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1. Introduction. An absolute value of a ring is a function ‖b‖ which has some
of the formal properties of the ordinary absolute value. More explicitly, for any b
in the ring, ‖b‖ must be a real number with the properties

‖bc‖ = ‖b‖ · ‖c‖, ‖b+ c‖ ≤ ‖b‖+ ‖c‖.

If the second inequality holds also in the stronger sense

‖b+ c‖ ≤ max (‖b‖, ‖c‖)

then the value ‖b‖ is called non-archimedean. The thus delimited non-
archimedean values are of considerable arithmetic interest. They are useful in
questions of divisibility and irreducibility and in fact often correspond exactly to
the prime ideals of the given ring. This paper is devoted to the explicit construc-
tion of non-archimedean values. More specifically, given all such values for the
field R of rational numbers, we construct all possible values of the ring R[x] of
all polynomials in x with coefficients in R.

In treating a non-archimedean value it is convenient to replace ‖a‖ by a related
“exponential” value

V (a) = − log ‖A‖,
with corresponding forms (§2) of the formal properties of V . The possible non-
archimedean values of the field of rational numbers were determined by Ostrowski
(1917): For every prime p there is a p-adic exponential value V0 in which the value
of any rational number is obtained by writing the number as pα(u/v), where u
and v are prime to p, and setting

(1) V0
(
pα(u/v)

)
= kα,

where k is any fixed positive constant. This value we denote by the symbol
[V0(p) = k ]. The only other value V is a trivial one, in which V (a) is zero for
a 6= 0.

On this basis we can determine all possible values in the ring of polynomials with
rational coefficients. Any such value W gives a p-adic or trivial value V0(a) =
W (a) for the rational numbers and a value µ = W (x) for the variable x. These
facts alone give a first approximation V1 to the value W , as follows:

V1
(
anx

n + an−1x
n−1 + · · ·+ a0

)
= min

{
V0(an) + nµ, V0(an−1) + (n− 1)µ, . . . , V0(a0)

}
.

(2)

This V1 is actually a value and is never larger than W . If V1 is not equal to W ,
we choose a φ(x) of smallest possible degree for which W

(
φ(x)

)
> V1

(
φ(x)

)
. We

than define a second approximation V0
(
f(x)

)
by using∗ the true value for φ(x).

In this manner we construct successive approximations V1, V2, V3, . . . which in
the limit will give the arbitrary value W (§8).

The succession of values V1, V2, . . . is defined in Part I for polynomials with coef-
ficients in any field K. This requires a general method (§§4 and 5) of constructing
a value Vk from a previously obtained value Vk−1. The value given by the limit
of such a sequence needs a special study (§7). Here, as in §§8 and 16, we assume
that every value of the field K is “discrete”; that is, that the real numbers used
as values form an isolated point set, as in the case of p-adic values.

Part II investigates the structure of the values which have been constructed. The
central problem is the construction of the “residue-class field” which arises when
polynomials which differ by a polynomial of positive value are put into the same
residue-class. For the absolute values constructed in Part I this field is determined
by an inductive construction of the homomorphism of polynomials to residue-
classes (§§10–14). This homomorphism also yields a more specific description of
how our values can be built up (§§9, 13). Since a given value W can be represented
in many ways by a sequence of approximations V1, V2, V3, . . . , we treat in §§15
and 16 the questions as to when two such sequences can give the same ultimate
value W , and how such a sequence can be put in a normal form.

Among the applications of this construction of absolute values we mention the
classification of irreducibility criteria of the Newton Polygon type. The theorem
of Eisenstein states that a polynomial

f(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a0

with integral coefficients ai is irreducible if each coefficient ai is divisible by some
fixed prime p, while the last term a0 is not divisible by p2. In terms of the value
V1 of (2) with µ = 1/n these hypotheses on f(x) become

V1
(
f(x)

)
= V1(xn) = V1(a0) < V1(aix

i) (i = 1, . . . , n− 1).

In this form a simple proof of the theorem can be given. The theorems of
Königsberger (1895), Dumas (1906), and Ore (1928) are likewise related to the
values V1. The second stage values V2 can be similarly applied to interpret the ir-
reducibility theorems of Schöneman (1846), Bauer (1905), Kürschák (1923), and
Ore (1923). By using the general value Vk one can obtain a still more exten-
sive irreducibility criterion which includes all these previous theorems (MacLane

∗Similar “second-stage” values V2 appear implicitly in the irreducibility investigations of Ore
(1923), Kürschák (1923), and Rella (1927).
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(1935)), and which asserts that certain polynomials f(x) with irreducible ho-
momorphic images of sufficiently high degree are themselves irreducible. Our
construction for absolute values can also be applied to give a new and complete
treatment of the problem of constructing the prime ideal factors of a given rational
prime in a given algebraic field.

I. The construction of non-archimedean values

2. Elementary properties of values in rings. A ring∗ S is said to have a
non-archimedean value (for short, a value) V if to every element a 6= 0 in S there
is assigned a unique real number V (a) with the properties

V (ab) = V (a) + V (b), V (a+ b) ≥ min
(
V (a), V (b)

)
.

These we call the product and triangle laws respectively. We assume also that 0
is assigned the value +∞, with the following conventions for any finite number γ:

γ <∞, ∞+ γ = γ +∞ =∞+∞ =∞.

Two simple consequences of the product law are

(1) V (1) = V (−1) = 0, V (−a) = V (a).

More important is the strengthened form of the triangle law:

(2) V (a) 6= V (b) implies V (a+ b) = min
(
V (a), V (b)

)
.

For suppose instead that V (a) > V (b) and V (a+ b) > min
(
V (a), V (b)

)
. Then

V (b) = V (a+ b− a) ≥ min
(
V (a+ b), V (a)

)
> V (b),

a contradiction.

Since we are using a value analogous to the negative logarithm of the ordinary
absolute value, a “small” absolute value will correspond to a “large” value V .
Hence we say that two ring elements a and b are of the same order of magnitude
or equivalent in V — denoted a ≈

V
b — if and only if

V (a− b) > V (a).

The product and strong triangle laws show that equivalent elements have the
same value and that equivalence is a reflexive, symmetric, and transitive relation,
provided the supplementary assumption† that 0 ≈V 0 be made.

∗Here and in the sequel “ring” means “commutative ring with unit element”.
†Here and subsequently the element 0 plays an exceptional role.

Two equivalences a ≈V b and c ≈V d can be multiplied to give

(3) ac ≈V bd.

An element b is equivalence-divisible in V by a — denoted a ‖V b — if and only if
there exists a c in S such that

b ≈
V
ca.

If this is true, it remains true when a or b is replaced by an equivalent element.

The product law implies that a ring S with a value V must be an integral domain.
The value V may be extended to the quotient field of S by defining, in accord
with the product law,

(4) V
( a
b

)
= V (a)− V (b)

for any elements a and b 6= 0 in S. One then obtains the

Theorem 2.1. Let S be an integral domain with quotient field K. If V is a value
of S, then the function defined by (4) is a value of K. Conversely, every value of
K can be obtained in this way from one and only one value of S.

When S = K is a field, the set of all real numbers V (a) for a 6= 0 is an additive
group Γ, called the value-group of V . If the positive numbers of Γ have a positive
minimum δ > 0, then the value V is said to be discrete. In this case the group Γ
is cyclic and consists of all multiples of δ. If all elements not 0 have the value 0,
then V is called trivial. Every ring has a trivial value, while the p-adic values for
the field of rational numbers are examples of discrete values. Values of arithmetic
interest are generally discrete.

3. The first stage values. Our problem is this: Given all values of a field K;
to construct all values for the ring K[x] of all polynomials∗ in x with coefficients
in K. By Theorem 2.1, this is equivalent to determining all values in the field
K(x) of rational functions of x with coefficients in K. No gain in generality would
result were a ring S used instead of the field K.

As indicated in the introduction, the values for K[x] will be constructed in stages.
For the first step, take any value V0 for the field K and any real number µ, and
then define a corresponding first stage value V1 for any polynomial by the equation
(2) of §1. In particular, this gives

V1(x) = µ, V1(a) = V0(a) (any a ∈ K).

Hence we use the symbol [V0, V1(x) = µ ] for the value V1.

∗Henceforth all polynomials considered are to have coefficients in K, unless otherwise noted.
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Theorem 3.1. If V0 is a value of K and µ a real number, the function
[V0, V1(x) = µ ] defined above is a value of K[x].

A particularly simple V1 arises when µ = 0. On the other hand, if V0 is trivial
and µ < 0, then

V1
(
a(x)

)
= µdeg a(x).

The symbol deg a(x) here and in the sequel denotes the degree in x of the poly-
nomial a(x).

4. Augmented values. Our construction now proceeds to build a second stage
value on the basis of a first stage one; or, more generally, a kth stage value from
one at the stage k−1. The process involved can be formulated once for all: Given
a value W for K[x]; to construct an “augmented” value V by assigning larger
values to a certain “key” polynomial φ(x) and to its equivalence-multiples. The
key polynomial φ(x) must be suitably chosen.

Definition 4.1. A key polynomial φ(x) 6= 0 over a value W of K[x] is one which
satisfies the following conditions:

(i) Irreducibility. If a product is equivalence-divisible in W by φ(x), then
one of the factors is equivalence-divisible by φ(x).

(ii) Minimal degree. Any non-zero polynomial equivalence-divisible in W by
φ(x) has a degree in x not less than the degree of φ(x).

(iii) The leading coefficient ∗of φ(x) is 1.

This key polynomial is to be assigned a new value

(1) V
(
φ(x)

)
= µ > W

(
φ(x)

)
.

To find the new values of other polynomials, we use expansions in φ; that is,
expressions in powers of φ(x) of the form†

(2) f(x) = fm(x)φm + fm−1(x)φm−1 + · · ·+ f0(x),

in which each coefficient polynomial fi(x) is either zero or of degree less than
the degree of φ(x). Any polynomial has one and only one such expansion, which
may be found by successive division by powers of φ. The new value V

(
f(x)

)
is

computed from the expansion thus:

(3) V
(
fm(x)φm + fm−1(x)φm−1 + · · ·+ f0(x)

)
= mini

(
W
(
fi(x)

)
+ iµ

)
.

Here “min” with subscript i means the smallest quantity of the form W
(
fi(x)

)
+

iµ, for i = 0, 1, . . . , m.

∗This assumption, although unnecessary, will simplify the subsequent work.
†We use φ as an abbreviation for φ(x), and similarly for other polynomials.

Theorem 4.2. If W is a value of K[x], φ(x) is a key polynomial over W and µ
is a real number satisfying (1), then the function V defined in (3) is also a value
of K[x]. V is called an augmented value, and is denoted by

V = [W, V (φ) = µ ].

Proof. The product and triangle laws for V must be verified. We first prove the
triangle law for a sum f(x) + g(x). Let f and g have the expansions (2) and

(4) g(x) = gn(x)φn + gn−1(x)φn−1 + · · ·+ g0(x)

respectively. By adjoining zero coefficients we can make m = n. Hence f + g has
the expansion

f(x) + g(x) =

n∑
i=0

[fi(x) + gi(x)]φi.

By the definition of V and the triangle law for W ,

V (f + g) = mini
(
W (fi + gi) + iµ

)
≥ mini

(
min

(
W (fi), W (gi)

)
+ iµ

)
≥ mini

(
W (fi) + iµ, W (gi) + iµ

)
= min

(
mini

(
W (fi) + iµ

)
, mini

(
W (gi) + iµ

) )
,

V (f + g) ≥ min
(
V (f), V (g)

)
.

To prove the product law we will use the quotient-remainder expression for a
polynomial f(x),

(5) f(x) = q(x)φ+ r(x),

where r(x) is zero or of degree less than that of φ(x).

Lemma 4.3. If φ is a key polynomial over a value W of K[x], and if f(x) 6= 0
has the quotient-remainder expression (5), then

W
(
r(x)

)
≥W

(
f(x)

)
,(6)

W
(
q(x)φ

)
≥W

(
f(x)

)
.(7)

The inequality in (6) holds if and only if φ ‖W f .

Proof of Lemma. Were the first conclusion (6) false, then W
(
f(x)

)
> W

(
r(x)

)
in

(5) and the definition of equivalence would give

r(x) ≈
W
−q(x)φ.

Absolute Values in Polynomial Rings 3 30-Oct-2014, 10:00 am



Hence φ ‖W r and r(x) 6= 0, a contradiction to the minimal property of φ and the
restricted degree of r(x). The second conclusion (7) now follows from (6) by the
triangle law.

The third conclusion gives a test for equivalence-divisibility in terms of ordinary
division. When W

(
r(x)

)
> W

(
f(x)

)
, then (5) shows φ ‖W f . Conversely, if

φ ‖W f then there exist polynomials h(x) and s(x) so that

f(x) = h(x)φ+ s(x), W
(
s(x)

)
> W

(
f(x)

)
.

If now the equality sign in (6) should hold, we would have

r(x) = f(x)− q(x)φ =
(
h(x)− q(x)

)
φ+ s(x),

with
W
(
s(x)

)
> W

(
f(x)

)
= W

(
r(x)

)
,

so that φ ‖W r, again a contradiction.

Return to Theorem 4.2 and consider the product law first for a product of two
monomial expansions a(x)φt and b(x)φu. Because of the limited degrees of a(x)
and b(x), the product a(x)b(x) has an expansion with not more than two terms,

(8) a(x) b(x) = c(x)φ+ d(x).

Were it the case that φ ‖W ab then the equivalence-irreducibility of φ (Defini-
tion 4.1) would require that either φ ‖W a or φ ‖W b, contrary to the minimal
property. Hence φ ∦W ab. Lemma 4.3 and the triangle axiom then yield

W
(
c(x)φ

)
≥W

(
a(x) b(x)

)
= W

(
d(x)

)
.

Since the new value of φ exceeds the old value,

(9) W
(
c(x)

)
+ µ > W

(
a(x) b(x)

)
= W

(
d(x)

)
.

The product under consideration has by (8) the expansion(
a(x)φt

)(
b(x)φu

)
= c(x)φt+u+1 + d(x)φt+u;

hence the definition of V and the conclusion (9) give

V
[(
a(x)φt

)(
b(x)φu

)]
= min

{
W
(
c(x)

)
+ µ+ (t+ u)µ, W

(
d(x)

)
+ (t+ u)µ

}
= W

(
d(x)

)
+ (t+ u)µ

= W
(
a(x)

)
+ tµ+W

(
b(x)

)
+ uµ

= V
(
a(x)φt

)
+ V

(
b(x)φu

)
.

This is the product law for monomial expansions.

The product law for polynomials f(x) and g(x) with arbitrary expansions (2)
and (4) respectively is an immediate consequence. The product f(x) g(x) has an
expansion obtained by adding expansions of monomial products; hence

(10) V
(
f(x) g(x)

)
≥ V

(
f(x)

)
+ V

(
g(x)

)
.

To show that the equality holds, choose t and u as the largest integers with

V
(
ft(x)φt

)
= V

(
f(x)

)
, V

(
gu(x)φu

)
= V

(
g(x)

)
respectively. The monomial case then shows‡ that the expansion of f(x) g(x) has
a term r(x)φt+u with the value V

(
f
)

+ V
(
g
)
. The equality holds in (10), and

Theorem 4.2 is established.

5. Properties of augmented values. An augmented value V is never less than
the original value W . This characteristic property will now be established. As a
consequence the method used to compute V can be extended (Theorem 5.2) in a
way subsequently useful in §12.

Theorem 5.1 (Monotonicity). The augmented value V = [W, V (φ) = µ ] makes

V
(
f(x)

)
≥W

(
f(x)

)
for all polynomials f(x) 6= 0. The inequality sign holds if and only if φ ‖W f .
In particular, the equality sign holds whenever the degree of φ(x) exceeds that of
f(x).

Proof. The proof is by induction on the degree m of the expansion of f(x) in φ
(see §4, (2)). If m = 0, the definition of V shows V

(
f(x)

)
and W

(
f(x)

)
equal. If

m > 0 , the quotient-remainder expression

(1) f(x) = q(x)φ+ r(x)

indicates that q(x) has an expansion of degree m − 1 in φ; hence the induction
assumption will be

V
(
q(x)

)
≥W

(
q(x)

)
.

The value of the first term on the right of (1), by §4, (1), and the quotient-
remainder Lemma 4.3, is

V
(
q(x)φ

)
≥W

(
q(x)

)
+ V (φ) > W

(
q(x)φ

)
≥W

(
f(x)

)
.

‡The details here omitted are given in Rella’s proof.
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For the second term, the case m = 0 and Lemma 4.3 imply

V
(
r(x)

)
= W

(
r(x)

)
≥W

(
f(x)

)
,

where the inequality holds if and only if φ ‖W f . The strong triangle law for V
applied to (1) now gives the result (see §2, (2)).

Theorem 5.2. If in the expression

a(x) = an(x)φn + an−1(x)φn−1 + · · ·+ a0(x)

the degrees of the ai(x) are not limited, but φ ∦W ai for i = 0, . . . , n and ai 6= 0,
then the augmented value V = [W, V (φ) = µ ] is

V
(
a(x)

)
= mini

[
W (ai) + iµ

]
(i = 0, . . . , n).

Proof. A quotient-remainder expression for each coefficient polynomial gives

ai(x) = qi(x)φ+ ri(x) (i = 0, . . . , n),

a(x) =
∑n
i=0qi(x)φi+1 +

∑n
i=0ri(x)φi.

Lemma 4.3 shows that the second summation has a value

V
(∑

iri φ
i
)

= mini
[
W (ri) + iµ

]
= mini

[
W (ai) + iµ

]
and that the first summation has a larger value

V
(∑

iqi φ
i+1
)
≥ mini

[
V (qi) + V (φ) + iµ

]
> mini

[
W (qi) +W (φ) + iµ

]
,

because of the monotonicity. The strong triangle law for the sum of these two
summations yields the desired conclusion.

6. Inductive and limit-values. This section classifies the values and value-
groups obtained by successive augmented values.

Definition 6.1. A kth stage inductive value Vk is any value of K[x] obtained by
a sequence of values V1, V2, . . . , Vk, where V1 = [V0, V1(x) = µ1 ] is a first stage
value (§3) and where each Vi is obtained by augmenting Vi−1:

Vi = [Vi−1, Vi(φi) = µi ] (i = 2, 3, . . . , k).

Furthermore, for i = 2, . . . , k, the key polynomials φi(x) must satisfy: ∗

deg φi(x) ≥ deg φi−1(x);(1)

φi(x) 6≈Vi−1
φi−1(x).(2)

Here the first key polynomial is understood to be φ1(x) = x.

∗These conditions involve no loss of generality, but simplify subsequent proofs (see
Theorem 6.7 and the end of §9).

The value Vk may be conveniently symbolized thus:

(3) Vk = [V0, V1
(
φ1
)

= µ1, V2
(
φ2
)

= µ2, V3
(
φ3
)

= µ3, . . . , Vk
(
φk
)

= µk ].

Given an infinite sequence V1, V2, . . . , Vk, . . . of such values, we set

(4) V∞
(
f(x)

)
= lim
k→∞

Vk
(
f(x)

)
.

The monotonic character of Vk indicates that this limit, if not finite, is +∞.
V∞ satisfies the product law for values, as can be shown by taking limits in the
product law for Vk. As for the sum f(x) + g(x), note that the triangle law in Vk
indicates that one of the inequalities

Vk
(
f(x) + g(x)

)
≥ Vk

(
f(x)

)
, Vk

(
f(x) + g(x)

)
≥ Vk

(
g(x)

)
holds for infintely many k. One of the conclusions

V∞
(
f(x) + g(x)

)
≥ V∞

(
f(x)

)
, V∞

(
f(x) + g(x)

)
≥ V∞

(
g(x)

)
then results, and thence follows the triangle law for V∞. We have

Theorem 6.2. Let {φk(x)} and {µk} be fixed infinite sequences such that all the
functions Vk indicated in (3) are inductive values. Then the function V∞

(
f(x)

)
defined in (4) is a value of K[x], provided some polynomials not zero be allowed
to have the value +∞.

This function V∞ will be called a limit-value. The case when several successive
key polynomials have the same degree will often require separate treatment, based
on

Lemma 6.3. If in the inductive value Vk in (3) the key polynomials φt+1(x),
φt+2(x), . . . , φk(x) all have the same degree, for t with 0 ≤ t ≤ k − 1, then

(i) Vt(φj+1 − φj) = µj (j = t+ 1, t+ 2, . . . , k − 1),

(ii) µk > µk−1 > · · · > µt+1,

(iii) Vt(φk) = Vt(φk−1) = · · · = Vt(φt+1) (if t > 0).

Proof. Let j range from t+ 1 to k − 1, and set

(5) sj(x) = φj+1(x)− φj(x).

Since both φ’s have the first coefficient 1, the degree of sj(x) is less than that of
φj(x). Therefore, by Theorem 5.1,

Vt
(
sj(x)

)
= Vt+1

(
sj(x)

)
= · · · = Vk

(
sj(x)

)
.
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If the first conclusion were false for some j, we would have

Vt
(
sj(x)

)
= Vj(φj+1 − φj) > µj = Vj(φj),

for the other inequality is impossible by Lemma 4.3. This would give

φj+1 ≈Vj
φj ,

a contradiction of assumption (2). The conclusion (i) is thus established. Cou-
pled with the monotonicity and the triangle axiom for (5), it gives the second
conclusion, for

µj+1 = Vj+1

(
φj+1

)
> Vj

(
φj+1

)
≥ min

{
Vj(φj), Vt(sj)

}
= µj .

For similar reasons, assuming now that t > 0,

Vt
(
sj(x)

)
= µj = Vj(φj) > Vj−1(φj) ≥ Vt(φj).

The strong triangle axiom for Vt in (5) then yields conclusion (iii),

Vt(φj+1) = min
{
Vt
(
sj(x)

)
, Vt(φj)

}
= Vt(φj).

An interesting consequence of this lemma is the invariance of the values assigned
to the key polynomials.

Theorem 6.4. If the ith stage of the inductive value Vk in (3) uses a key poly-
nomial φi with an assigned value µi, then

Vk
(
φi(x)

)
= Vi

(
φi(x)

)
= µi.

For this conclusion follows directly from Theorem 5.1 if the degree of φi+1(x),
and hence that of every subsequent key polynomial, exceeds the degree of φi(x).
The only case remaining is that of Lemma 6.3, with t = i− 1. But, by (5),

φi = φk − sk−1(x)− sk−2(x)− · · · − si(x).

The terms on the right have by the preceding lemma the Vk values µk,
µk−1, . . . , µi respectively, so that the conclusion follows by the strong triangle
law. Both this theorem and Lemma 6.3 hold equally well for limit-values.

The monotonic property of inductive values can be sharpened thus:

Theorem 6.5. Let a limit or inductive value be built up by the inductive values
V1, V2, . . . . Then, for any fixed polynomial f(x) 6= 0, either

Vk+1

(
f(x)

)
> Vk

(
f(x)

)
(k = 1, 2, . . . ),

or else there is an i ≥ 1 such that

V1
(
f(x)

)
< V2

(
f(x)

)
< · · · < Vi−1

(
f(x)

)
= Vi

(
f(x)

)
= Vi+1

(
f(x)

)
= Vi+2

(
f(x)

)
= · · · .

In the latter case there is an r(x) of degree less than that of φi+1 with

f(x) ≈Vk
r(x) (k = i+ 1, i+ 2, . . . ).

Suppose, contrary to the first alternative, that for some i

Vi+1

(
f(x)

)
= Vi

(
f(x)

)
.

Then the quotient-remainder expression

f(x) = q(x)φi+1 + r(x)

must by Theorem 5.1 and Lemma 4.3 have Vi(r) = Vi(f). Hence, for any k ≥ i+1,

Vk(f − r) ≥ Vi+1(f − r) = Vi+1(qφi+1) > Vi(qφi+1) ≥ Vi(f) = Vi(r) = Vk(r).

Therefore f(x) ≈Vk
r(x) and

Vk(f) = Vk(r) = Vi(r) = Vi(f),

so that Vi
(
f(x)

)
is constant for k ≥ i, which is the second alternative.

An inductive value Vk of K[x] gives by Theorem 2.1 a value for the field K(x)
of rational functions. This value has by §2 a value-group Γk, which we call the
value-group associated with Vk. It may be determined in the following way:

Theorem 6.6. The value Vk in (3) has a value-group Γk consisting of all real
numbers of the form

ν +m1µ1 +m2µ2 + · · ·+mkµk,

where the mi are integers and ν is an element of the value-group of the original
value V0.

That every number of Γk must be of this form follows by induction from the
definition of the augmented value Vk. Conversely, any number of this form is by
Theorem 6.4 the value in Vk of the rational function

b xm1φm2
2 · · · φ

mk

k ,

where b is a constant in K with the value ν.

For a more precise description, designate a real number µ as commensurable with
an additive group of numbers whenever some integral multiple of µ lies in the
group. Then
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Theorem 6.7. In an inductive value Vk from (3) every assigned value µi, except
perhaps µk, is commensurable with the value-group Γi−1 of the preceding value
(the case i = 1 included).

Proof. Consider the expansion in φi of the next key,

φi+1(x) = fm(x)φmi + fm−1(x)φm−1i + · · ·+ f0(x).

If µi is not commensurable with Γi−1, no two terms here can have the same value
in Vi. Only one term, say the jth, has the minimum value, and

φi+1(x) ≈Vi
fj(x)φji .

By the irreducibility of φi+1 at least one of the conditions

φi+1 ‖Vi
fj(x),(6)

φi+1 ‖Vi
φi,(7)

must hold. Because of the minimal property of φi+1 the first possibility (6)
contradicts the assumption (1) of Definition 6.1. For the same reasons the second
possibility (7) implies that φi+1 and φi have the same degree, while

s(x) = φi+1(x)− φi(x)

has a smaller degree. Because of (7), Lemma 4.3 applied to Vi and the key
polynomial φi+1 shows Vi

(
s(x)

)
> Vi

(
φi+1(x)

)
. Hence

φi(x) ≈Vi
φi+1(x),

a contradiction of assumption (2). There can be no next key φi+1.

7. Constant degree limit-values. A limit-value V∞ for polynomials does not
give a value for all rational functions if some of the polynomials have the value
+∞. Hence the problem: When is V∞ finite; that is, when is V∞

(
f(x)

)
finite for

all f(x) 6= 0? We obtain an answer in the discrete case.

If the key polynomials φk(x) increase indefinitely in degree, then Vk
(
f(x)

)
is by

Theorem 5.1 ultimately constant for fixed f(x) and V∞ is finite. A different situ-
ation arises if the degrees of φk(x) are then all equal to some M for k sufficiently
large. For an example of such a constant degree limit-value, start with the p-adic
value [V0(3) = 1 ] for the rational field (see §1, (1)) and set

V1 = [V0, V1(x) = 1 ],

Vk = [Vk−1, Vk(x+ 2p+ p2 + p3 + · · ·+ pk−1) = k ] (k = 2, 3, . . . ).

This gives a limit-value of constant degree 1. Since

p

2
= 2p+ p2 + p3 + · · ·+ pk−1 − pk

2
(k > 1, p = 3)

holds by the usual methods for p-adic numbers, we find

V∞

(
x+

p

2

)
= lim
k→∞

Vk

(
(x+ 2p+ p2 + p3 + · · ·+ pk−1)− pk

2

)
= lim
k→∞

k =∞.

Hence this V∞ is not finite.

This use of p-adic numbers suggests the general notion of a perfect ring. In any
ring S with a value V , a sequence {an} is a Cauchy sequence if V (an − am)
approaches ∞ with n and m. If every Cauchy sequence has a V -limit b such that
V (an− b) approaches ∞ with n, the ring S is said to be perfect. Any ring can be
embedded in a perfect ring by the usual procedure of adjoining limits of Cauchy
sequences.

Theorem 7.1 (Finiteness criterion). Let V∞ be a limit-value with key polyno-
mials φk(x) of constant degree M for k > t > 0. Extend the ring K[x] with the
value Vt to be a perfect ring S∗. Assume that all values of K are discrete. Then
{φk} is a Cauchy sequence in Vi and has a limit φ in S∗. Furthermore V∞ is
finite if and only if there is no g(x) 6= 0 in K[x] divisible in S∗ by the limit φ.

For V∞ the symbolism of Theorem 6.2 may be used. Since φt+1, φt+2, . . . all have
the same degree M , the conclusions of Lemma 6.3 on constant degree values are
applicable. Each number µi is by Theorem 6.7 commensurable with the value-
group Γi−1 of Vi−1. Our assumption shows the original value-group Γ0 of V0 to
be discrete, hence, by Theorem 6.6 and by induction, the group Γt is discrete.
But Lemma 6.3 gives

µi = Vi(φi+1 − φi) ∈ Γi (i > t);(1)

hence Γi = Γt for i > t. This lemma also shows the sequence {µi} to be monotone
increasing for i > t; it lies in the discrete set Γt, hence

(2) lim
i→∞

µi =∞.

The strong triangle law combined with (1) then proves

Vt(φi+j − φi) = Vt
(∑i+j−1

k=i (φk+1 − φk)
)

= mink{µk} = µi.

Therefore, by (2), {φi} is a Cauchy sequence with a limit φ in S∗. This φ need
not be a polynomial, but, by conclusion (iii) of Lemma 6.3, φ 6= 0.
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Now consider the necessary condition for finiteness. If g(x) 6= 0 is divisible by φ
in S∗, then

g(x) = hφ,

where h is the Vi-limit of a Cauchy sequence {hi(x)} from K[x]. The usual
argument for the convergence of a product shows

(3) lim
i→∞

Vt
(
g(x)− hi(x)φi(x)

)
=∞.

By the triangle axiom and the monotonic property for i > t,

(4) Vi(g) ≥ min
{
Vi(hiφi), Vi(g − hiφi)

}
≥ min

{
Vt(hi) + µi, Vt(g − hiφi)

}
.

But {hi(x)} is a convergent sequence in Vi with a limit not zero, so that, as is
well known, Vt(hi) is ultimately constant. Consequently (2), (3), and (4) prove

(5) V∞
(
g(x)

)
= lim
i→∞

Vi
(
g(x)

)
=∞,

so that V∞ is not a finite limit-value.

Conversely, suppose that V∞ is not finite. Then (5) holds for some g(x) 6= 0. If
g(x) has the quotient-remainder expressions qi(x)φi+ri(x), then, by Theorem 5.1
and by Lemma 4.3,

Vi(g − qiφi) = Vi(ri) = Vi−1(ri) ≥ Vi−1
(
g(x)

)
→∞ (i > t).

Thus the sequence {qiφi} converges in Vi to the limit g(x) 6= 0. Since {φi} already
converges to the limit φ 6= 0, the standard argument for the limit of a quotient
(qiφi)/φi shows that {qi} must converge in Vi to some limit q in S∗, such that

f(x) = qφ.

Hence φ is a factor of f(x) in S∗, as asserted.

8. Completeness. We have the following theorem.

Theorem 8.1. If every value of the field K is discrete, then every non-archi-
medean value W of the ring K[x] can be represented either as an inductive or as
a limit-value.

Given W , we shall construct by stages a corresponding inductive value Vk with
the following three properties (notation as in §6, (3)):

W
(
f(x)

)
≥ Vk

(
f(x)

)
(for all f(x)),(1)

deg f(x) < deg φk implies W
(
f(x)

)
= Vk

(
f(x)

)
,(2)

W
(
φi(x)

)
= Vk

(
φi(x)

)
= µi (i = 1, 2, . . . , k).(3)

The initial value V1 is defined by

µ1 = W (x), V0(a) = W (a) (any a ∈ K);

the triangle axiom for W and the definition of V1 in §1, (2), then show that
conditions (1), (2), and (3) hold for k = 1.

Suppose now that an inductive value Vk with these three properties has already
been constructed, and that the equality in (1) does not always hold. As a prospec-
tive key polynomial, choose a ψ(x) of smallest possible degree with the property

(4) W
(
ψ(x)

)
> Vk

(
ψ(x)

)
.

Multiplication with some constant gives ψ(x) the first coefficient 1. Furthermore
the two statements

W
(
f(x)

)
> Vk

(
f(x)

)
,(5)

ψ(x) ‖Vk
f(x),(6)

are logically equivalent. For if (5) is given, and if f(x) has the quotient-remainder
expression q(x)ψ + r(x), then

Vk(qψ − f) = W (qψ − f) ≥ min
{
W (qψ), W (f)

}
> min

{
Vk(qψ), Vk(f)

}
,

because of (2), the minimum degree choice of ψ and the induction assumption (1)
for q(x). Hence the strong triangle law shows f ≈Vk

qψ, which is the conclusion
(6). Conversely, if (6) holds there exist polynomials h(x) and s(x) with

f(x) = h(x)ψ + s(x), Vk
(
s(x)

)
> Vk

(
f(x)

)
= Vk

(
h(x)ψ

)
.

Then, because of the induction assumption (1),

W (f) ≥ min
{
W (hψ), W (s)

}
≥ min

{
Vk(h) +W (ψ), Vk(s)

}
> Vk(h) + Vk(ψ) = Vk(f),

which gives conclusion (5). The equivalence of (5) and (6) is established.

From the equivalence one readily shows that ψ(x) satisfies the Definition 4.1 of
a key polynomial over the value Vk. Finally we can assign ψ(x) = φk+1 the new
value

(7) µk+1 = W (ψ) > Vk(ψ),

satisfying the proper inequality, and then construct the augmented value Vk+1 =
[Vk, Vk+1(φk+1) = µk+1 ]. This will be an inductive value if only conditions (1)
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and (2) of Definition 6.1 hold. By the choice of φk+1 = ψ and the induction
assumption (2), φk(x) cannot exceed φk+1(x) in degree, therefore condition (1) of
§6 is true. Condition (2) of §6 could only be false if φk+1 ≈Vk

φk; in other words,
only if

Vk(φk − φk+1) > Vk(φk) = Vk(φk+1).

By (2), (3), and the choice of ψ in (4) this would entail

W (φk) ≥ min
{
W (φk+1), W (φk − φk+1)

}
> min

{
Vk(φk+1), Vk(φk)

}
= Vk(φk) = W (φk),

a contradiction which establishes the desired condition.

The inductive value Vk+1 thus constructed satisfies the analogues of the desired
conditions (1), (2), and (3). The latter two are consequences of the definitions in
(4) and (7), while (1) follows from the definition (see §4, (3)) of the augmented
value Vk+1 by the triangle axiom for W :

W
(∑m

i=0fi(x)ψi
)
≥ mini

(
W
(
fi(x)

)
+ iµk+1

)
= Vk+1

(∑m
i=0fi(x)ψi

)
.

The inductive construction of the value Vk associated with W is complete.

This process either will ultimately yield an inductive value Vk equal to W or will
give an infinite sequence of inductive values with a limit-value V∞ such that

W
(
f(x)

)
≥ V∞

(
f(x)

)
= lim
k→∞

Vk
(
f(x)

)
(for all f(x)).

In the discrete case the first inequality sign never occurs. For suppose instead
that it did hold for some f(x); then since {Vk(f)} is monotone non-decreasing,

W
(
f(x)

)
> Vk

(
f(x)

)
(k = 1, 2, . . . ).

The equivalence of (5) and (6) then implies that φk+1(x) ‖Vk
f(x). Hence the

monotonicity Theorem 5.1 shows

Vk+1

(
f(x)

)
> Vk

(
f(x)

)
(k = 1, 2, . . . ).

This cannot hold if the degrees of the key polynomials φk(x) increase indefinitely,
so that we have the case where φk(x) has the fixed degree M for k > t, as in
Theorem 7.1. The monotonic increasing sequence {Vk

(
f(x)

)
} consists of numbers

all from the discrete group Γt, with the result

W
(
f(x)

)
≥ V∞

(
f(x)

)
= lim
k→∞

Vk
(
f(x)

)
=∞.

This can occur only for f(x) = 0, a trivial case. Accordingly, W = V∞, and the
completeness theorem is established.

II. The structure of inductive values

9. Properties of key polynomials. To apply the preceding construction of
values to any particular case it is necessary to know what polynomials can be
used as key polynomials. This question is not constructively answered by the
definition in §4. Part of this question will be answered at once (Theorem 9.4);
the rest after the structure of the inductive values Vk has been more explicitly
formulated. We first show that certain polynomials act like “equivalence-units”:

Lemma 9.1. If Vk is an inductive value with k > 1, then for every polynomial
b(x) with Vk

(
b(x)

)
= Vk−1

(
b(x)

)
there is a polynomial b′(x) with

(1) b′(x) b(x) ≈Vk
1, Vk

(
b′(x)

)
= Vk−1

(
b′(x)

)
.

The hypothesis on b(x) implies that b(x) is not divisible by the last key poly-
nomial φk(x). Since φk is certainly irreducible in the ordinary sense, there are
polynomials b′(x) and c(x) with

b′(x) b(x) + c(x)φk(x) = 1, deg b′(x) < deg φk(x).

By Theorem 5.1, Vk(b′) = Vk−1(b′). The transition from Vk−1 to Vk increases the
value of cφk, but leaves unchanged the values of b′ b and 1 in this equation. Hence
b′ b ≈Vk

1, as in (1).

Lemma 9.2. In any inductive Vk, the last key polynomial φk is equivalence-
irreducible in Vk; a polynomial g(x) with φk ∦Vk

g(x) has a value Vk(g) in Γk−1.

Proof. If a polynomial f(x) has the expansion

f(x) = fn(x)φnk + fn−1(x)φn−1k + · · ·+ f0(x), deg fi(x) < deg φk(x),(2)

then φk ‖Vk
f(x) if and only if Vk(f0) > Vk(f). For if Vk(f0) > Vk(f), then f − f0

is a polynomial equivalent to f with a factor φk. Conversely, if f ≈Vk
h(x)φk,

then the last term f0 of the expansion for f is obtained from f − hφk, where
Vk(f − hφk) > V (f), so that Vk(f0) > Vk(f). In particular, if φk ∦Vk

f then
Vk(f) = Vk(f0) = Vk−1(f0) ∈ Γk−1, as asserted.

This criterion shows φk equivalence-irreducible in Vk. For suppose instead that
φk ‖Vk

f g, although neither factor is so divisible. Then the criterion gives Vk(f0) =
Vk(f), Vk(g0) = Vk(g), where g0(x) is the last term in the expansion for g. The
last term in the expansion for f g is the remainder r0(x) obtained by dividing f0g0
by φk; but since φk ∦Vk−1

f0g0, Lemma 4.3 shows

Vk(r0) = Vk−1(r0) = Vk−1(f0g0) = Vk(f0) + Vk(g0) = Vk(f g).

This means that φk ∦Vk
f g, a contradiction proving the lemma.
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An inductive value Vk will be called commensurable if the value µk assigned
the last key polynomial is commensurable with the previous value-group Γk−1
(cf. Theorem 6.7). There is then a smallest positive integer τk such that τkµk is
in Γk−1. For each t ≤ k there is a similar τt:

(3) τt is the smallest integer such that τtµt ∈ Γt−1.

We will subsequently need polynomials with any given values:

Lemma 9.3. If Vk is a commensurable inductive value, then for any real number
λ in the value-group Γk of Vk there is a polynomial Rλ = Rλ(x) with value λ in
Vk and in every value Vk+1 obtained by augmenting Vk.

Proof. As in Theorem 6.6, λ has the form

λ = ν +m1µ1 +m2µ2 + · · ·+mkµk, ν ∈ Γ0.

Each integer mk may be made non-negative by adding to miµi and subtracting
from ν a sufficiently large term qµi, so chosen that qµi ∈ Γ0 (e.g., choose q ≡ 0
(mod τ1, τ2, . . . , τi)). If then a is a constant of value ν,

Rλ = Rλ(x) = a xm1φm2
2 φm3

3 · · · φ
mk

k , Vk(Rλ) = λ, mk ≥ 0,

is the required polynomial. In any augmented value Vk+1, Rλ has value λ by
Theorem 6.4.

Theorem 9.4. A polynomial f(x) is a key polynomial for an inductive value over
Vk if and only if the following conditions hold:

(i) the expansion (2) has a last term with Vk(f) = Vk(f0);

(ii) the expansion has a first term fn(x)φnk with fn(x) = 1, Vk(φnk ) = Vk(f),
and n ≡ 0 (mod τk);

(iii) f(x) is equivalence-irreducible in Vk.

Proof. Condition (i) means, as in the proof of Lemma 9.2, that φk(x) ∦Vk
f(x).

Assume first that f(x) is a key. Condition (iii) is necessary by definition. Were (i)
false, then Vk(f) < Vk(f0), so that f ≈Vk

(f−f0), while (2) shows f−f0 = q(x)φk
for a q(x) of degree less than f(x). Thus f ≈Vk

qφk. Since f is a key, this
leads to a contradiction much as in the proof of Theorem 6.7. The assumption
Vk(f0) 6= Vk(f) is false.

Since f(x) is minimal (Definition 4.1) it has no equivalence-multiples of degree less
than itself. Hence fn(x) is a constant in K, for otherwise k > 1, and Lemma 9.1
supplies a b′(x) with b′(x)fn(x) ≈Vk

1. The product b′(x)f(x) formed from (2)

and modified by replacing the first coefficient by 1 and by reducing the other coef-
ficients modulo φk is then an equivalence-multiple of f(x). Its degree is ndeg φk,
and is less than that of f(x) unless fn(x) ∈ K. As the leading coefficient of f
must be 1, fn(x) = 1 follows, as in (ii). Certainly Vk(φnk ) = Vk(f) is necessary,
for otherwise f − φnk is an equivalent polynomial of smaller degree. Thus

Vk(φnk ) = Vk(f) = Vk(f0) = Vk−1(f0) ∈ Γk−1,

so that n ≡ 0 (mod τk) by (3). This establishes the necessity of (ii).

Conversely, if f(x) satisfies (i), (ii), and (iii), it has first coefficient 1 and is
minimal, because any equivalence-multiple of f(x) must be of degree at least n
in φk (cf. the proof of Theorem 4.2). The remaining restrictions of Definition 6.1
are readily verified, so that f(x) is in fact a key polynomial.

10. Residue-class fields. The structure of a ring S with a value V involves the
corresponding value-ring S+, which consists of all elements a of S with V (a) ≥ 0
(these elements are the so-called “integers” of S). A congruence for integers can
be defined thus

(1) a ≡ b (mod V ) if and only if V (a− b) > 0.

All elements of S+ congruent to a given b form a residue-class; these classes
together yield as usual the residue-class ring of V in S. This ring can also be
considered as the residue-class ring S+/P , where P , the set of all elements of S+

with positive value, is a prime ideal in S+. If S is a field, then S+/P is also a
field, the residue-class field of V in S. The structure of V depends essentially
on this residue-class field. For the p-adic value V0 of the rational numbers (see
§1, (1)) this field is simply the field of integers modulo p. Our problem is the
determination of the residue-class field for any discrete inductive value.

If the residue-class of each integer a be denoted by [[a ]], then H : a 7→ [[a ]] is a
homomorphism of S+ to the residue-class ring ∆ = S+/P , so that H has the
following properties:

I. H is a many-one correspondence between S+ and ∆;

II. H leaves sums and products unchanged; i.e., for V (a) ≥ 0 and V (b) ≥ 0:

(2) [[a+ b ]] = [[a ]] + [[b ]]; [[ab ]] = [[a ]][[b ]].

III. If V (a) ≥ 0, then [[a ]] = [[0 ]] if and only if V (a) > 0.

By II, the last condition means that H carries congruent elements and only con-
gruent elements into the same residue-class.
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For an inductive value Vk we denote the residue-class rings thus, for t = 1,
2, . . . , k:

Λt is the residue-class field of Vt in K(x);(3)

Ht is the homomorphism from K(x)+ to Λt;(4)

∆t is the residue-class ring of Vt in K[x].(5)

But f(x) and g(x) are congruent as polynomials (mod Vt) if and only if they
are congruent as rational functions (mod Vt). Hence each residue-class of ∆t is
contained in a residue-class of Λt, and no two residue-classes of ∆t are contained in
the same class of Λt. Addition and multiplication of classes are defined as addition
and multiplication on elements in the classes, and hence are the same in ∆t as
in Λt. Therefore ∆t is isomorphic to a subring of Λt. Since isomorphism does
not alter the structure of a ring, we will replace ∆t henceforth by the isomorphic
subring of Λt. Then the Ht of (4) is also the homomorphism from K[x]+ to ∆t.

The correspondence Ht for rational functions is usually determined by the Ht

for polynomials. For if f(x)/g(x) 6= 0 is a rational function with non-negative
value and if Vt is commensurable, there is by Lemma 9.3 a polynomial g[t(x) with
Vt(g

[t) = −Vt(g), and by (2)

(6)

[[
f(x)

g(x)

]]
t

=

[[
g[tf

g[tg

]]
t

=
[[g[tf ]]

t

[[g[tg ]]
t

.

Both [[g[tf ]]
t

and [[g[tg ]]
t

are residue-classes of polynomials, while [[g[tg ]]
t
6= [[0 ]]

t
by Property III. We have proved

Lemma 10.1. For a commensurable Vk, the residue-class field Λk of K(x) is the
quotient-field of the residue-class ring ∆k of K[x].

Theorem 10.2. For a commensurable first stage inductive value

V1 = [V0, V1(x) = µ1 ],

the residue-class ring ∆1 is isomorphic to the ring F0[y ] of all polynomials in a
variable y with coefficients in F0, the residue-class field of the value V0 for K.

Proof. There is given a homomorphism H0 from the ring K+ of all V0-integers
b in K to the residue-class field F0. Each residue-class [[b ]]

1
of ∆1 contains the

residue-class [[b ]]0 of F0, and this correspondence [[b ]]1←→ [[b ]]0 is an isomorphism
between F0 and the set of those classes of ∆1 containing elements of K. We will
identify F0 with this isomorphic subfield of ∆1; then ∆1 is an extension of F0 and
[[b ]]

1
= [[b ]]

0
for all b in K+.

Any monomial bxn of value zero has V0(b) = −nV1(x) = −nµ1, so that the
exponent n is a multiple of the integer τ1, defined in §9, (3). Any f(x) with
V1(f) ≥ 0 thus has the form

f(x) ≡ bmxmτ1 + bm−1x
(m−1)τ1 + · · ·+ b1x

τ1 + b0 (mod V1)

after terms of positive value are omitted. If e is a constant in K of value V0(e) =
τ1µ1, each term bjx

jτ1 may be rewritten as a product (bje
j)(e−jxjτ1) of two

factors of value 0. The application of the homomorphism H1 then yields

(7) [[f(x) ]]
1

=
∑m

j=0
[[bje

j ]]
0
yj ; y = [[e−1xτ1 ]]

1
.

With y so defined, any [[f ]]
1

in ∆1 becomes a polynomial in y with coefficients
[[bje

j ]]
0

in F0, so that the residue-class ring ∆1 is contained in F0[y ]. Since y ∈ ∆1

and ∆1 is a ring, ∆1 = F0[y ]. The element y is transcendental (i.e., a variable)
over F0, for otherwise it would satisfy an algebraic relationship α(y) = [[0 ]]

1
,

where

α(y) = αm y
m + αm−1 y

m−1 + · · ·+ α0; αm 6= [[0 ]]
1
, αj ∈ F0.

Then the residue-class α(y) contains the polynomial

f(x) = am e
−m xmτ1 + am−1 e

−m+1 x(m−1)τ1 + · · ·+ a0,

where each aj is a constant with [[aj ]]
0

= αj . Then V1(f) ≥ 0 and [[f ]]
1

=
α(y) = [[0 ]]

1
, so that, by Property III of H1, V1(f) > 0. But αm 6= [[0 ]]

1
, so that

V0(am) = 0 and V1(ame
−mxmτ1) = V1(f) = 0, a contradiction. The theorem is

established. We note also that (7) enables us to calculate the residue-class of any
given f(x).

11. Conditions for equivalence-irreducibility. If φk+1 is a key polynomial
over a value Vk then φk ∦Vk

φk+1 (Theorem 9.4, condition (i)). For any f(x) with
this property, questions of equivalence-divisibility can be handled as follows:

Lemma 11.1. In a commensurable Vk let f(x) be a polynomial with φk ∦Vk
f ,

and choose a polynomial f [k(x) so that Vk−1(f [k) = Vk(f [k) = −Vk(f). Then a
polynomial g(x) with Vk(g) = 0 satisfies f ‖Vk

g if and only if [[g ]]k is divisible by

[[f [kf ]]
k

in the residue-class ring ∆k.

By Lemma 9.2, Vk(f) is in Γk−1, so Lemma 9.3 yields the f [k desired, and
[[f [kf ]]

k
6= [[0 ]]

k
. Suppose first that [[g ]]

k
(which is not [[0 ]]

k
by Property III

of Hk) is divisible by [[f [kf ]]
k
. Then [[g ]]

k
= α [[f [kf ]]

k
for some residue-class

α = [[h(x) ]]
k
6= [[0 ]]

k
in ∆k, and

[[g ]]
k

= α [[f [kf ]]
k

= [[h ]]
k

[[f [kf ]]
k

= [[hf [kf ]]
k
.
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Thus g and hf [kf have the same residue-class, Vk(g − hf [kf) > 0 = Vk(g), so
g ≈Vk

hf [kf and f ‖Vk
g, as asserted.

Conversely, if f ‖Vk
g, then g ≈Vk

hf ≈Vk
hf ]kf [kf , where f ]k(x) is a polynomial

chosen as in Lemma 9.1 so that f [kf ]k ≈Vk
1. But f [kf , g, and hence hf ]k have

value 0, so that

g ≈Vk
hf ]kf [kf ; [[g ]]

k
= [[hf ]k ]]

k
[[f [kf ]]

k
,

which shows [[g ]]
k

divisible by [[f [kf ]]
k
.

Lemma 11.2. For f and f [k as in Lemma 11.1, f(x) is equivalence-irreducible
in Vk if and only if every product in ∆k divisible by [[f [kf ]]

k
has ∗a factor divisible

by [[f [kf ]]
k

in ∆k.

Proof. Suppose first that f is equivalence-irreducible and that [[g ]]
k
[[h ]]

k
= [[gh ]]

k

is a multiple of [[f [kf ]]
k
. As we can assume Vk(g) = Vk(h) = 0, the previous

lemma shows the product gh equivalence-divisible by the equivalence-irreducible
f , so that one of the factors is so divisible. By Lemma 11.1 this means that [[g ]]

k

or [[h ]]
k

is a multiple of [[f [kf ]]
k
, as asserted in the lemma.

Conversely, suppose that every product [[g ]]
k

[[h ]]
k

divisible by [[f [kf ]]
k

has a factor
so divisible, and consider a product a(x) b(x) with f ‖Vk

ab, so that ab ≈Vk
c(x)f

for some c. Write a(x) ≈Vk
g(x)φdk and b(x) ≈Vk

h(x)φek, where the powers d
and e are chosen so large that φk ∦Vk

g and φk ∦Vk
h. Then Vk(g) and Vk(h)

are by Lemma 9.2 in Γk−1, so that there are polynomials g[k(x) and h[k(x) with
Vk(g[kg) = Vk(h[kh) = 0. Then

g[kh[k a b ≈Vk
(g[k g) (h[kh)φd+ek ≈Vk

g[kh[k c f.

But φk ∦Vk
f , while φk is equivalence-irreducible (Lemma 9.2), so

φd+ek ‖Vk
g[kh[k c.

Removal of the factor φd+ek gives f ‖Vk
(g[k g) (h[kh), so that as in the previous

lemma [[g[kg ]]
k
[[h[kh ]]

k
is divisible by [[f [kf ]]

k
. One of the factors, say [[g[kg ]]

k
, is

then divisible by [[f [kf ]]
k
, and (Lemma 11.1) f ‖Vk

g[k g. But a ≈Vk
g]k (g[k g)φdk,

where g]k is chosen so that g]k g[k ≈Vk
1. Hence f ‖Vk

a(x), and f is equivalence-
irreducible.

∗That is, the principal ideal
(
[[f [kf ]]

k

)
is a prime ideal in ∆k.

12. Residue-class rings for commensurable values. We have

Theorem 12.1. If Vk is a commensurable inductive value of K[x], given as in
§6, (3), and if the original value V0 of K has a residue-class field F0, then there
is a sequence of fields F1 = F0, F2, F3, . . . , Fk, each an algebraic extension of
the preceding, such that for any t = 1, . . . , k the Vt-residue-class ring of K[x] is
(isomorphic to) the ring Ft[y ] of polynomials in a variable y with coefficients in
Ft. For t > 1 the degree mt of Ft is determined by (cf. §9, (3))

mtτt−1 deg φt−1 = deg φt; mt = deg[Ft : Ft−1 ].

By Lemma 10.1 we can then conclude at once

Corollary 12.2. Ft(y) is the Vt-residue-class field of K(x).

Proof of Theorem. The case t = 1 of this theorem is known (Theorem 10.2);
hence we use induction, and assume the theorem true for Vt. It is convenient to
omit the subscript t + 1 (but not the subscript t) and to write V , φ, H, τ , etc.,
for Vt+1, φt+1, Ht+1, τt+1, etc. By the monotonic character of V (Theorem 5.1)
polynomials f(x) and g(x) with Vt(f) ≥ 0 and Vt(g) ≥ 0 are congruent mod Vt
only if they are congruent mod V . Each residue-class mod Vt is thus contained in
a residue-class mod V , and this gives a homomorphism between ∆t = Ft[y ] and a
subring F of the residue-class ring ∆ (cf. §10, (5)), where F = Ft+1 is composed
of all residue-classes mod V containing an f(x) with Vt(f) ≥ 0. Polynomials f
and g incongruent mod Vt become congruent mod V if and only if φt+1 ‖Vt

f − g
(Theorem 5.1). This means that [[f ]]

t
− [[g ]]

t
is divisible by the polynomial

(1) ψt+1(y) = ψ(y) = [[φ[tφ ]]t;(
Vt−1(φ[t) = Vt(φ

[t) = −Vt(φ), φ[t = φ[t
t+1

(x)
)
,

constructed as in Lemma 11.1. Since not all polynomials are equivalence-divisible
by φ in Vt, ψ(y) is not a constant in Ft, while Lemma 11.2 shows ψ(y) an irre-
ducible polynomial in Ft[y ]. In the above homomorphism between Ft[y ] and F
the mutiples of ψ(y) in Ft[y ] are the elements corresponding to [[0 ]], so that F
is isomorphic to the ring of polynomials Ft[y ] modulo ψ(y), or, alternatively, to
the field obtained by adjoining to Ft a root θ of ψ(y). We identify F with this
isomorphic field:

F = Ft+1 = Ft(θ); ψ(θ) = 0 (θ = θt+1).(2)

Then the residue-class [[f ]]
t
, when reduced modulo ψ(y), will be identical to the

residue-class [[f ]]; that is,

(3) Vt
(
f(x)

)
≥ 0 implies [[f ]] = [[f ]]

t

∣∣
y=θ

.
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A monomial expansion a(x)φn of value 0 must have n a multiple of τ (cf. §9,
(3)). Hence any f(x) with V (f) ≥ 0 has the form

(4) f(x) ≡ fm(x)φmτ + fm−1(x)φ(m−1)τ + · · ·+ f0(x) (mod V ),

deg fi < deg φ.

Since V (φτ ) ∈ Γt, there are by Lemmas 9.1 and 9.3 polynomials φτ](x) and φτ[(x)
such that

(5) Vt(φ
τ]) = V (φτ]) = V (φτ ), φτ]φτ[ ≡ 1 (mod V ),

Vt(φ
τ[) = V (φτ[) = −V (φτ ).

The terms fiφ
iτ in (4) can be rewritten as products (fj φ

τ]j)(φjτ (φτ])−j), where
Vt(fj φ

τ]j) ≥ 0 and V (φjτ (φτ])−j) = 0, the former because V (f) ≥ 0. The
application of H, with (3), then proves

(6) [[f(x) ]] =
∑m

j=0
[[fj(x)φτ]j ]]t

∣∣
y=θ

yj1; y1 = [[φτ (φτ])−1 ]].

This shows that every [[f ]] in the residue-class ring ∆ is also in F [y1 ], while by (5),
y1 = [[φτ (φτ])−1 ]] = [[φτφτ[ ]] is a residue-class of a polynomial, hence is in ∆.
Consequently, F [y1 ] = ∆, as asserted in the theorem.

The element y1 is transcendental over F ; for suppose instead that y1 satisfied an
algebraic relation α(y1) = [[0 ]], with

α(y1) = αm y
m
1 + αm−1 y

m−1
1 + · · ·+ α0; αm 6= [[0 ]], αj ∈ F.

By the original (italicized) definition of F each residue-class αj of F contains a
polynomial bj(x) with Vt(bj) ≥ 0, so that [[bj ]] = αj . Then

f(x) =
∑m

j=0
bj(x)φτ[jφjτ ≡

∑m

j=0
bj(x) (φτ])−jφjτ (in V )

is a polynomial of non-negative value which has [[f ]] = α(y1) = [[0 ]]. By Proper-
ty III ofH, V (f) > 0. On the other hand V (f) must equal 0, for [[bm ]] = αm 6= [[0 ]]
gives V (bm) = 0 and V (f) ≤ V (bm(φτ])−mφmτ ) = 0, by Theorem 5.2. This
contradiction shows y1 a variable over F .

The formula (6) enables us to calculate [[f(x) ]] effectively for any f(x) given in
(4), provided only that Vt(fj φ

τ]j) ≥ 0 for all j.

It remains to determine the degree of the field F over Ft, which by (2) is the
degree of ψ(y). The key φ has by Theorem 9.4 an expansion of the form

(7) φ = φmτtt +
∑mτt−1

i=0
ai(x)φit, Vt(φ) = Vt(φ

mτt
t ) = Vt(a0).

If t > 1, ψ = [[φ[tφ ]]
t

can be computed by the analog of (6) for the preceding

stage (with t in (6) replaced by t−1), for the coefficients φ[tai must by the choice

of φ[t have Vt−1(φ[tai) ≥ 0. This calculation shows ψ(y) to be a polynomial in y

with a first term [[φ[tφτt]tmt ]]
t
ym arising from the first term of (7). But

Vt(φ
[tφτt]tmt ) = Vt(φ

[t) + Vt(φ
τt]tm
t ) = −Vt(φ) + Vt(φ

mτt
t ) = 0,

so that the coefficient of ym is not [[0 ]]. The polynomial ψ has degree m, and
by (7)

mτt deg φt = deg φ, m = degψ = deg[F : Ft ],

as asserted∗ in Theorem 12.1. This theorem has now been demonstrated.

13. Conditions for key polynomials. In the criterion of Theorem 9.4 for a key
polynomial the condition (iii) of equivalence-irreducibility can now be replaced
by the condition of Lemma 11.2,

(iiia), [[f [kf ]]
k

is an irreducible polynomial in Fk[y ].

This yields a final explicit description of key polynomials. A partial converse is
possible:

Theorem 13.1. In a given Vk, let ψ(y) 6= y be a polynomial † of degree m > 0,
irreducible in Fk[y ] and with first coefficient 1. Then there is one and, except for
equivalent polynomials in Vk, only one φ(x) which is a key polynomial and which

has [[φ
τk[km
k φ ]]

k
= ψ(y).

Proof. There is a polynomial f(x) with the residue-class ψ, so that [[f ]]
k

= ψ and

Vk(f) = 0. If we multiply f by φ
τk]km
k (chosen as in §12, (5)) and in the expansion

of the resulting product drop all terms not of minimum value and then replace
the leading coefficient of φk by 1, we obtain a polynomial φ(x) with the value

Vk(φ
τk]km
k ). Then

[[φ
τk[km
k φ ]]

k
= [[φ

τk[km
k φ

τk]km
k f ]]

k
= [[f ]]

k
= ψ(y).

Furthermore φ can be shown to satisfy the remaining conditions (i) and (ii) of
Theorem 9.4, hence φ is a key polynomial. The uniqueness is readily established.

∗The proof given holds for t > 1, but may be simplified for the case t = 1.
†The assumption ψ(y) 6= y is needed, for the condition Vk(f) = Vk(f0) in Theorem 9.4

implies [[f [kf ]]
k
6= y.
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Since [[f [kf ]]
k

can be effectively constructed by §12, (6), the problem of testing
whether a given f(x) is a key polynomial is reduced to that of testing the image
[[f [kf ]]

k
of f(x) for irreducibility in Fk[y ]. If K is the field of rationals, then

Fk is a finite field and the latter problem is completely solvable. This result can
be used to construct examples for inductive values of any stage and for limit-
values of both constant degree‡ and increasing degree types. The construction
of constant degree values may be simplified by deducing from Theorem 9.4 the
following partial converse of Lemma 6.3:

Corollary 13.2. In Vk let s(x) be a polynomial of degree less than that of φk(x)
and with Vk

(
s(x)

)
= Vk(φk). Then φk(x) + s(x) is a key polynomial for an

inductive value over Vk.

14. Special cases of homomorphism. The residue-class fields can be similarly
found for finite discrete limit-values and for inductive values where the value for
K is trivial (§2) or where the last assigned value µk is incommensurable (§6).

Theorem 14.1. Let V∞ be a limit-value constructed as in Theorem 6.1 from a
sequence of values V0, V1, V2, . . . , and satisfying one of the conditions:

(a) the degrees of the keys φk are not bounded as k →∞;

(b) V∞ is finite and discrete, and deg φk = M for all k > t.

The fields Fk of Theorem 12.1 yield a (possibly infinite) extension field F∞ =
F0 +F1 +F2 + · · · which is isomorphic to the V∞ residue-class field both for K[x]
and for K(x). In case (b), F∞ = Ft+1.

Let Hk be the homomorphism of K[x] to the Vk residue-class ring Fk[y ] and H∞
the homomorphism of K[x] to the V∞ residue-class ring ∆∞. Then

Vk−1
(
f(x)

)
≥ 0 implies that [[f ]]

k+j
= [[f ]]

k
∈ Fk (j = 1, 2, . . . ).(1)

For, according to §12, (3),

[[f ]]
k

= [[f ]]
k−1

∣∣
y=θk

, [[f ]]
k+1

= [[f ]]
k

∣∣
y=θk+1

,

which indicates that [[f ]]
k

is a constant free of y in Fk, and that [[f ]]
k+1

must
equal [[f ]]

k
, and so on.

In case (a) there is for every f(x) a k so large that deg φk > deg f , so that
V∞(f) = Vk−1(f), as in Theorem 5.1. If V∞(f) ≥ 0, then, by (1), [[f ]]

k+j
= [[f ]]

k
is a constant in Fk independent of j.

‡By using a transcendental p-adic number the finiteness condition of §7 can be satisfied.

The correspondence

(2) [[f ]]∞←→ [[f ]]k, for k with [[f ]]k = [[f ]]k+1 = [[f ]]k+2 = · · · ,

carries each element of ∆∞ into an element of F∞. Every element α of F∞
is used, for, by the definition of F∞, α is in some Fk so that α has the form
[[f ]]

k
, and [[f ]]

k+j
= [[f ]]

k
as in (1), whence α corresponds in (2) to [[f ]]

k
. The

correspondence (2) is one-to-one, for elements are congruent mod V∞ if and only
if they are congruent modulo some Vk. Finally, (2) is an isomorphism, making
F∞ ∼= ∆∞, as asserted. The residue-class field of K(x) is, by the argument of
Lemmas 9.3 and 10.1, just the quotient field of F∞, and must then be F∞ itself.

In the case (b), the degrees of the extensions Fk+1 : Fk as determined in Theo-
rem 12.1 are all 1 for k > t. Hence Fk = Ft+1. Because V∞ is finite (§7) and
discrete, Theorem 6.5 yields for any f(x) with V∞(f) ≥ 0 an i ≥ t so large that
V∞(f) = Vi(f) ≥ 0. Then [[f ]]

k
is again ultimately constant, and (2) gives the

isomorphism as before.

Theorem 14.2. For an incommensurable inductive value Vk of K(x) the field
Fk determined from Fk−1 and φk exactly as in §12 is the Vk residue-class field of
both K[x] and K(x).

Proof. Since no non-zero multiple of µk = Vk(φk) lies in Γk−1, no two terms in a
φk-expansion can have the same value in Vk. Hence any polynomial is equivalent
to a monomial expansion, and every rational function has by Lemma 9.1 the form

f(x)/g(x) ≈Vk
c(x)φmk , Vk(c) = Vk−1(c).

If f/g has value 0, then m = 0, Vk−1(c) ≥ 0, and [[f/g ]]
k

= [[c ]]
k
. But Fk is defined

in §12, italics (or, for k = 1, in §10) as all residue-classes [[h ]]
k

with Vk−1(h) ≥ 0.
In this case every residue-class has this form, so that Fk is as asserted the whole
residue-class field, either for K[x] or for K(x).

In particular, over the trivial value V0 (§2) of K the only non-trivial inductive
values are

V1 = [V0, V1(x) = µ1 ], µ1 6= 0;

V2 = [V0, V1(x) = 0, V2(φ) = µ2 ], µ2 > 0, φ(x) irreducible.

Both are incommensurable (no multiple of µ2 lies in the group Γ0, which contains
only 0). Furthermore, the residue-class field of K for the trivial V0 is K itself.
Hence the residue-class field for V1 is K and for V2 is K(θ), where θ is a root of
φ(x).
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15. Equality conditions for values. An inductive value is essentially a repre-
sentation; the same value of K[x] could easily have several such representations.
This section and the next one will formulate necessary and sufficient conditions
for the equality of two inductive or limit-values. In this connection two values V
and W of a ring S will be called equal if an only if

V (a) = W (a) (all a ∈ S).(1)

In this section we consider the case when each key polynomial φk exceeds the
preceding φk−1 in degree — a case which can often be made to apply by omitting
any φk−1 without the above property.

Lemma 15.1. If an inductive value

Vk = [Vk−2, Vk−1(φk−1) = µk−1, Vk(φk) = µk ] (k ≥ 2)

has two key polynomials φk−1(x) and φk(x) of the same degree, then

W = [Vk−2, W (φk) = µk ]

is an inductive value equal to Vk.

We first prove W an inductive value. Since φk exceeds φk − φk−1 in degree, the
constant-degree Lemma 6.3 shows that

(2) Vk−2(φk − φk−1) = Vk−1(φk − φk−1) = µk−1, µk > µk−1 > Vk−2(φk−1).

A combination of these two results proves

(3) φk ≈Vk−2
φk−1.

Thus φk and φk−1 have the same equivalence-divisibility properties in Vk−2, and
so φk, like φk−1, is a key polynomial over Vk−2. By (2) and (3) the value
µk > Vk−2(φk) assigned to φk is sufficiently large. Therefore W is inductive,
for conditions (1) and (2) of Definition 6.1 hold trivially. The definition of aug-
mented values applied to the usual expansion (e.g., §9, (2)) of any f(x) in powers
of φk gives

Vk
(
f(x)

)
= mini

{
Vk−1

(
fi(x)

)
+ iµk

}
, W

(
f(x)

)
= mini

{
Vk−2

(
fi(x)

)
+ iµk

}
.

The corresponding terms Vk−1(fi) and Vk−2(fi) are equal by Theorem 5.1, for
each Vi(x) has a degree less than that of φk or of φk−1. Therefore Vk = W .
Successive applications of this lemma give

Theorem 15.2. Any inductive value is equal to an inductive value in which
{deg φk} is a monotone increasing sequence. A similar representation holds for
any limit-value not of constant-degree type.

For values in this particular form we can obtain necessary and sufficient conditions
for equality.

Theorem 15.3. If the two inductive values

Vs = [V0, V1(x) = µ1, V2(φ2) = µ2, . . . , Vs(φs) = µs ](4)

Wt = [W0, W1(x) = ν1, W2(ψ2) = ν2, . . . , Ws(ψt) = νt ](5)

both have a monotone character such that

1 < deg φ2 < · · · < deg φs, 1 < degψ2 < · · · < degψt,

then Vs = Wt holds if and only if

(i) V0 = W0, s = t;

(ii) deg φk(x) = degψk(x) (k = 1, . . . , t);

(iii) Vk−1(ψk − φk) ≥ µk = νk (k = 1, . . . , t).

The theorem is still true if either s or t is +∞.

First prove the sufficiency of these conditions. Since (i) and (iii) make V1 and W1

identical, we can proceed by induction, assuming that Vk−1 = Wk−1 is already
established. Now compute the Vk value of ψk. Because key polynomials have the
leading coefficient unity, (ii) shows that the degree of φk exceeds that of ψk −φk,
so that ψk has the expansion

(6) ψk = φk + (ψk − φk)

in powers of φk. The definition of Vk and (iii) prove

Vk(ψi) = min
{
µk, Vk−1(ψk − φk)

}
= µk = νk.

The Vk value of any polynomial f(x) can now be estimated from the expansion
of f(x) in ψk, for the triangle axiom for Vk gives

Vk
(∑n

j=0 fjψ
j
k

)
≥ minj

{
Vk−1(fj) + jVk(ψk)

}
= minj

{
Vk−1(fj) + jνk

}
= Wk(f),

because of the definition of Wk. Thus Vk(f) ≥Wk(f), while the inverse inequality
is similarly proved. Hence Vk = Wk, and the induction is complete.

The necessity of the conditions depends chiefly on the invariance of the values
assigned the key polynomials (Theorem 6.4). The assumption Vs = Wt shows
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that V0 = W0 and µ1 = ν1. Hence (ii) and (iii) hold for k = 1. We prove them
by induction on k. If they hold through k − 1, then the sufficiency proof shows
Vk−1 = Wk−1. By Theorem 5.1, deg φk can be characterized as the smallest
degree of any polynomial a(x) with the property that Vs(a) > Vk−1(a). Since Vs
and Wt are equal, degψk can be characterized by the same statement, so that

(7) deg φk(x) = degψk(x).

The monotonic assumption on {deg φk} then shows Vs(ψk) = Vk(ψk). Hence,
because of the invariance in W of the value assigned to ψk,

νk = Wt(ψk) = Vs(ψk) = Vk
(
φk + (ψk − φk)

)
.

As before, (6) is an expansion in powers of φk, so that this equation becomes

νk = min
{
µk, Vk−1(ψk − φk)

}
.

Combining this with the symmetric conclusion (using Vk−1 = Wk−1)

µk = min
{
νk, Vk−1(ψk − φk)

}
.

we obtain (iii) for index k. With (7) this completes the induction. The condition
s = t results, even in the case s = t =∞.

16. Normal forms for values. The results of the previous section do not apply
to constant degree limit values, nor do they yield unique normal forms. Both
these goals can be reached in the discrete case by using key polynomials from
which all unnecessary high-valued terms have been dropped.

In the expansion of any f(x) in a value Vk, the coefficient fi(x) of any power of φk
can itself be expanded in powers of φk−1. Since the degree of fi(x) is limited, the
highest power of φk−1 occurring is less than nk/nk−1, where ni has the meaning

ni = deg φi(x) (i = 1, . . . , k).(1)

By an inductive process of this sort one can prove

Theorem 16.1. In any Vk every polynomial f(x) can be expanded as a polynomial
in the key polynomials with constant coefficients,

f(x) =
∑

j
ajφ

m1j

1 φ
m2j

2 · · ·φmkj

k , (aj ∈ K),(2)

where the exponents mij are limited as follows

mij < ni+1/ni (all j; i = 1, 2, . . . , k − 1).(3)

The value of f(x), when computed from the definition, is

(4) Vk
(
f(x)

)
= minj

{
Vk
(
aj φ

m1j

1 · · · φmkj

k

) }
.

For a p-adic value, every number is equivalent to one of the numbers cpm, c = 0,
1, . . . , p − 1. For any value V0 of a field K we can similarly (axiom of choice)
pick from each class of equivalent elements a single representative element; in
particular, we can make 1 one of the representatives. Given fixed representatives
of this sort for each V0, we say that a polynomial f(x) is homogeneous in a
value Vk derived from V0 if in the expansion (2) of f(x) all the coefficients aj are
representatives in V0 and all the terms have the same minimum value Vk

(
f(x)

)
.

Lemma 16.2. If f(x) is a polynomial then f(x) ≈Vk
h(x) for a unique homoge-

neous polynomial h(x). This h(x) is called the “homogeneous part” of f(x).

Proof. Given f(x), we find h(x) by altering coefficients and dropping out terms
in the expansion (2) for f . Were f(x) also equivalent to a homogeneous g(x),
then all terms in the expansions of both h(x) and g(x) would have the same value
Vk(h), while h− g would have a larger value. Thus corresponding coefficients are
equivalent and therefore equal.

An inductive or limit value Vk = [V0, Vi(φi) = µi ] may be called homogeneous if
every key polynomial φi(x) is homogeneous in Vi−1 (i = 2, . . . , k). We will prove

Theorem 16.3. Any inductive or limit-value constructed from a discrete value
V0 of K is equal to a homogeneous inductive or limit-value.

We have to prove that, if U = [Vk, U(φ) = µ ] is an augmented value over a
homogeneous value Vk, then U itself is equal to a homogeneous inductive value.
This is done by introducing successive homogeneous parts of φ as new keys. First
use ψ1(x), the homogeneous part of φ in Vk. By Lemma 16.2

(5) ψ1(x) ≈Vk
φ(x), degψ1(x) = deg φ(x).

It follows that ψ1(x) is a key polynomial over Vk. Setting

ν1 = Vk
(
φ(x)− ψ1(x)

)
> Vk

(
ψ1(x)

)
,

we can construct a homogeneous value W1 = [Vk, W1(ψ1) = ν1 ]. If µ ≤ ν1,
then the sufficiency proof of Theorem 15.3 shows U = W1. Otherwise µ > ν1,
and Corollary 13.2 proves W ′ = [W1, W

′(φ) = µ ] an inductive value, which by
Lemma 15.1 is equal to U . We repeat the above argument, constructing a W2

from ψ2(x), the principal part of φ in W1. This gives a sequence of homogeneous
inductive values,

W1 = [Vk, W1(ψ1) = ν1, W2(ψ2) = ν2, . . . , Wt(ψt) = νt ] (i = 1, 2, . . . ).

The degrees of the ψ(x) are all identical by (5), so that Lemma 6.3 proves that

(6) ν1 < ν2 < ν3 < · · ·
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and that each νi is in the value-group Γk of Vk. By hypothesis and Theorem 6.7,
this Γk is discrete. Hence there is a smallest t with νt ≥ µ in (6), and U is equal
to the homogeneous value Wt. The advantage of so representing every value in a
homogeneous form lies in the following uniqueness theorem:

Theorem 16.4. Two homogeneous inductive or limit-values which are equal must
be identical.

Proof. If the equal values are Vs and Wt as in §15, (4) and (5), then the asserted
identity means simply that

V0 = W0, s = t,(7)

φk = ψk, µk = νk (k = 1, 2, . . . , s).(8)

The hypotheses readily give V0 = W0 and (8) for k = 1.

Suppose (8) true up to k − 1 inclusive. Then Vk−1 = Wk−1. We can assume
s > k − 1, whence also t > k − 1. Then φk has the following invariant properties
which refer only to Vk−1 = Wk−1 and Vs = Wt: φk is totally homogeneous in
Vk−1, it has the first coefficient 1 and it has the minimum degree consistent with
the property Vs(φk) > Vk−1(φk). Furthermore ψk has the same properties. But
these properties uniquely determine φk, for, since the difference φk − ψk is of
degree less than φk, its value is

Vk−1(φk − ψk) = Vs(φk − ψk)

≥ min
{
Vs(φk), Vs(ψk)

}
> min

{
Vk−1(φk), Vk−1(ψk)

}
.

Hence by the triangle law φk ≈Vk−1
ψk, so that by Lemma 16.2, φk = ψk. By

Theorem 6.4, µk = νk, as in (8). The induction ends when k reaches s = t, and
the identity Vs ≡Wt is proved.

A simple consequence is

Corollary 16.5. If every value of K is discrete, then no inductive value can ever
equal a limit-value, and no limit-value of constant degree type (§7) can equal a
limit-value not of this type.
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(1923) J. Kürschák, Irreduzible Formen, Journal für die Mathematik 152 180–191.
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