
Virtualization Technologies

Roch Glitho, PhD
Full Professor
Ericsson / ENCQOR-5G Senior Industrial Research Chair
Cloud and Edge Computing for 5G and Beyond

My URL - http://users.encs.concordia.ca/~glitho

Outline

1. Hypervisor based –
virtualization

2. Containers

3. Uni-kernel

4. Virtualization and serverless
computing

Hypervisor Based - Virtualization

On Virtualization

 Key concepts

 Type I (bare metal) vs. Type 2 (hosted)

 Solutions for non virtualizable CPUs
 Binary Translation
 Para-virtualization

Basic concepts

1. On operating systems

2. Virtual machine, hypervisor

4. Examples of benefits

Operating systems
Some of the motivations

 Only one single tread of CPU can run at a time on any single
core consumer machine

 Machine language is tedious

Operating systems
Operating systems bring a level of abstraction on which
multiple processes can run at a time – Deal among other
things with:

 Multiplexing

 Hardware management issues

However only one operating system can run on a bare single
core consumer machine

virtual machines and hypervisors

 Systems virtualization dates back to the 60s

 IBM experimentation with “time sharing systems”

virtual machines and hypervisors

 Why virtual machines?

 How to develop software that run on different operating systems
without the purchase of several servers

 How to run legacy applications that run on legacy operating
systems

 Job migrations

virtual machines and hypervisors

Virtual machine (VM)
 Software that provides same inputs / outputs and behaviour

expected from hardware (i.e. real machine) and that supports
operations such as:
 Create
 Delete
 Migrate
 Increase resources

Hypervisor
 Software environment that enables operations on virtual

machines (e.g. XEN, VMWare) and ensures isolation

virtual machines and hypervisors

Hypervisors (earlier known as Virtual Machine Monitor (VMM)

 Software environment that enables operations on virtual
machines (e.g. XEN, VMWare) and meeting the following
requirements:

 Virtual machines identical to physical machines (same input /
same output)

 Efficiency

 Isolation

virtual machines, hypervisors

1. M. Pearce et al., Virtualization: Issues, Security, Threats, and Solutions, ACM
Computing Survey, February 2013

From reference [1] – Note: There is a small error in the
figure

Examples of Benefits

All benefits are due to the possibility to manipulate virtual
machine (e.g. create, delete, increase resources, migrate), e.g.

 Co-existence of operating systems

 Optimization of hardware utilization

 Job migration

Advanced concepts

1. Bare metal vs. hosted hypervisor

2. Full virtualization vs. Para-virtualization

3. Binary translation

Type I vs Type II Hypervisor

Some concepts

 Hardware

 Host OS
 Runs on the hardware (Type 2)

 Guest OS
 Runs on top of the hypervisor

Note: Type II hypervisor is sometimes called “Hosted Hypervisor”

Type I vs Type II Hypervisor
AS Tanembaum an H Bos, Modern Operating Systems, 5th edition, Published by Pearson (May 29,
2022) © 2023

Type I vs Type II Hypervisor

Types of hypervisor

 Type I – bare metal
 Installed on bare hardware
 Examples

 Citrix XEN server
 VMWARE ESX/ESXI

Type I vs Type II Hypervisor

Types of hypervisor

 Type 2 – hosted
 Runs on top of host operating system
 Examples:

 VMWare workstation
 VirtualBox

Type I vs Type II Hypervisor

Type I - Bare metal

 Hypervisor installed on bare hardware

 Advantages (compared to type II)
 Performance (No additional software layer to go through)
 Security (No possible attack through host operating system)

 Drawbacks (compared to type II)
 Host operating system needs to be “ported” on top of hypervisor
 Complexity depends on the type of virtualization (Full

virtualization vs. para-virtualization)

Type I vs Type II Hypervisor

Type II - Hosted
 Hypervisor installed on top of host operating system

 Drawbacks (compared to type I)
 Performance (need to go through host operating system)
 Security (i.e. Possibility to attack through host operating system)

 Advantages (compared to type I)

 Host operating system is re-used as it is (No need to port it)
 No change required to applications running on top of host

operating system

Full virtualization vs. Para-virtualization
More on operating systems fundamentals

 User process vs. Kernel process

 User mode vs. Kernel mode

Note: In user mode some instructions called sensitive
instructions should not be executed

Full virtualization vs. Para-virtualization
More on operating systems fundamentals

 Sensitive vs. non sensitive instruction

 Sensitive

 Has the capacity to interfere with supervisor software
functioning (e.g. OS) and should be executed only in kernel
mode (i.e. privileged mode)
 Write OS memory vs. read OS memory

Note: When a user process sends a sensitive instruction,
the instruction is trapped by the CPU and is not executed.

Full virtualization vs. Para-virtualization
Back to hypervisors

 In addition to user mode and kernel mode

 Virtual user mode

 Virtual kernel mode

Full virtualization vs. Para-virtualization
Back to hypervisors

 Scenarios discussions

 CPU able to send trap to hypervisors (virtualizable CPUs)

 CPU unable to send traps to hypervisors (non virtualization CPUs)

Full virtualization vs. Para-virtualization
Back to hypervisors (CPUs able to send traps to
hypervisors)

AS Tanembaum an H Bos, Modern Operating Systems, 5th edition, Published by Pearson (May 29,
2022) © 2023

Full virtualization vs. Para-virtualization
Could all CPU architectures be fully virtualized ?

 The case of Intel x86 CPU architectures

 Cannot be fully virtualized because they cannot generate
convenient traps to hypervisors

 Need to extended

Full virtualization vs. Para-virtualization
Definitions

Full virtualization
 Hypervisor enables virtual machines identical to real machine

 Problematic for architectures such as Intel x86

Full virtualization vs. Para-virtualization
Definitions

Para-virtualization
 Hypervisor enables virtual machine that are similar but not identical

to real machine
 A solution to the problem of CPU architectures that cannot be

virtualized
 Prevents user programs from executing sensitive instructions

 Note:
 Para-virtualization is not the only solution to the problem

Full virtualization vs. Para-virtualization

Full virtualization
 Advantages

 Possibility to host guest operating systems with no change since
virtual machines are identical to real machines

 Disadvantages
 Not always feasible (e.g. Intel x86)

 There are work around (e.g. binary translation)
 Some guest operating systems might need to see both virtual

resources and real resources for real time applications

Full virtualization vs. Para-virtualization

Para - virtualization
 Advantages

 Feasible for all CPU architectures
 Performance – Compared to:

 Full virtualization
 Other approaches to architectures that could not be

virtualized (e.g. binary translation)
 Disadvantages

 Need to modify guest operating systems

Full virtualization vs. Para-virtualization

Para - virtualization
 Alternatives to para-virtualization

 Binary translation (e.g. VMWare ESX server)
 Leads to full virtualization
 No need to re-write “statically” guest operating systems

 i.e. guest OS can be installed without change
 Interpretation of guest code (OS + application)

 “Rewrites” dynamically guest code and insert traps when
necessary

Full virtualization vs. Para-virtualization

Para - virtualization
 Alternatives to para-virtualization

 Binary translation
 Disadvantages / penalties

 Performance
 However, optimization is possible, e.g.

» Adaptive translation (i.e. optimize the code being
translated)

Alternatives to Hypervisor Based -
Virtualization

Containers and Unikernels

 Issues with hypervisors

 Alternatives (Containers and
unikernels)

Hypervisor
In a hypervisor based – approach, a VM includes the
application + full blown operating system (e.g. Linux
Debian, Linux Red Hat)

 OS on virtual machine needs to boot
 Slow starting time for application

 Resources are not used in an efficient manner
 Linux kernel replicated in each VM that runs linux.

Proposed Solutions
Back to operating systems basics

 The two components of an operating system
 Kernel

 Interacts with the hardware and manages it (e.g. write/read a
disk partition)

 Librairies
 Set of higher level functions accessible to programs via

system calls
 Enable function like create / read / delete file while hiding

the low level operations on the hard disk

Alternatives
VM vs container vs Unikernel

T. Goethals et al., Unikernels vs. Containers: An In-Depth
Benchmarking Study in the Context of MicroserviceApplication,
IEEE SC2 Conference, November 2018

On containers
Operating system (Kernel) virtualization:

 Kernel offers isolated spaces to run containers

 Containers
» Applications packaged with their run time

environment that run on a same kernel

» Run as processes, but with isolated file system,
networking, CPU and memory resources

On containers
Operating system (Kernel) virtualization:

 Kernel offers isolated spaces to run containers

 Containers
» Hosted by container engine (e.g. Docker Engine)
» Need to be deployed, managed and

orchestrated (e.g. Kubernetes)

On containers
Operating system (Kernel) virtualization:

 Kernel offers isolated spaces to run containers
 Some pros / cons

 Less memory footprint
» Do not include kernel

 Faster start up time
» Kernel does not need to boot

On containers
Operating system (Kernel) virtualization:

 Kernel offers isolated spaces to run containers
 Some pros / cons

 Works only in environments in which you have given
operating system kernel + its libraries (e.g. Linux kernel
+ Linux distributions)

 Less secure than VM
» Challenge:

» Trade-off between isolation and performance /
efficiency

On Unikernels
Application + Tiny run time:

 Tiny run time
 Not the whole OS like VM
 Not the whole libraries like containers

» Only the function required by the applications
» Static binding

 Can run as a tiny VM or a tiny container

On Unikernels
Pros and cons:

 Smaller footprint
 Boot up faster
 Less flexible

 Addition / removal of functionality requires re-compilation

Virtualization and Serverless Computing

Server-less computing

Server-less Computing
(Function as a Service)

 Introduction

 Architecture

 Pros / Cons

Introduction
Server-less does not mean there is no server !!!

 There are indeed servers !!!

 However the servers are completely transparent to the cloud
users, unlike (Virtual Machine (VM), Containers, Uni-kernel)

 Server-less computing might actual rely on VMs or
containers or uni-kernels

 Cloud users deal with functions (No need to deal with the
infrastructure)
 thus Functions as a Service (FaaS)

Architecture
Examples of platforms

 Amazon Lambda

 Microsoft Azure function

 Kuberless

Architecture

Y. Li et al., Serverless Computing: State of the Art, Challenges and Opportunities, IEEE
Transactions on Services Computing, March/April 2023

Architecture
Principles

1) Applications built as a set of functions

2) When there is a request for a given function, a run time
environment (e.g. VM, container, uni-kernel) is launched with the
function code + libraries

3) The run time is terminated after the execution of the function

Architecture
Serverless front-end
 Function programming
 Function serving

Platform: Modules such as:
- Run time
- Repository
- Scheduler

Architecture
Y. Li et al., Serverless Computing: State of the Art, Challenges and Opportunities, IEEE
Transactions on Services Computing, March/April 2023
(Flow view)

Architecture

Architecture
Load balancer:
- Self explanatory

Front end:
- End user interface

Message bus and scheduler:
- Mediation between front ends and execution engines

Architecture
Load balancer:
- Self explanatory

Front end:
- End user interface

Message bus and scheduler:
- Mediation between front ends and execution engines

- Relies on a publication / subscription principles

Architecture
Execution engine:
- Self explanatory

- Might rely on VM, containers and uni-kernels

Storage sub-system:
- States
- Persistent data

Pros (Examples)

- No real / virtual server management by cloud users

- Resource Efficiency and low cost

- Built-in scalability

Cons (Examples)

- Most cited:

- Start up latency

- Others:

- Learning curve of the new programming model (e.g.
stateless functions + events)

Pros vs Cons
P Aditya et al, Will Serverless Computing Revolutionize NFV, Proceedings of the IEEE,April
2019

- Decision to be made on case by case basis

Pros vs Cons

- Decision to be made on case by case basis

The . End

