
REST Case Studies

On the Layers in an IaaS

B. Sotomayor et al., Virtual Infrastructure Management in Private and
Hybrid Clouds, IEEE Internet Computing, September/October 2009

Examples of layers at which REST
could be used in IaaS

 Lowest layer
 Access to individual hypervisors / containers

 Highest layer
 Interface between cloud users (e.g. End-user

program, PaaS and cloud infrastructure), e.g.
 OpenStack
 AWS

REST Case studies

 REST for hypervisors (VMWARE)

 REST for containers (Docker)

 REST for cloud IaaS (Openstack)

A Tutorial on using Hypervisors
and Containers through REST API

ENCS 691 K

Instructor: Dr. Roch Glitho

Presenters:

Behshid Shayesteh (b_shayes@live.concordia.ca)

Mahsa Raeiszadeh (m_raeisz@encs.concordia.ca)

5

Outline

• Part One on Hypervisors
• Introduction to VM Workstation Player
• Introduction to REST
• Setup VMware Workstation Player REST API HTTP server
• Vmware Player REST API explorer
• Try calling common VM management APIs using Python

• Part Two on Containers
• Introduction to Docker API
• Setup Docker HTTP server
• Docker REST API explorer
• Try calling common Docker APIs using Python

6

Part One: Hypervisors

7

Introduction to VMware Workstation Player

• VirtualBox does not offer
REST-enabled APIs

• Vmware Workstation Player
• Hypervisor type 2
• Free product of VMware

8

Introduction to REST

• REST (Representational State Transfer) is a network architectural style
for distributed hypermedia systems

• A way to reunite the programmable web with the human web
• Relies on HTTP and inherits its advantages

• Adressability, statelessness, uniform interface
• HTTP Interface

• GET, POST, PUT, DELETE

9

Setup VMware Workstation Player REST API
HTTP server

1. Install Vmware Workstation Player
2. Setup credentials (only first time)

• In a terminal window, change directories to the Workstation Player
installation folder and run the vmrest.exe -C command.

• Enter a user name and password as prompted.

3. Configure REST API service for HTTP
• In a terminal window, run the vmrest command. The command returns the IP

address and port number from which you can access the HTTP service. The
default IP address is 127.0.0.1:8697.

• Open a web browser and go to http://address-returned-by-vmrest-
command.

• Click Authorize in the top-right corner of the Workstation Player API Explorer
page.

• Enter the user name and password you configured in Step 2.

10

Vmware Player REST API explorer

11

Vmware Player REST API

• Datasets
• VMs

• Resources
• Each VM is a resource
• One special resource that lists the VMs

12

VM management APIs

• Common VM management APIs that will be called during this tutorial
• Get list of exisiting VMs
• Get the configuration of a specific VM
• Update the resource configuration of a specific VM
• Delete a specific VM

• Link to other APIs:
• https://developer.vmware.com/apis/1042/#api

13

Interacting with Vmware Player API - Example

Alice
VMware User

VMware Rest
Server

[{‘Id’: ‘AHC5617ULT’, ‘path’: ‘C:\\Users\\virtual
machines\\ubuntu\\ubuntu.vmx’}, {{‘Id’: ‘7UH2G5HNFJ’, ‘path’:
‘C:\\Users\\virtual machines\\windows\\windows.vmx’}}]

1: GET /vms

2: 200 OK

{‘Id’: ‘AHC5617ULT’, ‘cpu’: {‘processors’:2}, ‘memory’:4096}

1: GET /vms/{vm_id}

2: 200 OK

Show List of VM IDs
and Paths for all VMs

Show the VM
setting information
of a VM

14

Interacting with Vmware Player API - Example

Alice
VMware User

VMware Rest
Server

1: PUT /vms/{vm_id}

2: 200 OK

1: DELETE /vms/{vm_id}

2: 204 OK

Update the VM
settings

Delete a VM

{‘processor’: 1, ‘memory’: 1024}

{‘Id’: ‘AHC5617ULT’, ‘cpu’: {‘processors’:1}, ‘memory’:1024}

15

Python Code to interact with Wmware Player
API - Example

16

Part Two: Containers

17

Introduction to REST API

• REST API
• REST (Representational State Transfer) is a set of architectural principles for designing networked

applications.
• RESTful APIs allow you to access and manipulate resources over the internet via HTTP methods.
• Docker Engine, a containerization platform, exposes a RESTful API for container management.

• Python and Docker:
• Python can be used to interact with Docker Engine's REST API to automate container

operations.

18

Docker REST API

• Docker Engine provides a RESTful API that exposes endpoints for container management.
• Key endpoints include /containers, /images, /networks, and more.
• API calls are made using HTTP methods such as GET, POST, PUT, and DELETE.

• To interact with Docker's REST API in Python, you need:
• Docker Engine installed and running.
• Python installed on your system.
• The “request” library for making HTTP requests.

• Python and request library
• The “request” library simplifies making HTTP requests.
• You can use it to GET, POST, PUT, and DELETE requests to Docker's API endpoints.

19

Common API Operations

• With Docker's REST API and Python, you can:
• Create and start containers.
• Stop and remove containers.
• Build and manage custom images.
• Access container logs and statistics.
• Configure network settings, and more.

• Visit the website below for Docker’s Engine API:
https://docs.docker.com/engine/api/v1.43/

20

Docker Engine REST API

• Datasets
• Containers
• Images
• Networks

• Resources
• Each container is a resource
• Each image is a resource
• Each network is a resource
• One special resource that lists containers
• One special image that lists containers
• One special network that lists containers

21

Docker Engine API - Name Resources with URIs

Container URI Image URI Network URI

List containers

create a container

Extract an archive of files or folders to a
directory in a container

remove a
container

Search an image

build an image

remove an
image

List networks

Create a network

Remove a network

22

Interacting with Docker API - Example

Alice
Docker User

Docker Rest
Server

{"Id": "8dfafdbc3a40","Names": ["/boring_feynman"],"Image":
"ubuntu:latest","ImageID":"d74508fb6632491cea586a1fd7d748d
fc 274cd6fdfedee309ecdcbc2bf5cb82“,}

Get/Containers/json

200 OK

{"Id":"ede54ee1afda366ab42f824e8a5ffd195155d853ceaec74a927f24
9ea270c743",
"Warnings": []}

Post/Containers/create

201 OK

Show List of
Containers

Create a Containers

{"Hostname": "","Domainname": "","User": "", "AttachStdin":
“false”,Env": ["FOO=bar","BAZ=quux"],"Cmd": ["date"],"Entrypoint":
"", "Image": "ubuntu",…}

23

Interacting with Docker API - Example

Alice
Docker User

Docker Rest
Server

{"message": "No such container: c2ada9df5af8.“}

Delete/Containers/{id}

404

Put/Containers/{id}/Update

Remove a container

Updating a Docker Container
Configuration

204 No content

204 No content

24

Enable Docker API Port

• Docker Desktop -> Setting -> General

25

Example Python code for listing containers

26

OpenStack Compute API

 REST Modelling procedure

 OpenStack Compute key concepts

 Applying the procedure

Examples of REST Modelling
(OpenStack - Compute)

Note: Slides prepared by Yassine Jebbar,
Teaching Assistant

OpenStack Compute API

 REST Modelling procedure

 OpenStack Compute key concepts

 Applying the procedure

The procedure – First Part

 Figure out the data set

 Split the data set into resources

The procedure – Second Part

For each resource:
 Name the resources with URIs
 Identify the subset of the uniform interface that is exposed by the

resource
 Design the representation(s) as received (in a request) from and

sent (in a reply) to the client
 Consider the typical course of events by exploring and defining

how the new service behaves and what happens during a
successful execution

OpenStack Compute (REST-based) Key Concepts

• OpenStack Compute is a compute service that provides server
capacity in the cloud.

• Compute Servers come in different flavors (virtual hardware
configuration) of memory, cores, disk space, and CPU, and can be
provisioned in minutes.

• Interactions with Compute Servers can happen programmatically
with the OpenStack Compute API.

OpenStack Compute Key Concepts

• Server: A virtual machine (VM) instance, physical machine or a
container in the compute system.

• Flavor: Virtual hardware configuration for the requested server.
Each flavor has a unique combination of disk space, memory
capacity and priority for CPU time.

• Image: A collection of files used to create or rebuild a server.
Operators provide a number of pre-built OS images by default.

OpenStack Key Concepts

• Server Management: Enable all users to perform an action on a
server.

Example:

• Flavor Management: Show and manage server flavors.
Example:

• Image Management: Show details and manage images.
Example:

Create/Delete/Resize/Reboot Server
Show Server(s) Details

Create/Delete/Update Flavor
Show Flavor(s) Details
Create/Delete/Update Flavor
Show Flavor(s) Details

List Images
Show Image Details
Delete Image

Applying the procedure – Data Set

• Servers

• Flavors

• Images

Applying the procedure – Split Data Set into Resources

• Each server is a resource

• Each flavor is a resource

• Each image is a resource

• One special resource that lists servers

• One special resource that lists flavors

• One special resource that lists images

Applying the procedure – Name Resources with URIs

Server URI Flavor URI Image URI

Example: Listing and Creating Server

Alice
Openstack User

Openstack
Compute

REST Server
1: GET:/servers

2: 200 OK
{ "servers": [{ "id": “1", "links": [{ "href":
"http://openstack.example.com/v2/6f70656e737461636b
20342065766572/servers/1", "rel": "self" }, ….}

3: POST:/servers

Show List of Servers

{ "server": { "name": "auto-allocate-network", "imageRef":
"70a599e0-31e7-49b7-b260-868f441e862b", "flavorRef":
"http://openstack.example.com/flavors/1", "networks": "auto" } }

2: 200 OK

{ "server": { "OS-DCF:diskConfig": "AUTO", "adminPass": "6NpUwoz2QDRN", "id": "f5dc173b-6804-445a-
a6d8-c705dad5b5eb", "links": [{ "href":
"http://openstack.example.com/v2/6f70656e737461636b20342065766572/servers/f5dc173b-6804-445a-

a6d8-c705dad5b5eb", "rel": "self" },… }

Create Server

Example: Resizing Server

Alice
Openstack User

Openstack
Compute

REST Server

3: POST:/servers/1/action

{ "resize" : { "flavorRef" : "2", "OS-DCF:diskConfig": "AUTO" } }

2: 200 OK
Resize Server

If successful, this method does not return content in the response body.

References

https://docs.openstack.org/api-guide/compute/general_info.html

https://docs.openstack.org/api-ref/compute/?expanded=

Case Study – REST for Conferencing

http://users.encs.concordia.ca/~glitho/

References
• F. Belqasmi, C. Fu, R. Glitho, Services Provisioning in Next Generation Networks: A

Survey, IEEE Communications Magazine, December 2011
• F. Belqasmi, J. Singh, S. Bani Melhem, and R. Glitho, SOAP Based Web Services vs.

RESTful Web Services: A Case Study for Multimedia Conferencing Applications, IEEE
Internet Computing, July/August 2012

Examples of REST Modelling
(Messaging)

Examples of RESTful Web Services

Examples of RESTful Web Services

Examples of REST Modelling
(Conferencing)

Case Study On Conferencing

1. A stepwise procedure

2. On conferencing semantics

3. Applying the procedure to
conferencing

The procedure – First Part

 Figure out the data set

 Split the data set into resources

The procedure – Second Part

For each resource:
 Name the resources with URIs
 Identify the subset of the uniform interface that is exposed by the

resource
 Design the representation(s) as received (in a request) from and

sent (in a reply) to the client
 Consider the typical course of events by exploring and defining how

the new service behaves and what happens during a successful
execution

On Conferencing semantics

 The conversational exchange of multimedia
content between several parties
 About multimedia

 Audio, video, data, messaging
 About participants

 Any one who wants to participates the conference

On Conferencing semantics

Classification:
 Dial-in / dial-out
 Open/close
 Pre-arranged/ad hoc
 With/without sub-conferencing (i.e. sidebar)
 With/without floor control

On conferencing semantics
 Case considered in the use case
 Create a service that allows a conference

manager to :
 Create a conference
 Terminate a conference
 Get a conference status
 Add users to a conference
 Remove users from a conference
 Change media for a participant
 Get a participant media

Applying the procedure – First part
1. Data set

 Conferences
 Participants
 Media

Applying the procedure – First part

2. Split the data set into resources
 Each conference is a resource
 Each participant is a resource
 One special resource that lists the participants
 One special resource that lists the conferences (if we consider

simultaneous conferences)

Applying the procedure – Second part
3. Name the resources with URIs
 I’ll root the web service at

http://www.confexample.com/
 I will put the list of conferences at the root URI
 Each conference is defined by its ID:

http://www.confexample.com/{confId}/
 A conference participants’ resources are subordinates of the

conference resource:
 The lists of participants:

http://www.confexample.com/{confId}/participants/
 Each participant is identified by his/her URI:

http://www.confexample.com/{confId}/participants/{participantURI}/

Applying the procedure – Second part

4. Expose a subset of the uniform interface

conference?

Applying the procedure – Second part

Applying the procedure – Second part

9. What might go wrong?
 Conference

Operation Server->Client Way it may go wrong
Create
(POST)

Success: 200 OK
Failure: 400 Bad Request

The received request is not correct
(e.g. has a wrong body)

Read (GET) Success: 200 OK
Failure: 404 Not Found

The targeted conference does not
exist

Delete
(DELETE)

Success: 200 OK
Failure: 404 Not Found

The targeted conference does not
exist

Applying the procedure – Second part

9. What might go wrong?
 Participant(s)

Operation Server->Client Way it may go wrong

Create
(POST)

Success: 200 OK
Failure: 400 Bad Request
Failure: 404 Not Found

• The received request is not correct
(e.g. has a wrong body)
• The target conference does not exist

Read (GET) Success: 200 OK
Failure: 404 Not Found

• The target conference does not exist
• The target participant does not exist

Update
(PUT)

Success: 200 OK
Failure: 400 Bad Request
Failure: 404 Not Found

• The received request is not correct
• The target conference does not exist
• The target participant does not exist

Delete
(DELETE)

Success: 200 OK
Failure: 404 Not Found

• The target conference does not exist
• The target participant does not exist

The End
A

.

