determined. In
other words, only the first half of the k′-th stage is needed for Theorem 8.1.

In the algebraic number case, ρ is the power to which the prime p under con-
sideration divides the discriminant of G. If ρ = 0, then two stages suffice. This
is essentially a part of the result of Dedekind, that under these conditions the
prime ideal factors of p correspond to the irreducible factors φ2(x) of G(x) mod-
ulo15 p. Presumably the estimate (8) could be improved by introducing the index
(involving the non-essential discriminant divisors) of the original equation.

9. The degree of a value. To interpret the relation (11) of §5 we need the
notion of the “degree” of an absolute value. In an algebraic number field, the

15R. Dedekind, Ueber den Zusammenhang zwischen der Theorie der Ideale und der Theorie
der höheren Kongruenzen, Gesammelte Werke I 202–233.

“inertial” degree of a prime ideal factor p of a rational prime p is just the degree
of the residue-class field of p over the field of the integers mod p. To generalize
to any value V of a ring S, use the ring of all “integers” a ∈ S with V (a) ≥ 0,
and call two integers a and b congruent mod V if V (a − b) > 0. The set of
residue-classes of the integers with respect to this congruence forms as usual a
ring, the residue-class ring S/V . If S is a field, so is S/V . If W is any extension
of our original value V0 to K(θ), the usual arguments show that the residue-class
field K(θ)/W contains a subfield F0 isomorphic to K/V0 and that K(θ)/W is
algebraic over this F0. The degree of W is defined to be the degree, degW , of
K(θ)/W over F0.

To compute the degree, we use the results of M, part II, which show that for a
sequence of discrete inductive values V1, V2, . . . , Vk the residue-class ring of each
Vi has the form of a polynomial ring Fi[y ], where Fi is an algebraic extension
of F0 = K/V0. Furthermore (M, Theorem 12.1) F1 = F0, while, for i 6= 0, Fi+1

is an algebraic extension of Fi of a degree which is exactly the degree of φi+1

considered as a polynomial in φτii . In other words (M, Theorem 12.1),

degree(Fi+1 : Fi) = deg φi+1/(τi · deg φi) (i = 1, . . . , k − 1).

These formulas, combined with the interpretation of τi in §6, (2), give

(1) degree(Fi+1 : Fi) =
deg φk

τ1τ2 · · · τk−1
=

deg φk
exp(Vk−1)

.

These results can be extended to non-finite inductive values thus16:

Theorem 9.1. For a non-finite value Vk = [Vk−1, Vk(φk) =∞ ] the residue-class
ring K[x]/Vk is isomorphic to a field Fk, which is an algebraic extension of Fk−1
of a degree determined as in (1), where Fk−1[y ] is the residue-class field of Vk−1.

Proof. Exactly as in the proof M, Theorem 12.1, Fk is defined as the set of all
residue-classes modulo Vk which contain a polynomial f(x) with Vk−1(f) ≥ 0.
But if a polynomial f(x) in any residue-class is divided by φk, giving

g(x) = q(x)φk + r(x),

then the term qφk has value ∞, so that g and r belong to the same residue-
class, while Vk−1(r) = Vk(r) ≥ 0. Hence Fk includes all residue-classes and is the
residue-class ring. Its degree is found as in M, Theorem 12.1.

Theorem 9.2. If W, an extension of V0 to K(θ), corresponds as in Theorem 2.1
to an inductive value Vk with Vk

(
G(x)

)
=∞, then

(2) (expW ) ·(degW ) = deg φk.

16Theorem 9.1, as well as the last paragraph of §4, was revised July 15, 1936.
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The correspondence of W to Vk yields an isomorphism between the residue-class
rings K(θ)/W and K[x]/Vk. Hence by (1) and the definition of the degree of W ,

degW = degree(Fk : F0) = (deg φk)/ expVk−1.

But since any Vk(f) is either +∞ or some value from Vk−1, the value-groups of Vk
and Vk−1 are identical, and Vk−1, Vk, and W have the same exponent. Therefore
(2) results.

A similar interpretation holds for a limit-value V∞ = limVk. We first prove as
in M, Theorem 14.1, that, as soon as deg φk = deg φk+1 = · · · , we have Fk =
Fk+1 = · · · , and that this constant Fk is the residue-class ring K[x]/V∞. As
before, this Fk is then also the residue-class field of the corresponding value W of
K(θ). Consequently, using (1) again, we get

Theorem 9.3. If W is an extension of V0 to K(θ) which corresponds as in
Theorem 2.1 to a limit-value V∞ = limVk with V∞

(
G(x)

)
=∞, then

(3) (expW ) ·(degW ) = lim
k→∞

deg φk,

and the limit on the right is actually attained for large k.

10. The totality of values. The existence theorem is

Theorem 10.1. There are only a finite number of extensions W ′, W ′′, . . . , W (s)

of a given discrete value V0 of K to the separable field K(θ), where θ is a root of
G(x) = 0. Furthermore,

(1) (expW ′) ·(degW ′) + · · ·+ (expW (s)) ·(degW (s)) = degG(x).

The relation (1) is a generalization of a well-known property of prime ideals.
We first show that all W come from approximants. Every value W of K(θ)
corresponds by Theorem 2.1 to a value of K[x], which must be either an inductive
value Vk or a limit-value V∞. In the latter case, V∞ is the limit of a sequence V1,
V2, . . . , in which each Vk is by Lemma 3.2 an approximant. In the former case,
Vk
(
G(x)

)
=∞ and Vk−1 is by §2 and Lemma 3.2 a finite approximant. Since Vk

is not finite, Vk(φk) = µk = ∞. Then only the multiples of φk have non-finite
values, so that the last key φk must be G(x) itself. This is the “terminating case”
of Theorem 5.3. In this case there is only one sequence of approximants and
hence only one value W of K(θ). The equation (2) of §9 thus gives the relation
(1) above.

In the non-terminating case, we can construct one or more sequences of approxi-
mants V1, V2, V3, . . . . We must show that each such sequence gives a value W of
K(θ). By Lemma 3.4

(2) V1
(
G(x)

)
< V2

(
G(x)

)
< V3

(
G(x)

)
< · · · ,

while ultimately projGVk = 1 and deg φk is constant (Theorem 8.1 and §5, (5)).
The index τk of each value-group Γk−1 in the succeeding Γk is thus eventually
unity (§6, (1) and (3)). Therefore all the values in (2) lie in some one discrete group
Γk′ , so that Vk(G) must approach ∞. The limit-value V∞ then has V∞(G) =∞,
so that V∞ corresponds to a value W of K(θ). The relation (1) for all these values
follows from Theorems 5.2 and 9.3 because projGVk = 1.

The complete limit-value V∞ cannot be written down, but its essential properties
can be calculated.

Theorem 10.2. Each value W (i) of Theorem 10.1 is uniquely determined by an

“approximant” inductive value V
(i)
k of K[x], for some k = k′. If it is possible

to construct the irreducible factors of polynomials with coefficients in the residue-

class field K/V0, the approximants V
(i)
k can be computed in a finite number of

steps by finding certain slopes µ
(i)
j of the Newton polygons of G(x) and certain

key polynomials φ
(i)
j as the irreducible factors of G(x) in various equivalence-

decompositions. In this case one finds, in a finite number of steps, (i) the number
s of extensions of V0 to K(θ); (ii) the exponent and degree of each such W (i); (iii)
the values W (i)(α) for any previously given α in K(θ).

This is a restatement of previous results, except for the last assertion, which gives
a construction of the “prime ideal” decomposition of any α. If α = g(θ) 6= 0, then
we need only compute V∞

(
g(x)

)
for each limit value V∞ involved. If for every

k, Vk(g) > Vk−1(g), the argument following (2) proves V∞(g) = ∞ and α = 0.
Otherwise Vk(g) = Vk−1(g) for some k, so that Vk is not an approximant to g(x)
in the sense of Definition 3.3 and V∞(g) = Vk(g) as in Lemma 3.2. Hence Wα

can be computed in k stages.

In the algebraic number case (K = the field of rationals) the construction of a
prime ideal with inductive values can be extended to give a representation of the
prime ideal as the greatest common divisor of integers. It can then also be proved
that the “terminating case” of the construction arises whenever the prime p in
question has only one prime ideal factor. The proof depends on the fact that
every rational integer can be expressed as a sum of a finite number of terms cpm,
with c = 0, 1, . . . , p− 1. Thence it can be argued that any approximant Vk with
deg φk = degG must ultimately lead to the terminating case.

It remains to connect our results with previous investigations on this topic. Ore17

developed (Ore I) a construction for prime ideals in algebraic fields which for this
special case is equivalent to the first 2 1

2 stages of our method, which involve the
approximants V2 and the key polynomials φ3. This part of the construction does

17Ore uses µ1 = 0, which is possible because θ is assumed integral.
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not suffice18 for all equations G(x). In a subsequent paper (Ore II, especially
Kap 2, §5) Ore made an extension equivalent to one more stage of our method,
coupled with successive transformations of the defining equation G(x), which have
the effect of reducing several stages of our method to one stage. This method is
constructive and applies in all cases, but is justified only by appeal to another,
more elaborate construction19 of prime ideals in terms of congruences mod pα.
Berwick has developed20 approximations equivalent to 2 1

2 stages of our method,
and mentions the possibility of a third stage. The investigations of Wilson,21

although they are formulated in terms of group-bases for ideals, are closely related
to the first two stages of our method. However, if the method of successive
approximations is to be universally applicable, it must be formulated in terms of
an arbitrary number of steps; for, given an integer k and a prime p, an irreducible
polynomial G(x) can always be constructed so that the decomposition of p in the
field defined by G(x) will require more than k stages.

Our construction can also be employed to give a simple form to a number of ir-
reduciblity criteria,22 to prove one of the fundamental theorems relating Hensel’s
p-adic numbers to prime ideals and to constructively establish the unique decom-
position theorem in terms of the “Hauptordnungen” of Krull.23 I plan to discuss
some of these topics in a later paper.

Harvard University.

18Ø. Ore, Weitere Untersuchungen zur Theorie der algebraischen Körper, Acta Math 45
(1925) 145–160. Here it is proved that for every p and every algebraic field there “exists” a
regular defining equation for which the second stage is sufficient. However, the existence proof
is not constructive.

19Ø, Ore, Ueber den Zusammenhang swischen den definierenden Gleichungen und der Ide-
altheorie in algebraischen Körpern, Math Ann 96 (1926) 313–351; 97 (1927) 569–598.

20W. E. H. Berwick, Integral Bases, Cambridge Tracts in Mathematics and Mathematical
Physics, No 22.

21N. R. Wilson, On finding ideals, Annals of Math 30 (1928–29) 411-428.
22S. MacLane, Abstract absolute values which give new irreducibility criteria, Proc Nat Acad

Sci 21 (1935) 472–474; The ideal-decomposition of rational primes in terms of absolute values,
Proc Nat Acad Sci 21 (1935) 663–667.

23W. Krull, Idealtheorie, p 104.
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