Introduction to Theoretical Computer Science

Motivation

• Automata = abstract computing devices
• Turing studied Turing Machines (= computers) before there were any real computers
• We will also look at simpler devices than Turing machines (Finite State Automata, Pushdown Automata, ...), and specification means, such as grammars and regular expressions.
• NP-hardness = what cannot be efficiently computed.
• Undecidability = what cannot be computed at all.

Finite Automata

Finite Automata are used as a model for

• Software for designing digital circuits
• Lexical analyzer of a compiler
• Searching for keywords in a file or on the web.
• Software for verifying finite state systems, such as communication protocols.

Structural Representations

These are alternative ways of specifying a machine

Grammars: A rule like $E \Rightarrow E + E$ specifies an arithmetic expression

• $\text{Lineup} \Rightarrow \text{Person} \cdot \text{Lineup}$
 $\text{Lineup} \Rightarrow \text{Person}$

 says that a lineup is a single person, or a person in front of a lineup.

Regular Expressions: Denote structure of data, e.g.

' [A-Z] [a-z]* [] [A-Z] [A-Z] '

matches Ithaca NY

does not match Palo Alto CA

Question: What expression would match Palo Alto CA
Central Concepts

Alphabet: Finite, nonempty set of symbols

Example: Σ = {0, 1} binary alphabet

Example: Σ = {a, b, c, ..., z} the set of all lower case letters

Example: The set of all ASCII characters

Strings: Finite sequence of symbols from an alphabet Σ, e.g. 0011001

Empty String: The string with zero occurrences of symbols from Σ

• The empty string is denoted ϵ

Length of String: Number of positions for symbols in the string.

|w| denotes the length of string w

|0110| = 4, |ϵ| = 0

Powers of an Alphabet: Σ^k = the set of strings of length k with symbols from Σ

Example: Σ = {0, 1}

Σ^1 = {0, 1}

Σ^2 = {00, 01, 10, 11}

Σ^0 = {ϵ}

Question: How many strings are there in Σ^3

The set of all strings over Σ is denoted Σ^*

Σ^* = Σ^0 ∪ Σ^1 ∪ Σ^2 ∪ ...

Also:

Σ^+ = Σ^1 ∪ Σ^2 ∪ Σ^3 ∪ ...

Σ^* = Σ^+ ∪ {ϵ}

Concatenation: If x and y are strings, then xy is the string obtained by placing a copy of y immediately after a copy of x

x = a_1a_2...a_i
y = b_1b_2...b_j

xy = a_1a_2...a_ib_1b_2...b_j

Example: x = 01101, y = 110, xy = 01101110

Note: For any string x

xϵ = ϵx = x

Languages:

If Σ is an alphabet, and L ⊆ Σ^* then L is a language

Examples of languages:

• The set of legal English words
• The set of legal C programs
• The set of strings consisting of n 0’s followed by n 1’s

{ϵ, 01, 0011, 000111, ...}
• The set of strings with equal number of 0's and 1's
 \{\epsilon, 01, 10, 0011, 0101, 1001, \ldots\}

• \(L_P\) = the set of binary numbers whose value is prime
 \{10, 11, 101, 111, 1011, \ldots\}

• The empty language \(\emptyset\)

• The language \(\{\epsilon\}\) consisting of the empty string

Note: \(\emptyset \neq \{\epsilon\}\)

Note2: The underlying alphabet \(\Sigma\) is always finite

Problem: Is a given string \(w\) a member of a language \(L\)?

Example: Is a binary number prime = is it a member in \(L_P\)

Is \(11101 \in L_P\)? What computational resources are needed to answer the question.

Usually we think of problems not as a yes/no decision, but as something that transforms an input into an output.

Example: Parse a C-program = check if the program is correct, and if it is, produce a parse tree.

Let \(L_X\) be the set of all valid programs in prog lang \(X\). If we can show that determining membership in \(L_X\) is hard, then parsing programs written in \(X\) cannot be easier.

Question: Why?

Finite Automata Informally

Protocol for e-commerce using e-money

Allowed events:

1. The customer can pay the store (\(=\)send the money-file to the store)

2. The customer can cancel the money (like putting a stop on a check)

3. The store can ship the goods to the customer

4. The store can redeem the money (\(=\)cash the check)

5. The bank can transfer the money to the store

e-commerce

The protocol for each participant:

(a) Store

(b) Customer

(c) Bank
Completed protocols:

![Automaton Diagram]

The entire system as an Automaton:

![Automaton Diagram]

Deterministic Finite Automata

A DFA is a quintuple

\[A = (Q, \Sigma, \delta, q_0, F) \]

- \(Q \) is a finite set of states
- \(\Sigma \) is a finite alphabet \((= \text{input symbols})\)
- \(\delta \) is a transition function \((q, a) \mapsto p\)
- \(q_0 \in Q \) is the start state
- \(F \subseteq Q \) is a set of final states

Example: An automaton \(A \) that accepts

\[L = \{ x01y : x, y \in \{0,1\}^* \} \]

The automaton \(A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\}) \) as a transition table:

\[
\begin{array}{c|cc}
\delta & 0 & 1 \\
\hline
\rightarrow q_0 & q_2 & q_0 \\
* q_1 & q_1 & q_1 \\
q_2 & q_2 & q_1 \\
\end{array}
\]

The automaton \(A \) as a transition diagram:
An FA **accepts** a string \(w = a_1 a_2 \ldots a_n \) if there is a path in the transition diagram that

1. Begins at a start state

2. Ends at an accepting state

3. Has sequence of labels \(a_1 a_2 \ldots a_n \)

Example: The FA

![Transition Diagram](image)

accepts e.g. the string 1100101

- The transition function \(\delta \) can be extended to \(\hat{\delta} \) that operates on states and strings (as opposed to states and symbols)

Basis:

\[\hat{\delta}(q, \epsilon) = q \]

Induction:

\[\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a) \]

- Now, formally, the **language accepted by** \(A \) is

\[L(A) = \{ w : \hat{\delta}(q_0, w) \in F \} \]

- The languages accepted by FA:s are called **regular languages**

Example: DFA accepting all and only strings with an even number of 0's and an even number of 1's

![DFA Diagram](image)

Tabular representation of the Automaton

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>(q_0)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_0)</td>
<td>(q_2)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_3)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_0)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(q_1)</td>
<td>(q_2)</td>
</tr>
</tbody>
</table>

Example

Marble-rolling toy from p. 53 of textbook

![Marble-rolling toy](image)
A state is represented as a sequence of three bits followed by \(r\) or \(a\) (previous input rejected or accepted).

For instance, \(010a\), means \(\text{left, right, left, accepted}\).

Tabular representation of DFA for the toy automaton:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rightarrow 000r)</td>
<td>100r</td>
<td>011r</td>
</tr>
<tr>
<td>(*000a)</td>
<td>100r</td>
<td>011r</td>
</tr>
<tr>
<td>(*001a)</td>
<td>101r</td>
<td>000a</td>
</tr>
<tr>
<td>(010r)</td>
<td>110r</td>
<td>001a</td>
</tr>
<tr>
<td>(*010a)</td>
<td>110r</td>
<td>001a</td>
</tr>
<tr>
<td>(011r)</td>
<td>111r</td>
<td>010a</td>
</tr>
<tr>
<td>(100r)</td>
<td>010r</td>
<td>111r</td>
</tr>
<tr>
<td>(*100a)</td>
<td>010r</td>
<td>111r</td>
</tr>
<tr>
<td>(101r)</td>
<td>011r</td>
<td>100a</td>
</tr>
<tr>
<td>(*101a)</td>
<td>011r</td>
<td>100a</td>
</tr>
<tr>
<td>(110r)</td>
<td>000a</td>
<td>101a</td>
</tr>
<tr>
<td>(*110a)</td>
<td>000a</td>
<td>101a</td>
</tr>
<tr>
<td>(111r)</td>
<td>001a</td>
<td>110a</td>
</tr>
</tbody>
</table>

Nondeterministic Finite Automata

A NFA can be in several states at once, or, viewed another way, it can “guess” which state to go to next.

Example: An automaton that accepts all and only strings ending in \(01\).

Formally, a NFA is a quintuple

\[A = (Q, \Sigma, \delta, q_0, F) \]

- \(Q\) is a finite set of states
- \(\Sigma\) is a finite alphabet
- \(\delta\) is a transition function from \(Q \times \Sigma\) to the powerset of \(Q\)
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is a set of final states

Example: The NFA from the previous slide is

\[(\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\}) \]

where \(\delta\) is the transition function:

\[
\begin{array}{c|c|c}
\delta & 0 & 1 \\
\hline
\rightarrow q_0 & \{q_0, q_1\} & \{q_0\} \\
q_1 & \emptyset & \{q_2\} \\
*q_2 & \emptyset & \emptyset \\
\end{array}
\]
Extended transition function $\hat{\delta}$.

Basis:
$$\hat{\delta}(q, \epsilon) = \{q\}$$

Induction:
$$\hat{\delta}(q, xa) = \bigcup_{p \in \hat{\delta}(q,x)} \delta(p, a)$$

Example: Let's compute $\hat{\delta}(q_0, 00101)$ on the blackboard

Now, formally, the language accepted by A is
$$L(A) = \{w : \hat{\delta}(q_0, w) \cap F \neq \emptyset\}$$

Let's prove formally that the NFA

![NFA Diagram](image)

accepts the language $\{x01 : x \in \Sigma^*\}$. We'll do a mutual induction on the three statements below

0. $w \in \Sigma^* \Rightarrow q_0 \in \hat{\delta}(q_0, w)$

1. $q_1 \in \hat{\delta}(q_0, w) \iff w = x0$

2. $q_2 \in \hat{\delta}(q_0, w) \iff w = x01$

Equivalence of DFA and NFA

- NFA’s are usually easier to “program” in.
- Surprisingly, for any NFA N there is a DFA D, such that $L(D) = L(N)$, and vice versa.
- This involves the subset construction, an important example how an automaton B can be generically constructed from another automaton A.
- Given an NFA
$$N = (Q_N, \Sigma, \delta_N, q_0, F_N)$$
we will construct a DFA
$$D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$
such that
$$L(D) = L(N)$$
The details of the subset construction:

- $Q_D = \{S : S \subseteq Q_N\}$.

Note: $|Q_D| = 2^{|Q_N|}$, although most states in Q_D are likely to be garbage.

- $F_D = \{S \subseteq Q_N : S \cap F_N \neq \emptyset\}$

- For every $S \subseteq Q_N$ and $a \in \Sigma$,
 \[
 \delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a)
 \]

Let's construct δ_D from the NFA on slide 26

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_1}$</td>
<td>\emptyset</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>${q_2}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_1, q_2}$</td>
<td>\emptyset</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_2}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
</tbody>
</table>

We can often avoid the exponential blow-up by constructing the transition table for D only for accessible states S as follows:

Basis: $S = \{q_0\}$ is accessible in D

Induction: If state S is accessible, so are the states in $\bigcup_{a \in \Sigma} \delta_D(S, a)$.

Example: The "subset" DFA with accessible states only.

![Diagram](image-url)
Theorem 2.11: Let D be the “subset” DFA of an NFA N. Then $L(D) = L(N)$.

Proof: First we show on an induction on $|w|$ that

$$\hat{\delta}_D(q_0, w) = \delta_N(q_0, w)$$

Basis: $w = \epsilon$. The claim follows from def.

Induction: $\hat{\delta}_D(q_0, xa) \overset{\text{def}}{=} \delta_D(\hat{\delta}_D(q_0, x), a)$

i.h. $\overset{\text{def}}{=} \delta_D(\hat{\delta}_N(q_0, x), a)$

$$\overset{\text{cst}}{=} \bigcup_{p \in \hat{\delta}_N(q_0, x)} \delta_N(p, a)$$

$$\overset{\text{def}}{=} \hat{\delta}_N(q_0, xa)$$

Now (why?) it follows that $L(D) = L(N)$.

Theorem 2.12: A language L is accepted by some DFA if and only if L is accepted by some NFA.

Proof: The “if” part is Theorem 2.11. For the “only if” part we note that any DFA can be converted to an equivalent NFA by modifying the δ_D to δ_N by the rule

- If $\delta_D(q, a) = p$, then $\delta_N(q, a) = \{p\}$.

By induction on $|w|$ it will be shown in the tutorial that if $\hat{\delta}_D(q_0, w) = p$, then $\delta_N(q_0, w) = \{p\}$.

The claim of the theorem follows.

Exponential Blow-Up

There is an NFA N with $n + 1$ states that has no equivalent DFA with fewer than 2^n states

$$L(N) = \{x_1c_2c_3 \cdots c_n : x \in \{0, 1\}^*, c_i \in \{0, 1\}\}$$

Suppose an equivalent DFA D with fewer than 2^n states exists.

D must remember the last n symbols it has read. There are 2^n bitsequences $a_1a_2 \cdots a_n$. Since D has fewer that 2^n states

$$\exists q, a_1a_2 \cdots a_n, b_1b_2 \cdots b_n :$$

$$a_1a_2 \cdots a_n \neq b_1b_2 \cdots b_n$$

$$\hat{\delta}_D(q_0, a_1a_2 \cdots a_n) = \delta_D(q_0, b_1b_2 \cdots b_n) = q$$
Since $a_1a_2...a_n \neq b_1b_2...b_n$ they must differ in at least one position.

Case 1:

1. $a_2...a_n$
2. $b_2...b_n$

Then q has to be both an accepting and a nonaccepting state.

Case 2:

1. $a_1...a_{i-1}a_{i+1}...a_n$
2. $b_1...b_{i-1}b_{i+1}...b_n$

Now $\hat{\delta}_D(q_0,a_1...a_{i-1}1a_{i+1}...a_n0^{i-1}) = \hat{\delta}_D(q_0,b_1...b_{i-1}0b_{i+1}...b_n0^{i-1})$

and $\hat{\delta}_D(q_0,a_1...a_{i-1}1a_{i+1}...a_n0^{i-1}) \in FD$

$$\hat{\delta}_D(q_0,b_1...b_{i-1}0b_{i+1}...b_n0^{i-1}) \notin FD$$

37

An ϵ-NFA is a quintuple $(Q, \Sigma, \delta, q_0, F)$ where δ is a function from $Q \times \Sigma \cup \{\epsilon\}$ to the powerset of Q.

Example: The ϵ-NFA from the previous slide

$$E = (\{q_0, q_1, ..., q_5\}, \{., +, -, 0, 1, ..., 9\}, \delta, q_0, \{q_5\})$$

where the transition table for δ is

<table>
<thead>
<tr>
<th></th>
<th>ϵ</th>
<th>$\pm-$</th>
<th>\cdot</th>
<th>$0,1,...,9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rightarrow q_0$</td>
<td>${q_1}$</td>
<td>${q_1}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>q_1</td>
<td>0</td>
<td>0</td>
<td>${q_2}$</td>
<td>${q_1, q_4}$</td>
</tr>
<tr>
<td>q_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>${q_3}$</td>
</tr>
<tr>
<td>q_3</td>
<td>${q_5}$</td>
<td>0</td>
<td>0</td>
<td>${q_3}$</td>
</tr>
<tr>
<td>q_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*q_5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

40

ECLOSE

We close a state by adding all states reachable by a sequence $\epsilon \epsilon \cdot \cdot \epsilon$

Inductive definition of $ECLOSE(q)$

Basis:

$q \in ECLOSE(q)$

Induction:

$p \in ECLOSE(q)$ and $r \in \delta(p, \epsilon) \Rightarrow r \in ECLOSE(q)$
Example of ϵ-closure

$$\begin{array}{cccccc}
1 & \epsilon & 2 & \epsilon & 3 & \epsilon \\
\epsilon & 4 & \epsilon & 5 & \epsilon & 7 \\
\end{array}$$

For instance,

$$\text{ECLOSE}(1) = \{1, 2, 3, 4, 6\}$$

• Inductive definition of $\hat{\delta}$ for ϵ-NFA's

Basis:

$$\delta(q, \epsilon) = \text{ECLOSE}(q)$$

Induction:

$$\delta(q, xa) = \bigcup_{p \in \delta(q, x), a} \text{ECLOSE}(p)$$

Let's compute on the blackboard in class $\delta(q_0, 5.6)$ for the NFA on slide 38

Given an ϵ-NFA $E = (Q_E, \Sigma, \delta_E, q_0, F_E)$ we will construct a DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ such that

$$L(D) = L(E)$$

Details of the construction:

- $Q_D = \{S : S \subseteq Q_E \text{ and } S = \text{ECLOSE}(S)\}$
- $q_D = \text{ECLOSE}(q_0)$
- $F_D = \{S : S \in Q_D \text{ and } S \cap F_E \neq \emptyset\}$
- $\delta_D(S, a) = \bigcup \{\text{ECLOSE}(p) : p \in \delta(t, a) \text{ for some } t \in S\}$

Example: ϵ-NFA E

$$\begin{array}{cccccc}
q_0 & \epsilon \rightarrow q_1 & & & & q_5 \\
& +, - & & \epsilon \rightarrow q_2 & & \\
& & 0, 1, \ldots, 9 & & 0, 1, \ldots, 9 \\
& & \downarrow & & \downarrow \\
& & q_3 & \downarrow & q_4 \\
& & 0, 1, \ldots, 9 & & 0, 1, \ldots, 9 \\
& & & & \downarrow \\
& & & & q_6 \\
\end{array}$$

DFA D corresponding to E

$$\begin{array}{cccccc}
[q_0, q_1] & +, - & [q_1] & & [q_2, q_3] \\
& 0, 1, \ldots, 9 & 0, 1, \ldots, 9 & & 0, 1, \ldots, 9 \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& 0, 1, \ldots, 9 & 0, 1, \ldots, 9 & 0, 1, \ldots, 9 \\
\end{array}$$
Theorem 2.22: A language L is accepted by some ϵ-NFA E if and only if L is accepted by some DFA.

Proof: We use D constructed as above and show by induction that $\hat{\delta}_D(q_0, w) = \hat{\delta}_E(q_D, w)$

Basis: $\hat{\delta}_E(q_0, \epsilon) = \text{ECLOSE}(q_0) = q_D = \hat{\delta}_D(q_D, \epsilon)$

Induction:

\[
\hat{\delta}_E(q_0, xa) = \bigcup_{p \in \delta_E(\hat{\delta}_E(q_0, x), a)} \text{ECLOSE}(p) = \bigcup_{p \in \delta_D(\hat{\delta}_D(q_D, x), a)} \text{ECLOSE}(p) = \bigcup_{p \in \hat{\delta}_D(q_D, xa)} \text{ECLOSE}(p) = \hat{\delta}_D(q_D, xa)
\]

Regular expressions

A FA (NFA or DFA) is a “blueprint” for constructing a machine recognizing a regular language.

A **regular expression** is a “user-friendly,” declarative way of describing a regular language.

Example: $01^* + 10^*$

Regular expressions are used in e.g.

1. UNIX grep command
2. UNIX Lex (Lexical analyzer generator) and Flex (Fast Lex) tools.

Operations on languages

Union:

$L \cup M = \{w : w \in L \text{ or } w \in M\}$

Concatenation:

$L.M = \{w : w = xy, x \in L, y \in M\}$

Powers:

$L^0 = \{\epsilon\}, L^1 = L, L^{k+1} = L.L^k$

Kleene Closure:

$L^* = \bigcup_{i=0}^{\infty} L^i$

Question: What are \emptyset^0, \emptyset^i, and \emptyset^*
Building regex’s

Inductive definition of regex’s:

Basis: ϵ is a regex and \emptyset is a regex.
$L(\epsilon) = \{\epsilon\}$, and $L(\emptyset) = \emptyset$.

If $a \in \Sigma$, then a is a regex.
$L(a) = \{a\}$.

Induction:
If E is a regex’s, then (E) is a regex.
$L((E)) = L(E)$.

If E and F are regex’s, then $E + F$ is a regex.
$L(E + F) = L(E) \cup L(F)$.

If E and F are regex’s, then $E.F$ is a regex.
$L(E.F) = L(E).L(F)$.

If E is a regex’s, then E^* is a regex.
$L(E^*) = (L(E))^*$.

Example: Regex for
$L = \{w \in \{0,1\}^* : 0 \text{ and } 1 \text{ alternate in } w\}$

$(01)^* + (10)^* + 0(10)^* + 1(01)^*$

or, equivalently,

$(\epsilon + 1)(01)^*(\epsilon + 0)$

Order of precedence for operators:
1. Star
2. Dot
3. Plus

Example: $01^* + 1$ is grouped $(0(1))^* + 1$

Equivalence of FA’s and regex’s

We have already shown that DFA’s, NFA’s, and ϵ-NFA’s all are equivalent.

To show FA’s equivalent to regex’s we need to establish that

1. For every DFA A we can find (construct, in this case) a regex R, s.t. $L(R) = L(A)$.
2. For every regex R there is an ϵ-NFA A, s.t. $L(A) = L(R)$.

Theorem 3.4: For every DFA $A = (Q, \Sigma, \delta, q_0, F)$ there is a regex R, s.t. $L(R) = L(A)$.

Proof: Let the states of A be $\{1, 2, \ldots, n\}$, with 1 being the start state.

- Let $R_{ij}^{(k)}$ be a regex describing the set of labels of all paths in A from state i to state j going through intermediate states $\{1, \ldots, k\}$ only.
$R^{(k)}_{ij}$ will be defined inductively. Note that

$$L\left(\bigoplus_{j \in F} R^{(n)}_{1j}\right) = L(A)$$

Basis: $k = 0$, i.e. no intermediate states.

- **Case 1:** $i \neq j$

 $$R^{(0)}_{ij} = \bigoplus_{\{a \in \Sigma : \delta(i, a) = j\}} a$$

- **Case 2:** $i = j$

 $$R^{(0)}_{ii} = \left(\bigoplus_{\{a \in \Sigma : \delta(i, a) = i\}} a\right) + \epsilon$$

Induction:

$$R^{(k)}_{ij} = R^{(k-1)}_{ij} + R^{(k-1)}_{ik} \left(R^{(k-1)}_{kk}\right)^* R^{(k-1)}_{kj}$$

Example: Let’s find R for A, where

$$L(A) = \{x0y : x \in \{1\}^* \text{ and } y \in \{0, 1\}^*\}$$

<table>
<thead>
<tr>
<th>$R^{(0)}_{11}$</th>
<th>$\epsilon + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^{(0)}_{12}$</td>
<td>0</td>
</tr>
<tr>
<td>$R^{(0)}_{21}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$R^{(0)}_{22}$</td>
<td>$\epsilon + 0 + 1$</td>
</tr>
</tbody>
</table>

We will need the following *simplification rules*:

- $(\epsilon + R)^* = R^*$
- $R + RS^* = RS^*$
- $\emptyset R = R\emptyset = \emptyset$ (Annihilation)
- $\emptyset + R = R + \emptyset = R$ (Identity)
\[
R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)}(R_{11}^{(0)})^*R_{1j}^{(0)}
\]

<table>
<thead>
<tr>
<th>(R_{ij}^{(0)})</th>
<th>(\epsilon + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{11}^{(0)})</td>
<td>(0)</td>
</tr>
<tr>
<td>(R_{12}^{(0)})</td>
<td>(0)</td>
</tr>
<tr>
<td>(R_{21}^{(0)})</td>
<td>(\epsilon + 0 + 1)</td>
</tr>
<tr>
<td>(R_{22}^{(0)})</td>
<td>(\epsilon + 0 + 1)</td>
</tr>
</tbody>
</table>

\[
R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)}(R_{11}^{(0)})^*R_{1j}^{(0)}
\]

\[
R_{ij}^{(2)} = R_{ij}^{(1)} + R_{i2}^{(1)}(R_{22}^{(1)})^*R_{2j}^{(1)}
\]

<table>
<thead>
<tr>
<th>(R_{ij}^{(1)})</th>
<th>(\epsilon + 1 + (\epsilon + 1)(\epsilon + 1)^*(\epsilon + 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{11}^{(1)})</td>
<td>(1*)</td>
</tr>
<tr>
<td>(R_{12}^{(1)})</td>
<td>(0 + (\epsilon + 1)(\epsilon + 1)^*0)</td>
</tr>
<tr>
<td>(R_{21}^{(1)})</td>
<td>(\emptyset + 0(\epsilon + 1)^*(\epsilon + 1))</td>
</tr>
<tr>
<td>(R_{22}^{(1)})</td>
<td>(\epsilon + 0 + 1 + 0(\epsilon + 1)^*0)</td>
</tr>
</tbody>
</table>

By direct substitution

<table>
<thead>
<tr>
<th>(R_{ij}^{(2)})</th>
<th>(\epsilon + 1 + 0(\epsilon + 0 + 1)^*0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{11}^{(2)})</td>
<td>(1* + 1*0(\epsilon + 0 + 1)^*0)</td>
</tr>
<tr>
<td>(R_{12}^{(2)})</td>
<td>(10 + 10(\epsilon + 0 + 1)^*(\epsilon + 0 + 1))</td>
</tr>
<tr>
<td>(R_{21}^{(2)})</td>
<td>(\emptyset + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*\emptyset)</td>
</tr>
<tr>
<td>(R_{22}^{(2)})</td>
<td>(\epsilon + 0 + 1 + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*(\epsilon + 0 + 1))</td>
</tr>
</tbody>
</table>

Simplified

<table>
<thead>
<tr>
<th>(R_{ij}^{(2)})</th>
<th>(\epsilon + 0 + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{11}^{(2)})</td>
<td>(1*)</td>
</tr>
<tr>
<td>(R_{12}^{(2)})</td>
<td>(10(\epsilon + 1)^)</td>
</tr>
<tr>
<td>(R_{21}^{(2)})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(R_{22}^{(2)})</td>
<td>((0 + 1)^*)</td>
</tr>
</tbody>
</table>

Observations

There are \(n^3 \) expressions \(R_{ij}^{(k)} \)

Each inductive step grows the expression 4-fold

\(R_{ij}^{(n)} \) could have size \(4^n \)

For all \(\{i, j\} \subseteq \{1, \ldots, n\} \), \(R_{ij}^{(k)} \) uses \(R_{kk}^{(k-1)} \)
so we have to write \(n^2 \) times the regex \(R_{kk}^{(k-1)} \)

We need a more efficient approach:
the state elimination technique

The final regex for \(A \) is

\[
R_{12}^{(2)} = 1*0(\epsilon + 1)^*
\]
The state elimination technique

Let’s label the edges with regex’s instead of symbols

For each q ∈ F we’ll be left with an A_q that looks like

that corresponds to the regex \(E_q = (R + SU^*T)^*SU^* \)
or with \(A_q \) looking like

corresponding to the regex \(E_q = R^* \)

- The final expression is

\[\bigoplus_{q \in F} E_q \]
Let's eliminate state B

Then we eliminate state C and obtain A_D

with regex $(0 + 1)^*1(0 + 1)(0 + 1)$

From regex's to ϵ-NFA's

Theorem 3.7: For every regex R we can construct and ϵ-NFA A, s.t. $L(A) = L(R)$.

Proof: By structural induction:

Basis: Automata for ϵ, \emptyset, and a.

Induction: Automata for $R + S$, RS, and R^*

- The final expression is the sum of the previous two regex's:
 $$(0 + 1)^*1(0 + 1)(0 + 1) + (0 + 1)^*1(0 + 1)$$
Example: We convert \((0 + 1)^*1(0 + 1) \)

\[
\begin{array}{l}
\varepsilon 0 \\
\varepsilon 1 \\
\varepsilon 0 \\
\varepsilon 1 \\
\varepsilon
\end{array}
\]

\[\text{(a)}\]

\[
\begin{array}{l}
\varepsilon 0 \\
\varepsilon 1 \\
\varepsilon 0 \\
\varepsilon 1 \\
\varepsilon
\end{array}
\]

\[\text{(b)}\]

\[
\begin{array}{l}
\text{Start} \\
0 \\
1 \\
0 \\
1 \\
\varepsilon
\end{array}
\]

\[\text{(c)}\]

Algebraic Laws for languages

- \(L \cup M = M \cup L \).

 Union is \textit{commutative}.

- \((L \cup M) \cup N = L \cup (M \cup N) \).

 Union is \textit{associative}.

- \((LM)N = L(MN) \).

 Concatenation is \textit{associative}.

 Note: Concatenation is not commutative, \textit{i.e.}, there are \(L \) and \(M \) such that \(LM \neq ML \).

- \(\emptyset \cup L = L \cup \emptyset = L \).

 \(\emptyset \) is \textit{identity} for union.

- \(\{\varepsilon\}L = L\{\varepsilon\} = L \).

 \(\{\varepsilon\} \) is \textit{left} and \textit{right identity} for concatenation.

- \(\emptyset L = L\emptyset = \emptyset \).

 \(\emptyset \) is \textit{left} and \textit{right annihilator} for concatenation.

- \(L(M \cup N) = LM \cup LN \).

 Concatenation is \textit{left distributive} over union.

- \((M \cup N)L = ML \cup NL \).

 Concatenation is \textit{right distributive} over union.

- \(L \cup L = L \).

 Union is \textit{idempotent}.

- \(\emptyset^* = \{\varepsilon\}, \{\varepsilon\}^* = \{\varepsilon\} \).

- \(L^+ = LL^* = L^*L, L^* = L^+ \cup \{\varepsilon\} \).
• \((L^*)^* = L^*.\) Closure is idempotent

Proof:

\[w \in (L^*)^* \iff w \in \bigcup_{i=0}^{\infty} \left(\bigcup_{j=0}^{\infty} L^j \right)^i \]

\[\iff \exists k, m \in \mathbb{N} : w \in (L^m)^k \]

\[\iff \exists p \in \mathbb{N} : w \in L^p \]

\[\iff w \in \bigcup_{i=0}^{\infty} L^i \]

\[\iff w \in L^* \quad \Box \]

Algebraic Laws for regex’s

Evidently e.g. \(L((0 + 1)1) = L(01 + 11)\)

Also e.g. \(L((00 + 101)11) = L(0011 + 10111)\).

More generally

\[L((E + F)G) = L(EG + FG) \]

for any regex’s \(E, F,\) and \(G.\)

• How do we verify that a general identity like above is true?

1. Prove it by hand.

2. Let the computer prove it.

In Chapter 4 we will learn how to test automatically if \(E = F\), for any concrete regex’s \(E\) and \(F\).

We want to test *general* identities, such as \(E + F = F + E\), for any regex’s \(E\) and \(F.\)

Method:

1. “Freeze” \(E\) to \(a_1\), and \(F\) to \(a_2\)

2. Test automatically if the frozen identity is true, e.g. if \(L(a_1 + a_2) = L(a_2 + a_1)\)

Question: Does this always work?

Answer: Yes, as long as the identities use only plus, dot, and star.

Let’s denote a generalized regex, such as \((E + F)\) by

\[E(E,F) \]

Now we can for instance make the substitution \(S = \{E/0, F/11\}\) to obtain

\[S(E(E,F)) = (0 + 11)0 \]
Theorem 3.13: Fix a “freezing” substitution \(\star = \{ E_1/a_1, E_2/a_2, \ldots, E_m/a_m \} \).

Let \(E(E_1, E_2, \ldots, E_m) \) be a generalized regex. Then for any regex's \(E_1, E_2, \ldots, E_m \),

\[w \in L(E(E_1, E_2, \ldots, E_m)) \]

if and only if there are strings \(w_i \in L(E_i) \), s.t.

\[w = w_{j_1}w_{j_2} \cdots w_{j_k} \]

and

\[a_{j_1}a_{j_2} \cdots a_{j_k} \in L(E(a_1, a_2, \ldots, a_m)) \]

Proof of Theorem 3.13: We do a structural induction of \(E \).

Basis: If \(E = \epsilon \), the frozen expression is also \(\epsilon \).

If \(E = \emptyset \), the frozen expression is also \(\emptyset \).

If \(E = a \), the frozen expression is also \(a \). Now \(w \in L(E) \) if and only if there is \(u \in L(a) \), s.t.

\[w = u \]

and \(u \) is in the language of the frozen expression, i.e. \(u \in \{ a \} \).

For example: Suppose the alphabet is \{1, 2\}. Let \(E(E_1, E_2) \) be \((E_1 + E_2)E_1 \), and let \(E_1 \) be 1, and \(E_2 \) be 2. Then

\[w \in L(E(E_1, E_2)) = L((E_1 + E_2)E_1) = \]

\[(\{1\} \cup \{2\})1 = \{11, 21\} \]

if and only if

\[\exists w_1 \in L(E_1) = \{1\}, \exists w_2 \in L(E_2) = \{2\} : w = w_{j_1}w_{j_2} \]

and

\[a_{j_1}a_{j_2} \in L(E(a_1, a_2))) = L((a_1 + a_2)a_1) = \{a_1a_1, a_2a_1\} \]

if and only if

\[j_1 = j_2 = 1, \text{ or } j_1 = 1, \text{ and } j_2 = 2 \]

Induction:

Case 1: \(E = F + G \).

Then \(\star(E) = \star(F) + \star(G) \), and

\[L(\star(E)) = L(\star(F)) \cup L(\star(G)) \]

Let \(E \) and \(F \) be regex's. Then \(w \in L(E + F) \) if and only if \(w \in L(E) \) or \(w \in L(F) \), if and only if \(a_1 \in L(\star(F)) \) or \(a_2 \in L(\star(G)) \), if and only if \(a_1 \in \star(E) \), or \(a_2 \in \star(E) \).

Case 2: \(E = FG \).

Then \(\star(E) = \star(F)\star(G) \), and

\[L(\star(E)) = L(\star(F))\star(L(\star(G)) \]

Let \(E \) and \(F \) be regex's. Then \(w \in L(E.F) \) if and only if \(w = w_1w_2 \), \(w_1 \in L(E) \) and \(w_2 \in L(F) \), and \(a_1a_2 \in L(\star(F))\star(L(\star(G)) = \star(E) \)

Case 3: \(E = F^* \).

Prove this case at home.
Theorem 3.14: $E(\varepsilon_1, \ldots, \varepsilon_m) = F(\varepsilon_1, \ldots, \varepsilon_m) \iff L(\vartriangleleft(E)) = L(\vartriangleleft(F))$

Proof:

(Only if direction) $E(\varepsilon_1, \ldots, \varepsilon_m) = F(\varepsilon_1, \ldots, \varepsilon_m)$ means that $L(E(E_1, \ldots, E_m)) = L(F(E_1, \ldots, E_m))$ for any concrete regex's E_1, \ldots, E_m. In particular then $L(\vartriangleleft(E)) = L(\vartriangleleft(F))$

(If direction) Let E_1, \ldots, E_m be concrete regex's. Suppose $L(\vartriangleleft(E)) = L(\vartriangleleft(F))$. Then by Theorem 3.13,

$$w \in L(E(E_1, \ldots, E_m)) \iff \exists w_i \in L(E_i), w = w_{j_1} \cdots w_{j_m}, a_{j_1} \cdots a_{j_m} \in L(\vartriangleleft(E)) \iff \exists w_i \in L(E_i), w = w_{j_1} \cdots w_{j_m}, a_{j_1} \cdots a_{j_m} \in L(\vartriangleleft(F)) \iff w \in L(F(E_1, \ldots, E_m))$$

Example:

To prove $(L + M)^* = (L^* M^*)^*$ it is enough to determine if $(a_1 + a_2)^*$ is equivalent to $(a_1^* a_2^*)^*$

To verify $L^* = L^* L^*$ test if a_1^* is equivalent to $a_1^* a_1^*$.

Question: Does $L + M L = (L + M)L$ hold?
Properties of Regular Languages

- **Pumping Lemma.** Every regular language satisfies the pumping lemma. If somebody presents you with fake regular language, use the pumping lemma to show a contradiction.

- **Closure properties.** Building automata from components through operations, e.g. given \(L \) and \(M \) we can build an automaton for \(L \cap M \).

- **Decision properties.** Computational analysis of automata, e.g. are two automata equivalent.

- **Minimization techniques.** We can save money since we can build smaller machines.

The Pumping Lemma Informally

Suppose \(L_{01} = \{0^n1^n : n \geq 1\} \) were regular.

Then it would be recognized by some DFA \(A \), with, say, \(k \) states.

Let \(A \) read \(0^k \). On the way it will travel as follows:

\[
\begin{array}{c}
\epsilon & p_0 \\
0 & p_1 \\
00 & p_2 \\
\vdots & \vdots \\
0^k & p_k \\
\end{array}
\]

\[\Rightarrow \exists i < j : p_i = p_j \text{ Call this state } q.\]

Now you can fool \(A \):

- If \(\delta(q, 1^i) \in F \) the machine will foolishly accept \(0^j1^i \).
- If \(\delta(q, 1^i) \notin F \) the machine will foolishly reject \(0^j1^i \).

Therefore \(L_{01} \) cannot be regular.

- Let’s generalize the above reasoning.

Theorem 4.1. **The Pumping Lemma for Regular Languages.**

Let \(L \) be regular.

Then \(\exists n, \forall w \in L : |w| \geq n \Rightarrow w = xyz \) such that

1. \(y \neq \epsilon \)
2. \(|xy| \leq n \)
3. \(\forall k \geq 0, xy^kz \in L \)
Proof: Suppose \(L \) is regular

The \(L \) is recognized by some DFA \(A \) with, say, \(n \) states.

Let \(w = a_1a_2 \ldots a_m \in L, m > n \).

Let \(p_i = \hat{\delta}(q_0, a_1a_2 \ldots a_i) \).

\[\Rightarrow \exists i < j : p_i = p_j \]

Now \(w = xyz \), where

1. \(x = a_1a_2 \ldots a_i \)
2. \(y = a_{i+1}a_{i+2} \ldots a_j \)
3. \(z = a_{j+1}a_{j+2} \ldots a_m \)

Evidently \(xy^kz \in L \), for any \(k \geq 0 \). Q.E.D.

Example: Let \(L_{eq} \) be the language of strings with equal number of zero’s and one’s.

Suppose \(L_{eq} \) is regular. Then \(L_{eq} = L(A) \), for some DFA \(A \) with, say \(n \), states, and \(w = 0^n1^n \in L(A) \).

By the pumping lemma \(w = xyz, |xy| \leq n, y \neq \epsilon \) and \(xy^kz \in L(A) \)

\[w = \overbrace{000 \ldots 0}^{x} \overbrace{111 \ldots 1}^{y} \overbrace{111 \ldots 1}^{z} \]

In particular, \(xz \in L(A) \), but \(xz \) has fewer 0’s than 1’s. \(\Rightarrow L(A) \neq L_{eq} \).

Suppose \(L_{pr} = \{1^p : p \text{ is prime} \} \) were regular.

Then \(L_{pr} = L(A) \), for some DFA \(A \) with, say \(n \), states.

Choose a prime \(p \geq n + 2 \).

\[w = \overbrace{111 \ldots 1}^{p} \overbrace{0 \ldots 0}^{x} \overbrace{111 \ldots 1}^{y} \overbrace{0 \ldots 0}^{z} \]

Now \(xy^{p-m}z \in L(A) \)

\[|xy^{p-m}z| = |xz| + (p - m)|y| = p - m + (p - m)m = (1 + m)(p - m) \]

which is not prime unless one of the factors is 1.

\[\bullet \ y \neq \epsilon \Rightarrow 1 + m > 1 \]
\[\bullet \ m = |y| \leq |xy| \leq n, \ p \geq n + 2 \]
\[\Rightarrow p - m \geq n + 2 - n = 2. \]
\[\Rightarrow L(A) \neq L_{pr} \].
Let L and M be regular languages. Then the following languages are all regular:

- **Union**: $L \cup M$
- **Intersection**: $L \cap M$
- **Complement**: \overline{N}
- **Difference**: $L \setminus M$
- **Reversal**: $L^R = \{ w^R : w \in L \}$
- **Closure**: L^*
- **Concatenation**: $L.M$
- **Homomorphism**: $h(L) = \{ h(w) : w \in L, h \text{ is a homom.} \}$
- **Inverse homomorphism**: $h^{-1}(L) = \{ w \in \Sigma : h(w) \in L, h : \Sigma \rightarrow \Delta \text{ is a homom.} \}$

Theorem 4.4. For any regular L and M, $L \cup M$ is regular.

Proof. Let $L = L(E)$ and $M = L(F)$. Then $L(E + F) = L \cup M$ by definition.

Theorem 4.5. If L is a regular language over Σ, then so is $L = \Sigma^* \setminus L$.

Proof. Let L be recognized by a DFA $A = (Q, \Sigma, \delta, q_0, F)$.

Let $B = (Q, \Sigma, \delta, q_0, Q \setminus F)$. Now $L(B) = \overline{L}$.

Theorem 4.8. If L and M are regular, then so is $L \cap M$.

Proof. By DeMorgan’s law $L \cap M = \overline{L} \cup \overline{M}$. We already that regular languages are closed under complement and union.

We shall also give a nice direct proof, the *Cartesian construction* from the e-commerce example.

Example:

Let L be recognized by the DFA below

![DFA Diagram](image1)

Then \overline{L} is recognized by

![DFA Diagram](image2)

Question: What are the regex’s for L and \overline{L}?
Theorem 4.8. If L and M are regular, then so in $L \cap M$.

Proof. Let L be the language of

$$A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$$

and M be the language of

$$A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$$

We assume w.l.o.g. that both automata are deterministic.

We shall construct an automaton that simulates A_L and A_M in parallel, and accepts if and only if both A_L and A_M accept.

Formally

$$A_{L \cap M} = (Q_L \times Q_M, \Sigma, \delta_{L \cap M}, (q_L, q_M), F_L \times F_M),$$

where

$$\delta_{L \cap M}((p, q), a) = (\delta_L(p, a), \delta_M(q, a))$$

It will be shown in the tutorial by and induction on $|w|$ that

$$\delta_{L \cap M}((q_L, q_M), w) = (\hat{\delta}_L(q_L, w), \hat{\delta}_M(q_M, w))$$

The claim then follows.

Question: Why?
Theorem 4.10. If L and M are regular languages, then so in $L \setminus M$.

Proof. Observe that $L \setminus M = L \cap \overline{M}$. We already know that regular languages are closed under complement and intersection.

Theorem 4.11. If L is a regular language, then so is L^R.

Proof 1: Let L be recognized by an FA A. Turn A into an FA for L^R, by

1. Reversing all arcs.
2. Make the old start state the new sole accepting state.
3. Create a new start state p_0, with $\delta(p_0, \epsilon) = F$ (the old accepting states).

Proof 2: Let L be described by a regex E. We shall construct a regex E^R, such that $L(E^R) = (L(E))^R$.

We proceed by a structural induction on E.

Basis: If E is ϵ, \emptyset, or a, then $E^R = E$.

Induction:

1. $E = F + G$. Then $E^R = F^R + G^R$
2. $E = F.G$. Then $E^R = G^R.F^R$
3. $E = F^*$. Then $E^R = (F^R)^*$

We will show by structural induction on E on blackboard in class that $L(E^R) = (L(E))^R$

Homomorphisms

A homomorphism on Σ is a function $h : \Sigma \rightarrow \Theta^*$, where Σ and Θ are alphabets.

Let $w = a_1a_2 \cdots a_n \in \Sigma^*$. Then

$$h(w) = h(a_1)h(a_2) \cdots h(a_n)$$

and

$$h(L) = \{h(w) : w \in L\}$$

Example: Let $h : \{0, 1\} \rightarrow \{a, b\}^*$ be defined by $h(0) = ab$, and $h(1) = \epsilon$. Now $h(0011) = abab$.

Example: $h(L(10^*1)) = L((ab)^*)$.
Theorem 4.14: $h(L)$ is regular, whenever L is.

Proof:

Let $L = L(E)$ for a regex E. We claim that $L(h(E)) = h(L)$.

Basis: If E is e or \emptyset. Then $h(E) = E$, and $L(h(E)) = L(E) = h(L(E))$.

If E is a, then $L(E) = \{a\}$, $L(h(E)) = L(h(a)) = \{h(a)\} = h(L(E))$.

Induction:

- **Case 1:** $L = E + F$. Now $L(h(E + F)) = L(h(E) + h(F)) = L(h(E)) \cup L(h(F)) = h(L(E)) \cup h(L(F)) = h(L(E) \cup L(F)) = h(L(E + F))$.

- **Case 2:** $L = EF$. Now $L(h(EF)) = L(h(E))L(h(F)) = h(L(E))h(L(F)) = h(L(E)L(F))$.

- **Case 3:** $L = E^*$. Now $L(h(E^*)) = L(h(E)^*) = L(h(E))^* = h(L(E))^* = h(L(E^*))$.

Example: Let $h : \{a,b\} \rightarrow \{0,1\}^*$ be defined by $h(a) = 01$, and $h(b) = 10$. If $L = L((00 + 1)^*)$, then $h^{-1}(L) = L((ba)^*)$.

Claim: $h(w) \in L$ if and only if $w = (ba)^n$

Proof: Let $w = (ba)^n$. Then $h(w) = (1001)^n \in L$.

Let $h(w) \in L$, and suppose $w \notin L((ba)^*)$. There are four cases to consider.

1. w begins with a. Then $h(w)$ begins with 01 and $\notin L((00 + 1)^*)$.
2. w ends in b. Then $h(w)$ ends in 10 and $\notin L((00 + 1)^*)$.
3. $w = xaay$. Then $h(w) = z0101v$ and $\notin L((00 + 1)^*)$.
4. $w = xbbv$. Then $h(w) = z1010v$ and $\notin L((00 + 1)^*)$.

Theorem 4.16: Let $h : \Sigma \rightarrow \Theta^*$ be a homom., and $L \subseteq \Theta^*$ regular. Then $h^{-1}(L)$ is regular.

Proof: Let L be the language of $A = (Q, \Theta, \delta, q_0, F)$. We define $B = (Q, \Sigma, \gamma, q_0, F)$, where $\gamma(q, a) = \delta(q, h(a))$.

It will be shown by induction on $|w|$ in the tutorial that $\hat{\gamma}(q_0, w) = \delta(q_0, h(w))$.

Inverse Homomorphism

Let $h : \Sigma \rightarrow \Theta^*$ be a homom. Let $L \subseteq \Theta^*$, and define $h^{-1}(L) = \{w \in \Sigma^* : h(w) \in L\}$.

![Diagram](https://example.com/diagram.png)
Decision Properties

We consider the following:

1. Converting among representations for regular languages.

2. Is $L = \emptyset$?

3. Is $w \in L$?

4. Do two descriptions define the same language?

From NFA’s to DFA’s

Suppose the ϵ-NFA has n states.

To compute $\text{ECLOSE}(p)$ we follow at most n^2 arcs.

The DFA has 2^n states, for each state S and each $a \in \Sigma$ we compute $\delta_D(S,a)$ in n^3 steps. Grand total is $O(n^32^n)$ steps.

If we compute δ for reachable states only, we need to compute $\delta_D(S,a)$ only s times, where s is the number of reachable states. Grand total is $O(n^3s)$ steps.

From DFA to NFA

All we need to do is to put set brackets around the states. Total $O(n)$ steps.

From FA to regex

We need to compute n^3 entries of size up to 4^n. Total is $O(n^34^n)$.

The FA is allowed to be a NFA. If we first wanted to convert the NFA to a DFA, the total time would be doubly exponential

From regex to FA’s

We can build an expression tree for the regex in n steps.

We can construct the automaton in n steps.

Eliminating ϵ-transitions takes $O(n^3)$ steps.

If you want a DFA, you might need an exponential number of steps.

Testing emptiness

$L(A) \neq \emptyset$ for FA A if and only if a final state is reachable from the start state in A. Total $O(n^2)$ steps.

Alternatively, we can inspect a regex E and tell if $L(E) = \emptyset$. We use the following method:

$E = F + G$. Now $L(E)$ is empty if and only if both $L(F)$ and $L(G)$ are empty.

$E = F.G$. Now $L(E)$ is empty if and only if either $L(F)$ or $L(G)$ is empty.

$E = F^*$. Now $L(E)$ is never empty, since $\epsilon \in L(E)$.

$E = \epsilon$. Now $L(E)$ is not empty.

$E = a$. Now $L(E)$ is not empty.

$E = \emptyset$. Now $L(E)$ is empty.
Testing membership

To test \(w \in L(A) \) for DFA \(A \), simulate \(A \) on \(w \). If \(|w| = n \), this takes \(O(n) \) steps.

If \(A \) is an NFA and has \(s \) states, simulating \(A \) on \(w \) takes \(O(ns^2) \) steps.

If \(A \) is an \(\epsilon \)-NFA and has \(s \) states, simulating \(A \) on \(w \) takes \(O(ns^3) \) steps.

If \(L = L(E) \), for regex \(E \) of length \(s \), we first convert \(E \) to an \(\epsilon \)-NFA with \(2s \) states. Then we simulate \(w \) on this machine, in \(O(ns^3) \) steps.

Example 4.17

Let \(A = (Q, \Sigma, \delta, q_0, F) \) be a DFA and \(L(A) = M \).

Let \(L \subseteq M \) be those words in \(w \in L(A) \) for which \(A \) visits every state in \(Q \) at least once when accepting \(w \).

We shall use closure properties of regular languages to prove that \(L \) is regular.

Plan of the proof:

1. Add condition that all states appear on the path
2. Add condition that adjacent states are equal
3. Add condition that first state is the start state
4. Inverse homomorphism
5. Homomorphism
6. Delete state components, leaving the symbols with state transitions embedded

\[M \leadsto L_1 \]

Define \(T = \{ [paq] : p, q \in Q, a \in \Sigma, \delta(p, a) = q \} \)

Let \(h : T^* \to \Sigma^* \) be the homom. defined by \(h([paq]) = a \)

Let \(L_1 = h^{-1}(M) \). Since \(M \) is regular, so is \(L_1 \)

Example: Suppose \(A \) is given by

\[
\delta \quad \begin{array}{c|c|c|c}
0 & 1 \\
\hline
p & q & q & q \\
q & q & q & q \\
\end{array}
\]

Then \(T = \{ [p0q], [p1p], [q0q], [q1q] \} \).

For example \(h^{-1}(101) = \)

\[
\{ [p1p][p0q][p1p], [p1p][p0q][q1q], [p1p][q0q][p1p], [p1p][q0q][q1q], [q1q][p0q][p1p], [q1q][p0q][q1q], [q1q][q0q][p1p], [q1q][q0q][q1q] \}
\]
• \(L_1 \leadsto L_2 \)

Define
\[
E_1 = \bigoplus_{a \in \Sigma, \delta(q_0,a) = p} [q_0ap]
\]

Let
\[
L_2 = L_1 \cap (L(E_1).T^*)
\]

Now \(L_2 \) is regular and consists of those strings in \(L_1 \) starting with \([q_0...]\).

• \(L_2 \leadsto L_3 \)

Define
\[
E_2 = \bigoplus_{[paq] \in T^*, [rbs] \in T^*, q \neq r} [paq][rbs]
\]

Let
\[
L_3 = L_2 \setminus T^*.L(E_2).T^*
\]

Now \(L_3 \) is regular and consists of those strings in \(T^* \) such that
\[
a_1a_2...a_n \in L(A) \\
\delta(q_0,a_1) = p_1 \\
\delta(p_i,a_{i+1}) = p_{i+1}, i \in \{1,2,...,n-1\} \\
p_n \in F
\]

• \(L_3 \leadsto L_4 \)

Define
\[
E_q = \bigoplus_{[ras] \in T^*, r \neq q, s \neq q} [ras]
\]

Now \(L_3 \setminus L(E_q^*) \) consists of those strings in \(L_3 \) that "visit" state \(q \) at least once.

Let
\[
L_4 = L_3 \setminus L\left(\bigoplus_{q \in Q} E_q^* \right)
\]

Now \(L_4 \) is regular and consists of those strings in \(L_3 \) that "visit" all states \(q \in Q \) at least once.

• \(L_4 \leadsto L \)

We only need to get rid of the state components in the words of \(L_4 \).

We can do this by letting
\[
L = h(L_4)
\]

Now \(L = \{w : \delta(q_0,w) \in F, \forall q \in Q \exists x_q,y(w = x_qy \land \delta(q_0,x_q) = q)\} \)
Equivalence and Minimization of Automata

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA, and $\{p, q\} \subseteq Q$. We define

$p \equiv q \iff \forall w \in \Sigma^* : \hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F$

- If $p \equiv q$ we say that p and q are equivalent
- If $p \not\equiv q$ we say that p and q are distinguishable

IOW (in other words) p and q are distinguishable iff

$\exists w : \delta(p, w) \in F$ and $\delta(q, w) \not\in F$, or vice versa

What about A and E?

Start

We can compute distinguishable pairs with the following inductive table filling algorithm:

Basis: If $p \in F$ and $q \not\in F$, then $p \not\equiv q$.

Induction: If $\exists a \in \Sigma : \delta(p, a) \not\equiv \delta(q, a)$, then $p \not\equiv q$.

Example:

Applying the table filling algo to DFA A:
Theorem 4.20: If p and q are not distinguished by the TF-algo, then $p \equiv q$.

Proof: Suppose to the contrary that there is a bad pair $\{p, q\}$, s.t.

1. $\exists w : \hat{\delta}(p, w) \in F, \hat{\delta}(q, w) \not\in F$, or vice versa.

2. The TF-algo does not distinguish between p and q.

Let $w = a_1a_2\cdots a_n$ be the shortest string that identifies a bad pair $\{p, q\}$.

Now $w \neq \epsilon$ since otherwise the TF-algo would in the basis distinguish p from q. Thus $n \geq 1$.

Consider states $r = \delta(p, a_1)$ and $s = \delta(q, a_1)$. Now $\{r, s\}$ cannot be a bad pair since $\{r, s\}$ would be identified by a string shorter than w. Therefore, the TF-algo must have discovered that r and s are distinguishable.

But then the TF-algo would distinguish p from q in the inductive part.

Thus there are no bad pairs and the theorem is true.

Example:

We can “see” that both DFA accept $L(\epsilon + (0 + 1)^*0)$. The result of the TF-algo is

Therefore the two automata are equivalent.
Minimization of DFA’s

We can use the TF-algo to minimize a DFA by merging all equivalent states. IOW, replace each state \(p \) by \(p/\equiv \).

Example: The DFA on slide 119 has equivalence classes \(\{\{A, E\}, \{B, H\}, \{C\}, \{D, F\}, \{G\}\} \).

The “union” DFA on slide 125 has equivalence classes \(\{\{A, C, D\}, \{B, E\}\} \).

Note: In order for \(p/\equiv \) to be an equivalence class, the relation \(\equiv \) has to be an equivalence relation (reflexive, symmetric, and transitive).

To minimize a DFA \(A = (Q, \Sigma, \delta, q_0, F) \) construct a DFA \(B = (Q/\equiv, \Sigma, \gamma, q_0/\equiv, F/\equiv) \), where

\[\gamma(p/\equiv, a) = \delta(p, a)/\equiv \]

In order for \(B \) to be well defined we have to show that

If \(p \equiv q \) then \(\delta(p, a) \equiv \delta(q, a) \)

If \(\delta(p, a) \not\equiv \delta(q, a) \), then the TF-algo would conclude \(p \not\equiv q \), so \(B \) is indeed well defined. Note also that \(F/\equiv \) contains all and only the accepting states of \(A \).

Example: We can minimize

\[
\begin{array}{c}
\text{Start} \rightarrow 0 \rightarrow 1 \rightarrow \text{Start} \\
E \rightarrow 1 \rightarrow F \rightarrow \text{Start} \\
G \rightarrow 0 \rightarrow F \rightarrow \text{Start} \\
F \rightarrow 0 \rightarrow 1 \rightarrow \text{Start} \\
\end{array}
\]

to obtain

\[
\begin{array}{c}
\text{Start} \rightarrow 1 \rightarrow F \rightarrow \text{Start} \\
E \rightarrow 1 \rightarrow F \rightarrow \text{Start} \\
G \rightarrow 0 \rightarrow F \rightarrow \text{Start} \\
F \rightarrow 0 \rightarrow 1 \rightarrow \text{Start} \\
\end{array}
\]

Theorem 4.23: If \(p \equiv q \) and \(q \equiv r \), then \(p \equiv r \).

Proof: Suppose to the contrary that \(p \not\equiv r \). Then \(\exists w \) such that \(\hat{\delta}(p, w) \in F \) and \(\hat{\delta}(r, w) \not\in F \), or vice versa.

OTH, \(\hat{\delta}(q, w) \) is either accepting or not.

Case 1: \(\hat{\delta}(q, w) \) is accepting. Then \(q \not\equiv r \).

Case 1: \(\hat{\delta}(q, w) \) is not accepting. Then \(p \not\equiv q \).

The vice versa case is proved symmetrically.

Therefore it must be that \(p \equiv r \).
NOTE: We cannot apply the TF-algo to NFA’s.

For example, to minimize

```
Start
0,1
0
1 0
A B
C
```

we simply remove state C.

However, $A \not\equiv C$.

Why the Minimized DFA Can’t Be Beaten

Let B be the minimized DFA obtained by applying the TF-algo to DFA A.

We already know that $L(A) = L(B)$.

What if there existed a DFA C, with $L(C) = L(B)$ and fewer states than B?

Then run the TF-algo on B “union” C.

Since $L(B) = L(C)$ we have $q_B^0 \equiv q_C^0$.

Also, $\delta(q_B^0, a) \equiv \delta(q_C^0, a)$, for any a.

Claim: For each state p in B there is at least one state q in C, s.t. $p \equiv q$.

Proof of claim: There are no inaccessible states, so $p = \delta(q_B^0, a_1a_2\cdots a_k)$, for some string $a_1a_2\cdots a_k$.

Now $q = \delta(q_C^0, a_1a_2\cdots a_k)$, and $p \equiv q$.

Since C has fewer states than B, there must be two states r and s of B such that $r \equiv t \equiv s$, for some state t of C. But then $r \equiv s$ (why?) which is a contradiction, since B was constructed by the TF-algo.

Context-Free Grammars and Languages

- We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs.
- Context-Free Languages (CFL’s) played a central role natural languages since the 1950’s, and in compilers since the 1960’s.
- Context-Free Grammars (CFG’s) are the basis of BNF-syntax.
- Today CFL’s are increasingly important for XML and their DTD’s.

We’ll look at: CFG’s, the languages they generate, parse trees, pushdown automata, and closure properties of CFL’s.
Informal example of CFG’s

Consider \(L_{\text{pal}} = \{ w \in \Sigma^* : w = w^R \} \)

For example \(\text{otto} \in L_{\text{pal}}, \text{madamimadam} \in L_{\text{pal}} \).

In Finnish language e.g. \(\text{saippuakauppias} \in L_{\text{pal}} \) ("soap-merchant")

Let \(\Sigma = \{ 0, 1 \} \) and suppose \(L_{\text{pal}} \) were regular.

Let \(n \) be given by the pumping lemma. Then \(0^n10^n \in L_{\text{pal}} \). In reading \(0^n \) the FA must make a loop. Omit the loop; contradiction.

Let’s define \(L_{\text{pal}} \) inductively:

Basis: \(\epsilon, 0, \) and \(1 \) are palindromes.

Induction: If \(w \) is a palindrome, so are \(0w0 \) and \(1w1 \).

Circumscription: Nothing else is a palindrome.

CFG’s is a formal mechanism for definitions such as the one for \(L_{\text{pal}} \):

1. \(P \rightarrow \epsilon \)
2. \(P \rightarrow 0 \)
3. \(P \rightarrow 1 \)
4. \(P \rightarrow 0P0 \)
5. \(P \rightarrow 1P1 \)

\(0 \) and \(1 \) are terminals

\(P \) is a variable (or nonterminal, or syntactic category)

\(P \) is in this grammar also the start symbol.

1–5 are productions (or rules)

Example: \(G_{\text{pal}} = (\{ P \}, \{ 0, 1 \}, A, P) \), where \(A = \{ P \rightarrow \epsilon, P \rightarrow 0, P \rightarrow 1, P \rightarrow 0P0, P \rightarrow 1P1 \} \).

Sometimes we group productions with the same head, e.g. \(A = \{ P \rightarrow \epsilon|0|0P0|1P1 \} \).

Example: Regular expressions over \(\{ 0, 1 \} \) can be defined by the grammar

\(G_{\text{regex}} = (\{ E \}, \{ 0, 1 \}, A, E) \)

where \(A = \{ E \rightarrow 0, E \rightarrow 1, E \rightarrow E.E, E \rightarrow E+E, E \rightarrow E^*, E \rightarrow (E) \} \)
Example: (simple) expressions in a typical prog lang. Operators are + and *, and arguments are identifiers, i.e. strings in $L((a + b)(a + b + 0 + 1)^*)$.

The expressions are defined by the grammar

$$G = (\{E, I\}, T, P, E)$$

where $T = \{+, *, (,), a, b, 0, 1\}$ and P is the following set of productions:

1. $E \rightarrow I$
2. $E \rightarrow E + E$
3. $E \rightarrow E * E$
4. $E \rightarrow (E)$
5. $I \rightarrow a$
6. $I \rightarrow b$
7. $I \rightarrow Ia$
8. $I \rightarrow Ib$
9. $I \rightarrow I0$
10. $I \rightarrow I1$

Derivations using grammars

- **Recursive inference**, using productions from body to head
- **Derivations**, using productions from head to body.

Example of recursive inference:

<table>
<thead>
<tr>
<th>String</th>
<th>Lang</th>
<th>Prod</th>
<th>String(s) used</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) a</td>
<td>I</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>(ii) b</td>
<td>I</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>(iii) $b0$</td>
<td>I</td>
<td>9</td>
<td>(ii)</td>
</tr>
<tr>
<td>(iv) $b00$</td>
<td>I</td>
<td>9</td>
<td>(iii)</td>
</tr>
<tr>
<td>(v) a</td>
<td>E</td>
<td>1</td>
<td>(i)</td>
</tr>
<tr>
<td>(vi) $b00$</td>
<td>E</td>
<td>1</td>
<td>(iv)</td>
</tr>
<tr>
<td>(vii) $a + b00$</td>
<td>E</td>
<td>2</td>
<td>(v), (vi)</td>
</tr>
<tr>
<td>(viii) $(a + b00)$</td>
<td>E</td>
<td>4</td>
<td>(vii)</td>
</tr>
<tr>
<td>(ix) $a * (a + b00)$</td>
<td>E</td>
<td>3</td>
<td>(v), (viii)</td>
</tr>
</tbody>
</table>

Example: Derivation of $a * (a + b00)$ from E in the grammar of slide 138:

$$E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a * (E) \Rightarrow a * (E+E) \Rightarrow a * (I+E) \Rightarrow a * (a+E) \Rightarrow a * (a+I) \Rightarrow a * (a + 10) \Rightarrow a * (a + 100) \Rightarrow a * (a + b00)$$

Note: At each step we might have several rules to choose from, e.g.

$$I * E \Rightarrow a * E \Rightarrow a * (E), \text{ versus}$$

$$I * E \Rightarrow I * (E) \Rightarrow a * (E).$$

Note: Not all choices lead to successful derivations of a particular string, for instance

$$E \Rightarrow E + E$$

won’t lead to a derivation of $a * (a + b00)$.

- **Derivations**

Let $G = (V, T, P, S)$ be a CFG, $A \in V$, $\{\alpha, \beta\} \subset (V \cup T)^*$, and $A \rightarrow \gamma \in P$.

Then we write

$$\alpha A \beta \xrightarrow{\gamma} \alpha \gamma \beta$$

or, if G is understood

$$\alpha A \beta \Rightarrow \alpha \gamma \beta$$

and say that $\alpha A \beta$ derives $\alpha \gamma \beta$.

We define $\alpha \Rightarrow \beta$ to be the reflexive and transitive closure of \Rightarrow, IOW:

Basis: Let $\alpha \in (V \cup T)^*$. Then $\alpha \Rightarrow \alpha$.

Induction: If $\alpha \Rightarrow \beta$, and $\beta \Rightarrow \gamma$, then $\alpha \Rightarrow \gamma$.

Example of recursive inference:

<table>
<thead>
<tr>
<th>String</th>
<th>Lang</th>
<th>Prod</th>
<th>String(s) used</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) a</td>
<td>I</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>(ii) b</td>
<td>I</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>(iii) $b0$</td>
<td>I</td>
<td>9</td>
<td>(ii)</td>
</tr>
<tr>
<td>(iv) $b00$</td>
<td>I</td>
<td>9</td>
<td>(iii)</td>
</tr>
<tr>
<td>(v) a</td>
<td>E</td>
<td>1</td>
<td>(i)</td>
</tr>
<tr>
<td>(vi) $b00$</td>
<td>E</td>
<td>1</td>
<td>(iv)</td>
</tr>
<tr>
<td>(vii) $a + b00$</td>
<td>E</td>
<td>2</td>
<td>(v), (vi)</td>
</tr>
<tr>
<td>(viii) $(a + b00)$</td>
<td>E</td>
<td>4</td>
<td>(vii)</td>
</tr>
<tr>
<td>(ix) $a * (a + b00)$</td>
<td>E</td>
<td>3</td>
<td>(v), (viii)</td>
</tr>
</tbody>
</table>
Leftmost and Rightmost Derivations

Leftmost derivation \(\Rightarrow \text{lm} \)
Always replace the leftmost variable by one of its rule-bodies.

Rightmost derivation \(\Rightarrow \text{rm} \)
Always replace the rightmost variable by one of its rule-bodies.

Leftmost: The derivation on the previous slide.

Rightmost:

\[
E \Rightarrow E * E \Rightarrow \\
E * (E) \Rightarrow E * (E + E) \Rightarrow E * (E + I) \Rightarrow E * (E + 10) \\
\Rightarrow E * (E + 100) \Rightarrow E * (E + b00) \Rightarrow E * (I + b00) \\
\Rightarrow E * (a + b00) \Rightarrow I * (a + b00) \Rightarrow a * (a + b00)
\]

We can conclude that \(E \stackrel{\text{rm}}{\Rightarrow} a * (a + b00) \)

The Language of a Grammar

If \(G(V,T,P,S) \) is a CFG, then the *language of G* is

\[
L(G) = \{w \in T^* : S \stackrel{*}{\Rightarrow} w\}
\]
i.e. the set of strings over \(T^* \) derivable from the start symbol.

If \(G \) is a CFG, we call \(L(G) \) a *context-free language*.

Example: \(L(G_{pal}) \) is a context-free language.

Theorem 5.7:

\[
L(G_{pal}) = \{w \in \{0,1\}^* : w = w^R\}
\]

Proof: (\(\supseteq \)-direction.) Suppose \(w = w^R \). We show by induction on \(|w|\) that \(w \in L(G_{pal}) \)

\((\subseteq \)-direction.) We assume that \(w \in L(G_{pal}) \) and must show that \(w = w^R \).

Since \(w \in L(G_{pal}) \), we have \(P \Rightarrow w \).

We do an induction of the length of \(\Rightarrow \).

Basis: The derivation \(P \Rightarrow w \) is done in one step.

Then \(w \) must be \(\epsilon, 0, \) or \(1 \), all palindromes.

Induction: Let \(n \geq 1 \), and suppose the derivation takes \(n + 1 \) steps. Then we must have

\[
w = 0x0 \Leftrightarrow 0P0 \Leftrightarrow P
\]
or

\[
w = 1x1 \Leftrightarrow 1P1 \Leftrightarrow P
\]

where the second derivation is done in \(n \) steps.

By the IH \(x \) is a palindrome, and the inductive proof is complete.
Sentential Forms

Let $G = (V, T, P, S)$ be a CFG, and $\alpha \in (V \cup T)^*$. If

$$S \xrightarrow{*} \alpha$$

we say that α is a *sentential form*.

If $S \xrightarrow{lm} \alpha$ we say that α is a *left-sentential form*, and if $S \xrightarrow{rm} \alpha$ we say that α is a *right-sentential form*.

Note: $L(G)$ consists of those sentential forms that are in T^*.

Example: Take G from slide 138. Then $E \ast (I + E)$ is a sentential form since

$$E \Rightarrow E \ast E \Rightarrow E \ast (E) \Rightarrow E \ast (E + E) \Rightarrow E \ast (I + E)$$

This derivation is neither leftmost, nor rightmost.

Example: $a \ast E$ is a left-sentential form, since

$$E \Rightarrow \ast E \Rightarrow I \ast E \Rightarrow \ast a \ast E$$

Example: $E \ast (E + E)$ is a right-sentential form, since

$$E \Rightarrow \ast E \Rightarrow E \ast (E) \Rightarrow E \ast (E + E)$$

Parse Trees

- If $w \in L(G)$, for some CFG, then w has a *parse tree*, which tells us the (syntactic) structure of w.
- w could be a program, a SQL-query, an XML-document, etc.
- Parse trees are an alternative representation to derivations and recursive inferences.
- There can be several parse trees for the same string.
- Ideally there should be only one parse tree (the “true” structure) for each string, i.e. the language should be *unambiguous*.
- Unfortunately, we cannot always remove the ambiguity.

Constructing Parse Trees

Let $G = (V, T, P, S)$ be a CFG. A tree is a *parse tree* for G if:

1. Each interior node is labelled by a variable in V.
2. Each leaf is labelled by a symbol in $V \cup T \cup \{\epsilon\}$. Any ϵ-labelled leaf is the only child of its parent.
3. If an interior node is labelled A, and its children (from left to right) labelled X_1, X_2, \ldots, X_k,
 then $A \Rightarrow X_1X_2\ldots X_k \in P$.

Example: Take G from slide 138. Then $E \ast (I + E)$ is a sentential form since

$$E \Rightarrow E \ast E \Rightarrow E \ast (E) \Rightarrow E \ast (E + E) \Rightarrow E \ast (I + E)$$

This derivation is neither leftmost, nor rightmost.

Example: $a \ast E$ is a left-sentential form, since

$$E \Rightarrow \ast E \Rightarrow I \ast E \Rightarrow \ast a \ast E$$

Example: $E \ast (E + E)$ is a right-sentential form, since

$$E \Rightarrow \ast E \Rightarrow E \ast (E) \Rightarrow E \ast (E + E)$$
Example: In the grammar

1. \(E \rightarrow I \)
2. \(E \rightarrow E + E \)
3. \(E \rightarrow E \ast E \)
4. \(E \rightarrow (E) \)

the following is a parse tree:

\[
\begin{array}{c}
E \\
\downarrow \\
E + E \\
\downarrow \\
I
\end{array}
\]

This parse tree shows the derivation \(E \Rightarrow I + E \)

The Yield of a Parse Tree

The *yield* of a parse tree is the string of leaves from left to right.

Important are those parse trees where:

1. The yield is a terminal string.
2. The root is labelled by the start symbol

We shall see the set of yields of these important parse trees is the language of the grammar.

Example: In the grammar

1. \(P \rightarrow \epsilon \)
2. \(P \rightarrow 0 \)
3. \(P \rightarrow 1 \)
4. \(P \rightarrow 0P0 \)
5. \(P \rightarrow 1P1 \)

the following is a parse tree:

\[
\begin{array}{c}
P \\
\downarrow \\
0 \\
\downarrow \\
P \\
\downarrow \\
1 \\
\downarrow \\
P \\
\downarrow \\
\epsilon
\end{array}
\]

It shows the derivation of \(P \Rightarrow 0110 \).

Example: Below is an important parse tree

\[
\begin{array}{c}
E \\
\downarrow \\
E \ast E \\
\downarrow \\
I \\
\downarrow \\
(a + b00)
\end{array}
\]

The yield is \(a \ast (a + b00) \).

Compare the parse tree with the derivation on slide 141.
Let $G = (V, T, P, S)$ be a CFG, and $A \in V$. We are going to show that the following are equivalent:

1. We can determine by recursive inference that w is in the language of A
2. $A \Rightarrow^* w$
3. $A \Rightarrow_{lm}^* w$, and $A \Rightarrow_{rm}^* w$
4. There is a parse tree of G with root A and yield w.

To prove the equivalences, we use the following plan.

From Inferences to Trees

Theorem 5.12: Let $G = (V, T, P, S)$ be a CFG, and suppose we can show w to be in the language of a variable A. Then there is a parse tree for G with root A and yield w.

Proof: We do an induction of the length of the inference.

Basis: One step. Then we must have used a production $A \rightarrow w$. The desired parse tree is then

Induction: w is inferred in $n + 1$ steps. Suppose the last step was based on a production

$A \rightarrow X_1X_2 \cdots X_k$,

where $X_i \in V \cup T$. We break w up as

$w_1w_2 \cdots w_k$,

where $w_i = X_i$, when $X_i \in T$, and when $X_i \in V$, then w_i was previously inferred being in X_i, in at most n steps.

By the IH there are parse trees i with root X_i and yield w_i. Then the following is a parse tree for G with root A and yield w:

From trees to derivations

We'll show how to construct a leftmost derivation from a parse tree.

Example: In the grammar of slide 6 there clearly is a derivation

$$E \Rightarrow I \Rightarrow Ib \Rightarrow ab.$$

Then, for any α and β there is a derivation

$$\alpha \Rightarrow \alpha I \beta \Rightarrow \alpha Ib \beta \Rightarrow \alpha ab \beta.$$

For example, suppose we have a derivation

$$E \Rightarrow E + E \Rightarrow E + (E).$$

The we can choose $\alpha = E + (\text{ and } \beta =)$ and continue the derivation as

$$E + (E) \Rightarrow E + (I) \Rightarrow E + (Ib) \Rightarrow E + (ab).$$

This is why CFG's are called context-free.
Theorem 5.14: Let $G = (V, T, P, S)$ be a CFG, and suppose there is a parse tree with root labelled A and yield w. Then $A \xrightarrow{*} w$ in G.

Proof: We do an induction on the height of the parse tree.

Basis: Height is 1. The tree must look like

```
  A
  / \n w   w
```

Consequently $A \Rightarrow w \in P$, and $A \Rightarrow w$.

Now we construct $A \xrightarrow{\ast} w$ by an (inner) induction by showing that

$$\forall i: A \xrightarrow{\ast} w_1w_2\cdots w_iX_{i+1}X_{i+2}\cdots X_k.$$

Basis: Let $i = 0$. We already know that $A \xrightarrow{\ast_{lm}} X_1X_{i+2}\cdots X_k$.

Induction: Make the IH that

$$A \xrightarrow{\ast_{lm}} w_1w_2\cdots w_{i-1}X_iX_{i+1}\cdots X_k.$$

(Case 1:) $X_i \in T$. Do nothing, since $X_i = w_i$ gives us

$$A \xrightarrow{\ast_{lm}} w_1w_2\cdots w_iX_{i+1}\cdots X_k.$$

(Case 2:) $X_i \in V$. By the IH there is a derivation $X_i \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow w_i$. By the context-free property of derivations we can proceed with

$$A \xrightarrow{\ast_{lm}} w_1w_2\cdots w_{i-1}X_iX_{i+1}\cdots X_k \Rightarrow$$

$$w_1w_2\cdots w_{i-1}\alpha_1X_{i+1}\cdots X_k \Rightarrow$$

$$w_1w_2\cdots w_{i-1}\alpha_2X_{i+1}\cdots X_k \Rightarrow$$

$$\cdots$$

$$w_1w_2\cdots w_{i-1}w_iX_{i+1}\cdots X_k$$
Example: Let’s construct the leftmost derivation for the tree

```
  a
 /  \
/    \n/     \
/      \
/       \
/        \
/         \
/          \
/           \
/            \
/             \
/              \
/               \
/                \
/                 \
/                  \
/                   \
/                    \
/                     \
/                      \
/                       \
/                        \
/                         \
/                          \
/                            \
/                               \
/                                \
/                                 \
/                                  \
/                                   \
/                                    \
/                                     \
/                                      \
/                                        \
/                                         \
/                                          \
/                                           \
/                                            \
/                                             \
/                                              \
/                                               \
/                                                \
/                                                 \
/                                                  \
/                                                   \
/                                                    \
/                                                     \
/                                                      \
/                                                        \
/                                                         
```

Suppose we have inductively constructed the leftmost derivation

\[E \Rightarrow I \Rightarrow a \]

corresponding to the leftmost subtree, and the leftmost derivation

\[E \Rightarrow (E) \Rightarrow (E + E) \Rightarrow (I + E) \Rightarrow (a + E) \Rightarrow (a + I) \Rightarrow (a + I0) \Rightarrow (a + I00) \Rightarrow (a + b00) \]
corresponding to the rightmost subtree.

From Derivations to Recursive Inferences

Observation: Suppose that \(A \Rightarrow X_1 X_2 \cdots X_k \Rightarrow w \). Then \(w = w_1 w_2 \cdots w_k \), where \(X_i \Rightarrow w_i \)

The factor \(w_i \) can be extracted from \(A \Rightarrow w \) by looking at the expansion of \(X_i \) only.

Example: \(E \Rightarrow a \cdot b + a \), and

\[
 E \Rightarrow E \cdot \frac{E}{X_1} \cdot \frac{E}{X_2} \cdot \frac{E}{X_3} \cdot \frac{E}{X_4} \cdot \frac{E}{X_5}
\]

We have

\[
 E \Rightarrow E \cdot E \Rightarrow E \cdot E + E \Rightarrow I \cdot E + E \Rightarrow I \cdot I + E \Rightarrow I \cdot I + I \Rightarrow a \cdot I + I \Rightarrow a \cdot b + I \Rightarrow a \cdot b + a
\]

By looking at the expansion of \(X_3 = E \) only, we can extract

\[E \Rightarrow I \Rightarrow b. \]

Theorem 5.18: Let \(G = (V, T, P, S) \) be a CFG. Suppose \(A \Rightarrow w \), and that \(w \) is a string of terminals. Then we can infer that \(w \) is in the language of variable \(A \).

Proof: We do an induction on the length of the derivation \(A \Rightarrow w \).

Basis: One step. If \(A \Rightarrow w \) there must be a production \(A \rightleftharpoons w \) in \(P \). The we can infer that \(w \) is in the language of \(A \).
Induction: Suppose \(A \xrightarrow{\ast} w \) in \(n + 1 \) steps. Write the derivation as:

\[
A \Rightarrow X_1 X_2 \cdots X_k \xrightarrow{\ast} w
\]

The as noted on the previous slide we can break \(w \) as \(w_1 w_2 \cdots w_k \) where \(X_i \xrightarrow{\ast} w_i \). Furthermore, \(X_i \xrightarrow{\ast} w_i \) can use at most \(n \) steps.

Now we have a production \(A \rightarrow X_1 X_2 \cdots X_k \), and we know by the IH that we can infer \(w_i \) to be in the language of \(X_i \).

Therefore we can infer \(w_1 w_2 \cdots w_k \) to be in the language of \(A \).

Ambiguity in Grammars and Languages

In the grammar

1. \(E \rightarrow I \)
2. \(E \rightarrow E + E \)
3. \(E \rightarrow E * E \)
4. \(E \rightarrow (E) \)

the sentential form \(E + E * E \) has two derivations:

\[
E \Rightarrow E + E \Rightarrow E + E * E
\]
and

\[
E \Rightarrow E * E \Rightarrow E + E * E
\]

This gives us two parse trees:

![Parse Trees](a) (b)

Definition: Let \(G = (V, T, P, S) \) be a CFG. We say that \(G \) is ambiguous if there is a string in \(T^* \) that has more than one parse tree.

If every string in \(L(G) \) has at most one parse tree, \(G \) is said to be unambiguous.

Example: The terminal string \(a + a * a \) has two parse trees:

![Parse Trees](a) (b)
Removing Ambiguity From Grammars

Good news: Sometimes we can remove ambiguity "by hand"

Bad news: There is no algorithm to do it

More bad news: Some CFL’s have only ambiguous CFG’s

We are studying the grammar

\[
E \rightarrow I \mid E + E \mid E * E \mid (E)
\]

\[
I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1
\]

There are two problems:

1. There is no precedence between * and +

2. There is no grouping of sequences of operators, e.g. is \(E + E + E\) meant to be \(E + (E + E)\) or \((E + E) + E\).

Solution: We introduce more variables, each representing expressions of same "binding strength."

1. A factor is an expression that cannot be broken apart by an adjacent * or +. Our factors are
 (a) Identifiers
 (b) A parenthesized expression.

2. A term is an expression that cannot be broken by +. For instance \(a*b\) can be broken by \(a1*\) or \(*a1\). It cannot be broken by +, since e.g. \(a1 + a*b\) is (by precedence rules) same as \(a1 + (a*b)\), and \(a*b + a1\) is same as \((a*b) + a1\).

3. The rest are expressions, i.e. they can be broken apart with * or +.

We’ll let \(F\) stand for factors, \(T\) for terms, and \(E\) for expressions. Consider the following grammar:

1. \(I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1\)

2. \(F \rightarrow I \mid (E)\)

3. \(T \rightarrow F \mid T * F\)

4. \(E \rightarrow T \mid E + T\)

Now the only parse tree for \(a + a * a\) will be

![Parse Tree for a + a * a](attachment:image)

Why is the new grammar unambiguous?

Intuitive explanation:

- A factor is either an identifier or \((E)\), for some expression \(E\).
- The only parse tree for a sequence
 \(f_1 * f_2 * \cdots * f_{n-1} * f_n\)
 of factors is the one that gives \(f_1 * f_2 * \cdots * f_{n-1}\) as a term and \(f_n\) as a factor, as in the parse tree on the next slide.
- An expression is a sequence
 \(t_1 + t_2 + \cdots + t_{n-1} + t_n\)
 of terms \(t_i\). It can only be parsed with \(t_1 + t_2 + \cdots + t_{n-1}\) as an expression and \(t_n\) as a term.
Leftmost derivations and Ambiguity

The two parse trees for \(a + a \ast a \)

\[
E \\
/ \ \
E + E \\
/ \ \\
I E E * E \\
/ \ \\
a I I \quad I I a \\
/ \ \\
a a a \quad a a \\
/ \\
F
\]

(a) (b)

give rise to two derivations:
\[
E \Rightarrow E + E \Rightarrow I + E \Rightarrow a + E \Rightarrow a \ast E \\
\Rightarrow a + I \ast E \Rightarrow a + a \ast E \Rightarrow a + a \ast I \Rightarrow a + a \ast a
\]

and
\[
E \Rightarrow E \ast E \Rightarrow E + E \ast E \Rightarrow I + E \ast E \Rightarrow a + E \ast E \\
\Rightarrow a + I \ast E \Rightarrow a + a \ast E \Rightarrow a + a \ast I \Rightarrow a + a \ast a
\]

In General:

- One parse tree, but many derivations
- Many leftmost derivation implies many parse trees.
- Many rightmost derivation implies many parse trees.

Theorem 5.29: For any CFG \(G \), a terminal string \(w \) has two distinct parse trees if and only if \(w \) has two distinct leftmost derivations from the start symbol.

Sketch of Proof: (Only If.) If the two parse trees differ, they have a node \(a \) which different productions, say \(A \rightarrow X_1X_2\cdots X_k \) and \(B \rightarrow Y_1Y_2\cdots Y_m \). The corresponding leftmost derivations will use derivations based on these two different productions and will thus be distinct.

(If.) Let's look at how we construct a parse tree from a leftmost derivation. It should now be clear that two distinct derivations gives rise to two different parse trees.
Inherent Ambiguity

A CFL L is inherently ambiguous if all grammars for L are ambiguous.

Example: Consider $L = \{a^nb^n \in \{a, b\}^*: n \geq 1\} \cup \{a^mb^m \in \{a, b\}^*: m \geq 1\}$.

A grammar for L is

\[
S \rightarrow AB \mid C \\
A \rightarrow aAb \mid ab \\
B \rightarrow cBd \mid cd \\
C \rightarrow aCd \mid aDd \\
D \rightarrow bDc \mid bc
\]

Let’s look at parsing the string $aabccedd$.

From this we see that there are two leftmost derivations:

\[
S \Rightarrow AB \Rightarrow aAbB \Rightarrow aabbB \Rightarrow aabbcDd \Rightarrow aabccedd
\]

and

\[
S \Rightarrow C \Rightarrow aCd \Rightarrow aaDdd \Rightarrow aabDcdd \Rightarrow aabccedd
\]

It can be shown that every grammar for L behaves like the one above. The language L is inherently ambiguous.

Pushdown Automata

A pushdown automata (PDA) is essentially an ϵ-NFA with a stack.

On a transition the PDA:

1. Consumes an input symbol.
2. Goes to a new state (or stays in the old).
3. Replaces the top of the stack by any string (does nothing, pops the stack, or pushes a string onto the stack)
Example: Let’s consider
\[L_{wwr} = \{ ww^R : w \in \{0,1\}^* \}, \]
with “grammar” \(P \rightarrow 0P0, \ P \rightarrow 1P1, \ P \rightarrow \epsilon. \)
A PDA for \(L_{wwr} \) has tree states, and operates as follows:

1. Guess that you are reading \(w \). Stay in state 0, and push the input symbol onto the stack.
2. Guess that you’re in the middle of \(ww^R \). Go spontaneously to state 1.
3. You’re now reading the head of \(w^R \). Compare it to the top of the stack. If they match, pop the stack, and remain in state 1. If they don’t match, go to sleep.
4. If the stack is empty, go to state 2 and accept.

PDA formally

A PDA is a seven-tuple:
\[P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F), \]
where
- \(Q \) is a finite set of states,
- \(\Sigma \) is a finite input alphabet,
- \(\Gamma \) is a finite stack alphabet,
- \(\delta : Q \times \Sigma \cup \{ \epsilon \} \times \Gamma \rightarrow 2^Q \times \Gamma^* \) is the transition function,
- \(q_0 \) is the start state,
- \(Z_0 \in \Gamma \) is the start symbol for the stack, and
- \(F \subseteq Q \) is the set of accepting states.

Example: The PDA is actually the seven-tuple \(P = (\{q_0, q_1, q_2\}, \{0,1\}, \{0,1,Z_0\}, \delta, q_0, Z_0, \{q_2\}) \), where \(\delta \) is given by the following table (set brackets missing):

<table>
<thead>
<tr>
<th>\rightarrow</th>
<th>0.Z_0</th>
<th>1.Z_0</th>
<th>0.0</th>
<th>0.1</th>
<th>1.0</th>
<th>1.1</th>
<th>\epsilon,Z_0</th>
<th>\epsilon.0</th>
<th>\epsilon.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\rightarrow</td>
<td>q_0</td>
<td>q_0.Z_0</td>
<td>q_0,0</td>
<td>q_0.0</td>
<td>q_0.1</td>
<td>q_0.11</td>
<td>q_1.Z_0</td>
<td>q_1.0</td>
<td>q_1.1</td>
</tr>
<tr>
<td>\rightarrow</td>
<td>q_1</td>
<td>q_0,1Z_0</td>
<td>q_1,0</td>
<td>q_1.e</td>
<td>q_1.e</td>
<td>q_1.e</td>
<td>q_2.Z_0</td>
<td>q_2.0</td>
<td>q_2.1</td>
</tr>
</tbody>
</table>
Instantaneous Descriptions

A PDA goes from configuration to configuration when consuming input.

To reason about PDA computation, we use instanteneous descriptions of the PDA. An ID is a triple

\[(q, w, \gamma)\]

where \(q\) is the state, \(w\) the remaining input, and \(\gamma\) the stack contents.

Let \(P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)\) be a PDA. Then

\[\forall w \in \Sigma^*, \beta \in \Gamma^*: \]

\[(p, \alpha) \in \delta(q,a,X) \Rightarrow (q, aw, X\beta) \vdash (p, w, \alpha\beta).\]

We define \(\vdash^*\) to be the reflexive-transitive closure of \(\vdash\).

Example: On input 1111 the PDA

\[
\begin{align*}
0 . Z_0 / 0 Z_0 \\
1 . Z_0 / 1 Z_0 \\
0 . 0 / 0 0 \\
0 . 1 / 0 1 \\
1 . 0 / 1 0 \\
1 . 1 / 1 1 \\
\varepsilon / \varepsilon \\
\varepsilon / \varepsilon
\end{align*}
\]

has the following computation sequences:

\[
\begin{align*}
(q_0, \varepsilon, \varepsilon) &\quad \rightarrow \quad (q_1, \varepsilon, \varepsilon) \\
(q_1, \varepsilon, \varepsilon) &\quad \rightarrow \quad (q_2, \varepsilon, \varepsilon)
\end{align*}
\]

The following properties hold:

1. If an ID sequence is a legal computation for a PDA, then so is the sequence obtained by adding an additional string at the end of component number two.

2. If an ID sequence is a legal computation for a PDA, then so is the sequence obtained by adding an additional string at the bottom of component number three.

3. If an ID sequence is a legal computation for a PDA, and some tail of the input is not consumed, then removing this tail from all ID’s result in a legal computation sequence.
Theorem 6.5: \(\forall w \in \Sigma^*, \beta \in \Gamma^* : \)
\[
(q, x, \alpha) \Vdash (p, y, \beta) \Rightarrow (q, xw, \alpha\gamma) \Vdash (p, yw, \beta\gamma).
\]

Proof: Induction on the length of the sequence to the left.

Note: If \(\gamma = \epsilon \) we have proerty 1, and if \(w = \epsilon \) we have property 2.

Note 2: The reverse of the theorem is false.

For property 3 we have

Theorem 6.6:
\[
(q, xw, \alpha) \Vdash (p, yw, \beta) \Rightarrow (q, x, \alpha) \Vdash (p, y, \beta).
\]

(\(\subseteq \)-direction.) Let \(x \in L_{wwr} \). Then \(x = ww^R \), and the following is a legal computation sequence
\[
(q_0, ww^R, Z_0) \Vdash (q_0, w^R, w^RZ_0) \Vdash (q_1, w^R, w^RZ_0) \Vdash (q_1, \epsilon, Z_0) \Vdash (q_2, \epsilon, Z_0).
\]

Acceptance by final state

Let \(P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \) be a PDA. The language accepted by \(P \) by final state is
\[
L(P) = \{ w : (q_0, w, Z_0) \Vdash (q, \epsilon, \alpha), q \in F \}.
\]

Example: The PDA on slide 183 accepts exactly \(L_{wwr} \).

Let \(P \) be the machine. We prove that \(L(P) = L_{wwr} \).

(\(\supseteq \)-direction.) Let \(x \in L_{wwr} \). Then \(x = ww^R \), and the following is a legal computation sequence
\[
(q_0, w^R, Z_0) \Vdash (q_0, w^R, w^RZ_0) \Vdash (q_1, w^R, w^RZ_0) \Vdash (q_1, \epsilon, Z_0) \Vdash (q_2, \epsilon, Z_0).
\]

Move 1: The spontaneous \((q_0, x, \alpha) \Vdash (q_1, x, \alpha) \). Now \((q_1, x, \alpha) \Vdash (q_1, \epsilon, \beta) \) implies that \(|\beta| < |\alpha| \), which implies \(\beta \neq \alpha \).

Move 2: Loop and push \((q_0, a_1a_2 \ldots a_n, \alpha) \Vdash (q_0, a_2 \ldots a_n, a_1\alpha) \).

In this case there is a sequence
\[
(q_0, a_1a_2 \ldots a_n, \alpha) \Vdash (q_0, a_2 \ldots a_n, a_1\alpha) \Vdash \ldots \Vdash (q_1, a_n, a_1\alpha) \Vdash (q_1, \epsilon, \alpha).
\]

Thus \(a_1 = a_n \) and
\[
(q_0, a_2 \ldots a_n, a_1\alpha) \Vdash (q_1, a_n, a_1\alpha).
\]

By Theorem 6.6 we can remove \(a_n \). Therefore
\[
(q_0, a_2 \ldots a_{n-1}, a_1\alpha) \Vdash (q_1, \epsilon, a_1\alpha).
\]

Then, by the IH \(a_2 \ldots a_{n-1} = yy^R \). Then \(x = a_1yy^R a_n \) is a palindrome.
Acceptance by Empty Stack

Let \(P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \) be a PDA. The language accepted by \(P \) by empty stack is
\[
N(P) = \{ w : (q_0, w, Z_0) \vdash^* (q, \epsilon, \epsilon) \}.
\]
Note: \(q \) can be any state.

Question: How to modify the palindrome-PDA to accept by empty stack?

We have to show that \(L(P_F) = N(P_N) \).

(\supset direction.) Let \(w \in N(P_N) \). Then
\[
(q_0, w, Z_0) \vdash_N^* (q, \epsilon, \epsilon),
\]
for some \(q \). From Theorem 6.5 we get
\[
(q_0, w, Z_0X_0) \vdash_N^* (q, \epsilon, X_0).
\]
Since \(\delta_N \subset \delta_F \), we have
\[
(q_0, w, Z_0X_0) \vdash_F^* (q, \epsilon, X_0).
\]
We conclude that
\[
(p_0, w, X_0) \vdash_F (q_0, w, Z_0X_0) \vdash_F^* (q, \epsilon, X_0) \vdash_F (p_f, \epsilon, \epsilon).
\]

(\subseteq direction.) By inspecting the diagram.

From Empty Stack to Final State

Theorem 6.9: If \(L = N(P_N) \) for some PDA \(P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0) \), then \(\exists \) PDA \(P_F \), such that \(L = L(P_F) \).

Proof: Let
\[
P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})
\]
where \(\delta_F(p_0, \epsilon, X_0) = \{(q_0, Z_0X_0)\} \), and for all \(q \in Q, a \in \Sigma \cup \{\epsilon\}, Y \in \Gamma : \delta_F(q, a, Y) = \delta_N(q, a, Y) \), and in addition \((p_f, \epsilon) \in \delta_F(q, \epsilon, X_0) \).

Let’s design \(P_N \) for for cathing errors in strings meant to be in the if-else-grammar \(G \)
\[
S \rightarrow \epsilon|SS|iS|iSe.
\]
Here e.g. \(\{ieie, iie, iee\} \subseteq G \), and e.g. \(\{ei, iieii\} \cap G = \emptyset \).

The diagram for \(P_N \) is

Formally,
\[
P_N = (\{q\}, \{i, \epsilon\}, \{Z\}, \delta_N, q, Z),
\]
where \(\delta_N(q, i, Z) = \{(q, ZZ)\} \),
and \(\delta_N(q, \epsilon, Z) = \{(q, \epsilon)\} \).
From P_N we can construct

$$P_F = (\{p, q, r\}, \{i, e\}, \{Z, X_0\}, \delta_F, p, X_0, \{r\}),$$

where

$$\delta_F(p, \epsilon, X_0) = \{(q, ZX_0)\},
\delta_F(q, i, Z) = \{(r, \epsilon)\},$$

and

$$\delta_F(q, \epsilon, X_0) = \{(r, \epsilon)\}.$$

The diagram for P_F is

201

We have to show that $N(P_N) = L(P_F)$.

(⊆-direction.) By inspecting the diagram.

(⊇-direction.) Let $w \in L(P_F)$. Then

$$\delta_F(p_0, w, Z_0X_0) \inoc N (q, \epsilon, Z),$$

for some $q \in F, \alpha \in \Gamma^*$. Since $\delta_F \subset \delta_N$, and Theorem 6.5 says that X_0 can be slid under the stack, we get

$$\delta_N(p_0, w, Z_0X_0) \inoc N (q, \epsilon, \alpha X_0).$$

Then P_N can compute:

$$(p_0, w, X_0) \inoc N (q_0, w, Z_0X_0) \inoc N (q, \epsilon, \alpha X_0) \inoc N (p, \epsilon, \epsilon).$$

We already know how to go between null stack and final state.

From Final State to Empty Stack

Theorem 6.11: Let $L = L(P_F)$, for some PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$. Then \exists PDA P_N, such that $L = N(P_N)$.

Proof: Let

$$P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$$

where $\delta_N(p_0, \epsilon, X_0) = \{(q_0, Z_0X_0)\}$, $\delta_N(p, \epsilon, Y) = \{(p, \epsilon)\}$, for $Y \in \Gamma \cup \{X_0\}$, and for all $q \in Q$,

$a \in \Sigma \cup \{\epsilon\}, Y \in \Gamma : \delta_N(q, a, Y) = \delta_F(q, a, Y)$, and in addition $\forall q \in F$, and $Y \in \Gamma \cup \{X_0\} : (p, \epsilon) \in \delta_N(q, \epsilon, Y).$

Equivalence of PDA’s and CFG’s

A language is

generated by a CFG

if and only if it is

accepted by a PDA by empty stack

if and only if it is

accepted by a PDA by final state

204
From CFG’s to PDA’s

Given \(G \), we construct a PDA that simulates \(\Rightarrow \).

We write left-sentential forms as

\[xA\alpha \]

where \(A \) is the leftmost variable in the form. For instance,

\[\frac{(a + E)}{A} \]

Let \(xA\alpha \Rightarrow x\beta\alpha \). This corresponds to the PDA first having consumed \(x \) and having \(A\alpha \) on the stack, and then on \(\epsilon \) it pops \(A \) and pushes \(\beta \).

More formally, let \(y \), s.t. \(w = xy \). Then the PDA goes non-deterministically from configuration \((q,y,A\alpha)\) to configuration \((q,y,\beta\alpha)\).

Theorem 6.13: \(N(P_G) = L(G) \).

Proof:

(\(\supseteq \)-direction.) Let \(w \in L(G) \). Then

\[S = \gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_n = w \]

Let \(\gamma_i = x_i\alpha_i \). We show by induction on \(i \) that if

\[S \Rightarrow^{*} \gamma_i, \]

then

\[(q,w,S) \Rightarrow^{*} (q,y_i,\alpha_i), \]

where \(w = x_iy_i \).

Basis: For \(i = 1, \gamma_1 = S \). Thus \(x_1 = \epsilon \), and \(y_1 = w \). Clearly \((q,w,S) \Rightarrow^{*} (q,w,S) \).

Induction: IH is \((q,w,S) \Rightarrow^{*} (q,y_i,\alpha_i) \). We have to show that

\[(q,y_i,\alpha_i) \Rightarrow (q,y_{i+1},\alpha_{i+1}) \]

Now \(\alpha_i \) begins with a variable \(A \), and we have the form

\[\frac{x_iA\chi}{\gamma_i} \Rightarrow^{i+1}_\Rightarrow \frac{x_{i+1}\beta\chi}{\gamma_{i+1}} \]

By IH \(A\chi \) is on the stack, and \(y_i \) is unconsumed. From the construction of \(P_G \) it follows that we can make the move

\[(q,y_i,\chi) \Rightarrow (q,y_i,\beta\chi) \]

If \(\beta \) has a prefix of terminals, we can pop them with matching terminals in a prefix of \(y_i \), ending up in configuration \((q,y_{i+1},\alpha_{i+1})\), where \(\alpha_{i+1} = \beta\chi \), which is the tail of the sentential \(x_i\beta\chi = \gamma_{i+1} \).

Finally, since \(\gamma_n = w \), we have \(\alpha_n = \epsilon \), and \(y_n = \epsilon \), and thus \((q,w,S) \Rightarrow^{*} (q,\epsilon,\epsilon) \), i.e. \(w \in N(P_G) \).
We shall show by an induction on the length of \vdash, that

(\textbf{♣}) If $(q,x,A) \vdash (q,\epsilon,\epsilon)$, then $A \Rightarrow x$.

Basis: Length 1. Then it must be that $A \rightarrow \epsilon$ is in G, and we have $(q,\epsilon) \in \delta(q,\epsilon,A)$. Thus $A \Rightarrow \epsilon$.

Induction: Length is $n > 1$, and the IH holds for lengths $< n$.

Since A is a variable, we must have

$$(q,x,A) \vdash (q,x,Y_1Y_2 \cdots Y_k) \vdash \cdots \vdash (q,\epsilon,\epsilon)$$

where $A \rightarrow Y_1Y_2 \cdots Y_k$ is in G.

We can now write x as $x_1x_2 \cdots x_n$, according to the figure below, where $Y_1 = B, Y_2 = a,$ and $Y_3 = C$.

Now we can conclude that

$$(q,x_i,x_{i+1} \cdots x_k,Y_i) \vdash (q,x_{i+1} \cdots x_k)$$

is less than n steps, for all $i \in \{1, \ldots, k\}$. If Y_i is a variable we have by the IH and Theorem 6.6 that

$$Y_i \Rightarrow x_i$$

If Y_i is a terminal, we have $|x_i| = 1$, and $Y_i = x_i$.

Thus $Y_i \Rightarrow x_i$ by the reflexivity of \Rightarrow.

The claim of the theorem now follows by choosing $A = S$, and $x = w$. Suppose $w \in N(P)$. Then $(q,w,S) \vdash (q,\epsilon,\epsilon)$, and by (♣), we have $S \Rightarrow w$, meaning $w \in L(G)$.

Let's look at how a PDA can consume $x = x_1x_2 \cdots x_k$ and empty the stack.

We shall define a grammar with variables of the form $[p_{i-1}Y_ip_i]$ representing going from p_{i-1} to p_i with net effect of popping Y_i.

We can now write x as $x_1x_2 \cdots x_n$, according to the figure below, where $Y_1 = B, Y_2 = a$, and $Y_3 = C$.

From PDA's to CFG's
Formally, let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$ be a PDA. Define $G = (V, \Sigma, R, S)$, where

$$V = \{[pXq] : \{p, q\} \subseteq Q, X \in \Gamma\} \cup \{S\}$$

$$R = \{S \rightarrow [q_0Z_0p] : p \in Q\} \cup \{[qXrk] \rightarrow a[rY1r1 \cdots r_{k-1}Ykrk] : a \in \Sigma \cup \{\epsilon\}, \{r_1, \ldots, r_k\} \subseteq Q, (r, Y_1Y_2 \cdots Y_k) \in \delta(q, a, X)\}$$

Example: Let $P = (\{p, q\}, \{0, 1\}, \{X, Z\}, \delta, q, Z_0)$, where δ is given by

1. $\delta(q, 1, Z_0) = \{(q, XZ_0)\}$
2. $\delta(q, 1, X) = \{(q, XX)\}$
3. $\delta(q, 0, X) = \{(p, X)\}$
4. $\delta(q, \epsilon, X) = \{(q, \epsilon)\}$
5. $\delta(p, 1, X) = \{(p, \epsilon)\}$
6. $\delta(p, 0, Z_0) = \{(q, Z_0)\}$

We get $G = (V, \{0, 1\}, R, S)$, where $V = \{[pXp], [pXq], [pZ_0p], [pZ_0q], S\}$ and the productions in R are

$$S \rightarrow [qZ_0q][qZ_0p]$$

From rule (1):

$$[qZ_0q] \rightarrow 1[qXq][qZ_0q]$$
$$[qZ_0q] \rightarrow 1[qXp][pZ_0q]$$
$$[qZ_0p] \rightarrow 1[qXq][qZ_0p]$$
$$[qZ_0p] \rightarrow 1[qXp][pZ_0p]$$

From rule (2):

$$[qXq] \rightarrow 1[qXq][qXq]$$
$$[qXq] \rightarrow 1[qXp][pXq]$$
$$[qXp] \rightarrow 1[qXq][qXp]$$
$$[qXp] \rightarrow 1[qXp][pXp]$$
From rule (3):
\[
[qXq] \rightarrow 0[pXq],
\[
[qXp] \rightarrow 0[pXp].
\]

From rule (4):
\[
[qXq] \rightarrow \epsilon.
\]

From rule (5):
\[
[pXp] \rightarrow 1.
\]

From rule (6):
\[
[pZ0q] \rightarrow 0[qZ0q],
\[
[pZ0p] \rightarrow 0[qZ0p].
\]

Theorem 6.14: Let G be constructed from a PDA P as above. Then $L(G) = N(P)$

Proof:

(\supseteq-direction.) We shall show by an induction on the length of the sequence \vdash that

(♠) If $(q,w,X) \vdash (p,\epsilon,\epsilon)$ then $[qXp] \Rightarrow w$.

Basis: Length 1. Then w is an a or ϵ, and $(p,\epsilon) \in \delta(q,w,X)$. By the construction of G we have $[qXp] \Rightarrow w$.

Induction: Length is $n > 1$, and ♠ holds for lengths $< n$. We must have

$$(q,w,X) \vdash (r_0,x,Y_1 Y_2 \cdots Y_k) \vdash \cdots \vdash (p,\epsilon,\epsilon),$$

where $w = ax$ or $w = \epsilon x$. It follows that $(r_0,Y_1 Y_2 \cdots Y_k) \in \delta(q,a,X)$. Then we have a production

$$[qXr_k] \Rightarrow a[r_0Y_1r_1] \cdots [r_{k-1}Y_kr_k],$$

for all $\{r_1,\ldots,r_k\} \subset Q$.

We may now choose r_i to be the state in the sequence \vdash when Y_i is popped. Let $w = w_1w_2\cdots w_k$, where w_i is consumed while Y_i is popped. Then

$$(r_{i-1},w_i,Y_i) \vdash (r_i,\epsilon,\epsilon).$$

By the IH we get

$$[r_{i-1},Y,r_i] \Rightarrow w_i$$

We then get the following derivation sequence:

$$[qXr_k] \Rightarrow a[r_0Y_1r_1] \cdots [r_{k-1}Y_kr_k] \Rightarrow$$

$$aw_1[r_1Y_2r_2][r_2Y_3r_3] \cdots [r_{k-1}Y_kr_k] \Rightarrow$$

$$aw_1w_2[r_2Y_3r_3] \cdots [r_{k-1}Y_kr_k] \Rightarrow$$

$$\cdots$$

$$aw_1w_2 \cdots w_k = w$$
A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is deterministic iff
1. $\delta(q, a, X)$ is always empty or a singleton.
2. If $\delta(q, a, X)$ is nonempty, then $\delta(q, \epsilon, X)$ must be empty.

Example: Let us define
$$L_{w_{cwR}} = \{w_{cwR} : w \in \{0, 1\}^*\}$$
Then $L_{w_{cwR}}$ is recognized by the following DPDA

![Diagram of a DPDA](image)

We’ll show that Regular $\subseteq L(DPDA) \subseteq CFL$

Theorem 6.17: If L is regular, then $L = L(P)$ for some DPDA P.

Proof: Since L is regular there is a DFA A s.t. $L = L(A)$. Let
$$A = (Q, \Sigma, \delta_A, q_0, F)$$
We define the DPDA
$$P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F),$$
where
$$\delta_P(q, a, Z_0) = \{(\delta_A(q, a), Z_0)\},$$
for all $p, q \in Q$, and $a \in \Sigma$.

An easy induction (do it!) on $|w|$ gives
$$(q_0, w, Z_0) \xrightarrow{\epsilon} (p, \epsilon, Z_0) \iff \delta_A(q_0, w) = p$$
The theorem then follows (why?)
What about DPDA's that accept by null stack?

They can recognize only CFL's with the prefix property.

A language L has the prefix property if there are no two distinct strings in L, such that one is a prefix of the other.

Example: L_{wcwr} has the prefix property.

Example: $\{0\}^*$ does not have the prefix property.

Theorem 6.19: L is $N(P)$ for some DPDA P if and only if L has the prefix property and L is $L(P')$ for some DPDA P'.

Proof: Homework 225

Theorem 6.20 can actually be strengthen as follows

Theorem 6.21: If $L = L(P)$ for some DPDA P, then L has an unambiguous CFG.

Proof: Let $\$ be a symbol outside the alphabet of L, and let $L' = L\$.

It is easy to see that L' has the prefix property.

By Theorem 6.19 we have $L' = N(P')$ for some DPDA P'.

By Theorem 6.20 $N(P')$ can be generated by an unambiguous CFG G'

Modify G' into G, s.t. $L(G) = L$, by adding the production

$\$ \rightarrow ϵ

Since G' has unique leftmost derivations, G' also has unique lm's, since the only new thing we’re doing is adding derivations

$w\$ \in $\Rightarrow w$

to the end.

Properties of CFL's

- **Simplification** of CFG's. This makes life easier, since we can claim that if a language is CF, then it has a grammar of a special form.

- **Pumping Lemma** for CFL's. Similar to the regular case.

- **Closure properties.** Some, but not all, of the closure properties of regular languages carry over to CFL's.

- **Decision properties.** We can test for membership and emptiness, but for instance, equivalence of CFL's is undecidable.
We want to show that every CFL (without \(\epsilon \)) is generated by a CFG where all productions are of the form

\[A \rightarrow BC, \text{ or } A \rightarrow a \]

where \(A, B, \) and \(C \) are variables, and \(a \) is a terminal. This is called CNF, and to get there we have to

1. Eliminate useless symbols, those that do not appear in any derivation \(S \xrightarrow{*} w \), for start symbol \(S \) and terminal \(w \).
2. Eliminate \(\epsilon \)-productions, that is, productions of the form \(A \rightarrow \epsilon \).
3. Eliminate unit productions, that is, productions of the form \(A \rightarrow B \), where \(A \) and \(B \) are variables.

Example: Let \(G \) be

\[S \rightarrow AB | a, A \rightarrow b \]

\(S \) and \(A \) are generating, \(B \) is not. If we eliminate \(B \) we have to eliminate \(S \rightarrow AB \), leaving the grammar

\[S \rightarrow a, A \rightarrow b \]

Now only \(S \) is reachable. Eliminating \(A \) and \(b \) leaves us with

\[S \rightarrow a \]

with language \(\{a\} \).

OTH, if we eliminate non-reachable symbols first, we find that all symbols are reachable. From

\[S \rightarrow AB | a, A \rightarrow b \]

we then eliminate \(B \) as non-generating, and are left with

\[S \rightarrow a, A \rightarrow b \]

that still contains useless symbols.

\[S \xrightarrow{*} \alpha X \beta \xrightarrow{*} w \]

for a terminal string \(w \). Symbols that are not useful are called useless.

- A symbol \(X \) is generating if \(X \xrightarrow{*} w \), for some \(w \in T^* \).
- A symbol \(X \) is reachable if \(S \xrightarrow{*} \alpha X \beta \), for some \(\{\alpha, \beta\} \subseteq (V \cup T)^* \).

It turns out that if we eliminate non-generating symbols first, and then non-reachable ones, we will be left with only useful symbols.

\[\text{Theorem 7.2: Let } G = (V, T, P, S) \text{ be a CFG such that } L(G) \neq \emptyset. \text{ Let } G_1 = (V_1, T_1, P_1, S) \text{ be the grammar obtained by} \]

1. Eliminating all nongenerating symbols and the productions they occur in. Let the new grammar be \(G_2 = (V_2, T_2, P_2, S) \).

2. Eliminate from \(G_2 \) all nonreachable symbols and the productions they occur in.

The \(G_1 \) has no useless symbols, and \(L(G_1) = L(G) \).
Proof: We first prove that G_1 has no useless symbols:

Let X remain in $V_1 \cup T_1$. Thus $X \Rightarrow^* w$ in G_1, for some $w \in T^*$. Moreover, every symbol used in this derivation is also generating. Thus $X \Rightarrow^* w$ in G_2 also.

Since X was not eliminated in step 2, there are α and β, such that $S \Rightarrow^* \alpha X \beta$ in G_2. Furthermore, every symbol used in this derivation is also reachable, so $S \Rightarrow^* \alpha X \beta$ in G_1.

Now every symbol in $\alpha X \beta$ is reachable and in $V_2 \cup T_2 \supseteq V_1 \cup T_1$, so each of them is generating in G_2.

The terminal derivation $\alpha X \beta \Rightarrow^* xwy$ in G_2 involves only symbols that are reachable from S, because they are reached by symbols in $\alpha X \beta$. Thus the terminal derivation is also a derivation of G_1, i.e.,

$$S \Rightarrow^* \alpha X \beta \Rightarrow^* xwy$$

in G_1.

We then show that $L(G_1) = L(G)$.

Since $P_1 \subseteq P$, we have $L(G_1) \subseteq L(G)$.

Then, let $w \in L(G)$. Thus $S \Rightarrow^* w$. Each symbol in this derivation is evidently both reachable and generating, so this is also a derivation of G_1.

Thus $w \in L(G_1)$.

Theorem 7.4: At saturation, $g(G)$ contains all and only the generating symbols of G.

Proof:

We’ll show in class on an induction on the stage in which a symbol X is added to $g(G)$ that X is indeed generating.

Then, suppose that X is generating. Thus $X \Rightarrow^* w$, for some $w \in T^*$. We prove by induction on this derivation that $X \in g(G)$.

Basis: Zero Steps. Then X is added in the basis of the closure algo.

Induction: The derivation takes $n > 0$ steps. Let the first production used be $X \rightarrow \alpha$. Then $X \Rightarrow^* \alpha \Rightarrow^* w$ and $\alpha \Rightarrow^* w$ in less than n steps and by the IH $\alpha \in g(G)$. From the inductive part of the algo it follows that $X \in g(G)$.

We have to give algorithms to compute the generating and reachable symbols of $G = (V, T, P, S)$.

The generating symbols $g(G)$ are computed by the following closure algorithm:

Basis: $g(G) = T$

Induction: If $\alpha \in g(G)$ and $X \rightarrow \alpha \in P$, then $g(G) = g(G) \cup \{X\}$.

Example: Let G be $S \rightarrow AB|a$, $A \rightarrow b$

Then first $g(G) = \{a, b\}$.

Since $S \rightarrow a$ we put S in $g(G)$, and because $A \rightarrow b$ we add A also, and that’s it.
The set of reachable symbols \(r(G) \) of \(G = (V,T,P,S) \) is computed by the following closure algorithm:

Basis: \(r(G) = \{S\} \).

Induction: If variable \(A \in r(G) \) and \(A \rightarrow \alpha \in P \) then add all symbols in \(\alpha \) to \(r(G) \).

Example: Let \(G \) be \(S \rightarrow AB|a, A \rightarrow b \).
Then first \(r(G) = \{S\} \).
Based on the first production we add \(\{A,B,a\} \) to \(r(G) \).
Based on the second production we add \(\{b\} \) to \(r(G) \) and that’s it.

Theorem 7.6: At saturation, \(r(G) \) contains all and only the reachable symbols of \(G \).

Proof: Homework.

Eliminating \(\epsilon \)-Productions

We shall prove that if \(L \) is CF, then \(L \setminus \{\epsilon\} \) has a grammar without \(\epsilon \)-productions.

Variable \(A \) is said to be **nullable** if \(A \stackrel{*}{\Rightarrow} \epsilon \).

Let \(A \) be nullable. We’ll then replace a rule like

\[
A \rightarrow BAD
\]

with

\[
A \rightarrow BAD, A \rightarrow BD
\]

and delete any rules with body \(\epsilon \).

We’ll compute \(n(G) \), the set of nullable symbols of a grammar \(G = (V,T,P,S) \) as follows:

Basis: \(n(G) = \{A : A \rightarrow \epsilon \in P\} \)

Induction: If \(\{C_1C_2 \cdots C_k\} \subseteq n(G) \) and \(A \rightarrow C_1C_2 \cdots C_k \in P \), then \(n(G) = n(G) \cup \{A\} \).

Theorem 7.7: At saturation, \(n(G) \) contains all and only the nullable symbols of \(G \).

Proof: Easy induction in both directions.

Once we know the nullable symbols, we can transform \(G \) into \(G_1 \) as follows:

- For each \(A \rightarrow X_1X_2 \cdots X_k \in P \) with \(m \leq k \) nullable symbols, replace it by \(2^m \) rules, one with each sublist of the nullable symbols absent.

Exception: If \(m = k \) we don’t delete all \(m \) nullable symbols.

- Delete all rules of the form \(A \rightarrow \epsilon \).

Example: Let \(G \) be

\[
S \rightarrow AB, A \rightarrow aAA|\epsilon, B \rightarrow bBB|\epsilon
\]

Now \(n(G) = \{A, B, S\} \). The first rule will become

\[
S \rightarrow AB|A|B
\]

the second

\[
A \rightarrow aAA|aA|aA|a
\]

the third

\[
B \rightarrow bBB|bB|bB|b
\]

We then delete rules with \(\epsilon \)-bodies, and end up with grammar \(G_1 : \)

\[
S \rightarrow AB|A|B, A \rightarrow aAA|aA|a, B \rightarrow bBB|bB|b
\]
Theorem 7.9: $L(G_1) = L(G) \setminus \{ \epsilon \}$.

Proof: We’ll prove the stronger statement:

$(\sharp) \ A \varepsilon\Rightarrow w \ in \ G_1 \ if \ and \ only \ if \ w \neq \epsilon \ and \ A \varepsilon\Rightarrow w \ in \ G.$

$
\subseteq\text{-direction:} \ Suppose \ A \varepsilon\Rightarrow w \ in \ G_1. \ Then \ clearly \ w \neq \epsilon \ (Why?) \ We’ll \ show \ by \ and \ induction \ on \ the \ length \ of \ the \ derivation \ that \ A \varepsilon\Rightarrow w \ in \ G_1 \ also.
$

Basis: One step. Then there exists $A \Rightarrow w$ in G_1. Form the construction of G_1 it follows that there exists $A \Rightarrow \alpha$ in G, where α is w plus some nullable variables interspersed. Then

$A \Rightarrow \alpha \varepsilon\Rightarrow w$

in G.

Induction: Derivation takes $n > 1$ steps. Then

$A \Rightarrow X_1X_2 \cdots X_k \varepsilon\Rightarrow w \ in \ G_1$

and the first derivation is based on a production

$A \Rightarrow Y_1Y_2 \cdots Y_m$

where $m \geq k$, some Y_i’s are X_j’s and the other are nullable symbols of G.

Furthermore, $w = w_1w_2 \cdots w_k$, and $X_i \varepsilon\Rightarrow w_i$ in G_1 in less than n steps. By the IH we have

$X_i \varepsilon\Rightarrow w_i$ in G. Now we get

$A \Rightarrow Y_1Y_2 \cdots Y_m \varepsilon\Rightarrow Y_1X_2 \cdots X_k \varepsilon\Rightarrow w_1w_2 \cdots w_k = w$

$
\supseteq\text{-direction:} \ Let \ A \varepsilon\Rightarrow w, \ and \ w \neq \epsilon. \ We’ll \ show \ by \ induction \ of \ the \ length \ of \ the \ derivation \ that \ A \varepsilon\Rightarrow w \ in \ G_1.
$

Basis: Length is one. Then $A \Rightarrow w$ is in G, and since $w \neq \epsilon$ the rule is in G_1 also.

Induction: Derivation takes $n > 1$ steps. Then it looks like

$A \Rightarrow Y_1Y_2 \cdots Y_m \varepsilon\Rightarrow w$

Now $w = w_1w_2 \cdots w_m$, and $Y_i \varepsilon\Rightarrow w_i$ in less than n steps.

Let $X_1X_2 \cdots X_k$ be those Y_j’s in order, such that $w_j \neq \epsilon$. Then $A \Rightarrow X_1X_2 \cdots X_k$ is a rule in G_1.

Now $X_1X_2 \cdots X_k \varepsilon\Rightarrow w$ (Why?)
Eliminating Unit Productions

A → B is a unit production, whenever A and B are variables.

Unit productions can be eliminated.

Let’s look at grammar

\[I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \]
\[F \rightarrow I \mid (E) \]
\[T \rightarrow F \mid T \ast F \]
\[E \rightarrow T \mid E + T \]

It has unit productions \(E \rightarrow T, T \rightarrow F, \) and \(F \rightarrow I \)

(A,B) is a unit pair if \(A \Rightarrow^* B \) using unit productions only.

Note: In \(A \rightarrow BC, \) \(C \rightarrow \epsilon \) we have \(A \Rightarrow^* B, \) but not using unit productions only.

To compute \(u(G) \), the set of all unit pairs of \(G = (V,T,P,S) \) we use the following closure algorithm

Basis: \(u(G) = = \{(A,A) : A \in V\} \)

Induction: If \((A,B) \in u(G) \) and \(B \rightarrow C \in P \) then add \((A,C) \) to \(u(G) \).

Theorem: At saturation, \(u(G) \) contains all and only the unit pair of \(G \).

Proof: Easy.

We'll expand rule \(E \rightarrow T \) and get rules

\[E \rightarrow F, \ E \rightarrow T \ast F \]

We then expand \(E \rightarrow F \) and get

\[E \rightarrow I | (E) | T \ast F \]

Finally we expand \(E \rightarrow I \) and get

\[E \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \mid (E) \mid T \ast F \]

The expansion method works as long as there are no cycles in the rules, as e.g. in

\[A \rightarrow B, B \rightarrow C, C \rightarrow A \]

The following method based on unit pairs will work for all grammars.

Given \(G = (V,T,P,S) \) we can construct \(G_1 = (V,T,P_1,S) \) that doesn’t have unit productions, and such that \(L(G_1) = L(G) \) by setting

\(P_1 = \{ A \rightarrow \alpha : \alpha \notin V, B \rightarrow \alpha \in P, (A,B) \in u(G) \} \)

Example: Form the grammar of slide 242 we get

<table>
<thead>
<tr>
<th>Pair</th>
<th>Productions</th>
</tr>
</thead>
<tbody>
<tr>
<td>((E,E))</td>
<td>(E \rightarrow E + T)</td>
</tr>
<tr>
<td>((E,T))</td>
<td>(E \rightarrow T \ast F)</td>
</tr>
<tr>
<td>((E,F))</td>
<td>(E \rightarrow (E))</td>
</tr>
<tr>
<td>((E,I))</td>
<td>(E \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1)</td>
</tr>
<tr>
<td>((T,T))</td>
<td>(T \rightarrow T \ast F)</td>
</tr>
<tr>
<td>((T,F))</td>
<td>(T \rightarrow (E))</td>
</tr>
<tr>
<td>((T,I))</td>
<td>(T \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1)</td>
</tr>
<tr>
<td>((F,F))</td>
<td>(F \rightarrow (E))</td>
</tr>
<tr>
<td>((F,I))</td>
<td>(F \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1)</td>
</tr>
<tr>
<td>((I,I))</td>
<td>(I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1)</td>
</tr>
</tbody>
</table>

The resulting grammar is equivalent to the original one (proof omitted).
To "clean up" a grammar we can

1. Eliminate ϵ-productions
2. Eliminate unit productions
3. Eliminate useless symbols

in this order.

Chomsky Normal Form, CNF

We shall show that every nonempty CFL without ϵ has a grammar G without useless symbols, and such that every production is of the form

- $A \rightarrow BC$, where $\{A, B, C\} \subseteq T$, or
- $A \rightarrow \alpha$, where $A \in V$, and $\alpha \in T$.

To achieve this, start with any grammar for the CFL, and

1. "Clean up" the grammar.
2. Arrange that all bodies of length 2 or more consists of only variables.
3. Break bodies of length 3 or more into a cascade of two-variable-bodied productions.

- For step 2, for every terminal a that appears in a body of length ≥ 2, create a new variable, say A, and replace a by A in all bodies.
 Then add a new rule $A \rightarrow a$.

- For step 3, for each rule of the form

 $A \rightarrow B_1B_2\cdots B_k,$

 $k \geq 3$, introduce new variables $C_1, C_2, \ldots C_{k-2}$, and replace the rule with

 $A \rightarrow B_1C_1$
 $C_1 \rightarrow B_2C_2$
 \ldots
 $C_{k-3} \rightarrow B_{k-2}C_{k-2}$
 $C_{k-2} \rightarrow B_{k-1}B_k$
Let's start with the grammar (step 1 already done)

\[E \rightarrow E + T \mid T * F \mid (E) \mid a \mid b \mid I a \mid I b \mid I 0 \mid I 1 \]
\[T \rightarrow T * F \mid (E)a \mid b \mid I a \mid I b \mid I 0 \mid I 1 \]
\[F \rightarrow L E R \mid a \mid b \mid I A \mid I B \mid I Z \mid I O \]
\[I \rightarrow a \mid b \mid I A \mid I B \mid I Z \mid I O \]

For step 2, we need the rules
\[A \rightarrow a, B \rightarrow b, Z \rightarrow 0, O \rightarrow 1 \]
\[P \rightarrow +, M \rightarrow *, L \rightarrow (, R \rightarrow) \]
and by replacing we get the grammar

\[E \rightarrow E P T \mid T M F \mid L E R \mid a \mid b \mid I A \mid I B \mid I Z \mid I O \]
\[T \rightarrow T M F \mid L E R \mid a \mid b \mid I A \mid I B \mid I Z \mid I O \]
\[F \rightarrow L E R \mid a \mid b \mid I A \mid I B \mid I Z \mid I O \]
\[I \rightarrow a \mid b \mid I A \mid I B \mid I Z \mid I O \]
\[A \rightarrow a, B \rightarrow b, Z \rightarrow 0, O \rightarrow 1 \]
\[P \rightarrow +, M \rightarrow *, L \rightarrow (, R \rightarrow) \]

For step 3, we replace

\[E \rightarrow E P T \text{ by } E \rightarrow E C 1, C 1 \rightarrow P T \]
\[E \rightarrow T M F, T \rightarrow T M F \text{ by } \]
\[E \rightarrow T C 2, T \rightarrow T C 2, C 2 \rightarrow M F \]
\[E \rightarrow L E R, T \rightarrow L E R, F \rightarrow L E R \text{ by } \]
\[E \rightarrow L C 3, T \rightarrow L C 3, F \rightarrow L C 3, C 3 \rightarrow E R \]

The final CNF grammar is

\[E \rightarrow E C 1 \mid T C 2 \mid L C 3 \mid a \mid b \mid I A \mid I B \mid I Z \mid I O \]
\[T \rightarrow T C 2 \mid L C 3 \mid a \mid b \mid I A \mid I B \mid I Z \mid I O \]
\[F \rightarrow L C 3 \mid a \mid b \mid I A \mid I B \mid I Z \mid I O \]
\[I \rightarrow a \mid b \mid I A \mid I B \mid I Z \mid I O \]
\[C 1 \rightarrow P T, C 2 \rightarrow M F, C 3 \rightarrow E R \]
\[A \rightarrow a, B \rightarrow b, Z \rightarrow 0, O \rightarrow 1 \]
\[P \rightarrow +, M \rightarrow *, L \rightarrow (, R \rightarrow) \]

The size of parse trees

Theorem: Suppose we have a parse tree according to a CFG \(G \) in CNF, and let \(w \) be the yield of the tree. If the longest path (no. of edges) in the tree is \(n \), then \(|w| \leq 2^{n-1} \).

Proof: Induction on \(n \).

Basis: \(n = 1 \). Then the tree consists of a root and a leaf, and the production must be of the form \(S \rightarrow a \). Thus \(|w| = |a| = 1 = 2^0 = 2^{n-1} \).

Induction: Let the longest path be \(n \). Then the root must use a production of the form \(S \rightarrow AB \). No path in the subtrees rooted at \(A \) and \(B \) can have a path longer than \(n - 1 \). Thus the IH applies, and \(S \Rightarrow AB \Rightarrow w = uv \), where where \(A \Rightarrow u \) and \(B \Rightarrow v \). By the IH we have \(|u| \leq 2^{n-2} \) and \(|v| \leq 2^{n-2} \). Consequently \(|w| = |u| + |v| \leq 2^{n-2} + 2^{n-2} = 2^{n-1} \).

The Pumping Lemma for CFL’s

Theorem: Let \(L \) be a CFL. Then there exists a constant \(n \) such that for any \(z \in L \), if \(|z| \geq n \), then \(z \) can be written as \(uvwxy \), where

1. \(|vw| \leq n \).
2. \(vx \neq \epsilon \)
3. \(u^n v^i w^i y \in L \), for all \(i \geq 0 \).

[Diagram of Parse Tree]

253 254 255 256
Proof:

Let G be a CFG in CNF, such that $L(G) = \{\epsilon\}$, and let m be the number of variables in G.

Choose $n = 2^m$. Let w be a yield of a parse three where the longest path is at most m. By the previous theorem $|w| \leq 2^m - 1 = n/2$.

Since $|z| \geq n$ the parse tree for z must have a path of length $k \geq m + 1$.

Then we can pump the tree in (a) as uw^0wx^0y (tree (b)) or uw^2wx^2 (tree (c)), and in general as uw^ix^iy, $i \geq 0$.

Since the longest path in the subtree rooted at A_i is at most $m + 1$, the previous theorem gives us $|wx| \leq 2^m = n$.

Closure Properties of CFL's

Consider a mapping $s : \Sigma \to 2^\Delta^*$

where Σ and Δ are finite alphabets. Let $w \in \Sigma^*$, where $w = a_1a_2 \ldots a_n$, and define

$s(w) = s(a_1)s(a_2) \ldots s(a_n)$

and, for $L \subseteq \Sigma^*$,

$s(L) = \bigcup_{w \in L} s(w)$.

Such a mapping s is called a substitution.
Example: $\Sigma = \{0,1\}, \Delta = \{a,b\}$,
$s(0) = \{a^n b^n : n \geq 1\}$, $s(1) = \{aa, bb\}$.

Let $w = 01$. Then $s(w) = s(0).s(1) =$
$\{a^n b^n a a : n \geq 1\} \cup \{a^n b^n + 2 : n \geq 1\}$.

Let $L = \{0\}^*$. Then $s(L) = (s(0))^* =$
$\{a^n b^n a^n 1 b^n 1 b^n 2 : n \geq 1, i \geq 1\}$.

Theorem 7.23: Let L be a CFL over Σ, and s a substitution, such that $s(a)$ is a CFL, $\forall a \in \Sigma$. Then $s(L)$ is a CFL.

Proof: We start with grammars $G = (V, \Sigma, P, S)$ for L, and $G_a = (V_a, T_a, P_a, S_a)$ for each $s(a)$. We then construct $G' = (V', T', P', S)$ where

$V' = (\bigcup_{a \in \Sigma} V_a) \cup V$

$T' = \bigcup_{a \in \Sigma} T_a$

$P' = \bigcup_{a \in \Sigma} P_a$ plus the productions of P with each a in a body replaced with symbol S_a.

Now we have to show that

- $L(G') = s(L)$.

Let $w \in s(L)$. Then $\exists x = a_1 a_2 ... a_n$ in L, and $\exists x_i \in s(a_i)$, such that $w = x_1 x_2 ... x_n$.

A derivation tree in G' will look like

Then let $w \in L(G')$. Then the parse tree for w must again look like

Now delete the dangling subtrees. Then you have yield

$S_{a_1} S_{a_2} ... S_{a_n}$

where $a_1 a_2 ... a_n \in L(G)$. Now w is also equal to $s(a_1 a_2 ... a_n)$, which is in $s(L)$.

Thus we can generate $S_{a_1} S_{a_2} ... S_{a_n}$ in G' and form there we generate $x_1 x_2 ... x_n = w$. Thus $w \in L(G')$.

S

x_1

x_2

x_n

S_{a_1}

S_{a_2}

S_{a_n}

$S_{a_1} S_{a_2} ... S_{a_n}$
Applications of the Substitution Theorem

Theorem 7.24: The CFL's are closed under
(i) : union, (ii) : concatenation, (iii) : Kleene closure and positive closure +, and (iv) : homomorphism.

Proof: (i): Let \(L_1 \) and \(L_2 \) be CFL's, let \(L = \{1, 2\} \), and \(s(1) = L_1, s(2) = L_2 \). Then \(L_1 \cup L_2 = s(L) \).

(ii) : Here we choose \(L = \{12\} \) and \(s \) as before. Then \(L_1 \cdot L_2 = s(L) \).

(iii) : Suppose \(L_1 \) is CF. Let \(L = \{1\}^* \), \(s(1) = L_1 \). Now \(L_1^* = s(L) \). Similar proof for +.

(iv) : Let \(L_1 \) be a CFL over \(\Sigma \), and \(h \) a homomorphism on \(\Sigma \). Define \(s \) by
\[
a \mapsto \{h(a)\}
\]
Then \(h(L) = s(L) \).

CFL's are not closed under \(\cap \)

Let \(L_1 = \{0^n1^n2^i : n \geq 1, i \geq 1\} \). The \(L_1 \) is CF with grammar

\[
\begin{align*}
S & \rightarrow AB \\
A & \rightarrow 0A1|01 \\
B & \rightarrow 2B|2
\end{align*}
\]

Also, \(L_2 = \{0^n1^n2^i : n \geq 1, i \geq 1\} \) is CF with grammar

\[
\begin{align*}
S & \rightarrow AB \\
A & \rightarrow 0A|0 \\
B & \rightarrow 1B212
\end{align*}
\]

However, \(L_1 \cap L_2 = \{0^n1^n2^i : n \geq 1\} \) which is not CF, as we have proved using the pumping lemma for CFL's.

Theorem 7.27: If \(L \) is CR, and \(R \) regular, then \(L \cap R \) is CF.

Proof: Let \(L \) be accepted by PDA
\[
P = (Q_P, \Sigma, \Gamma, \delta_P, q_0, F_P)
\]
by final state, and let \(R \) be accepted by DFA
\[
A = (Q_A, \Sigma, \delta_A, q_A, F_A)
\]
We'll construct a PDA for \(L \cap R \) according to the picture.
Formally, define
\[P' = (Q_P \times Q_A, \Sigma, \Gamma, \delta, (q_P, q_A), Z_0, F_P \times F_A) \]
where
\[\delta((q, p), a, X) = \{(r, \hat{\delta}_A(p, a)), \gamma) : (r, \gamma) \in \delta_P(q, a, X) \} \]

Prove at home by an induction \(i^* \), both for \(P \) and for \(P' \) that
\[(q_P, w, Z_0) i^*_P (q, \epsilon, \gamma), \text{ and } \delta(q_A, w) \in F_A \]
if and only if
\[(q_P, q_A, w, Z_0) (q, \hat{\delta}(p_A, w), \epsilon, \gamma) \]

The claim then follows (Why?)

Theorem 7.29: Let \(L, L_1, L_2 \) be CFL’s and \(R \) regular. Then
1. \(L \setminus R \) is CF
2. \(\bar{L} \) is not necessarily CF
3. \(L_1 \setminus L_2 \) is not necessarily CF

Proof:
1. \(\bar{R} \) is regular, \(L \cap \bar{R} \) is regular, and \(L \cap \bar{R} = L \setminus R \).
2. If \(\bar{L} \) always were CF, it would follow that
\[
L_1 \cap L_2 = \frac{L_1 \cup L_2}{\bar{L_1} \cup \bar{L_2}}
\]
always would be CF.
3. Note that \(\Sigma^* \) is CF, so if \(L_1 \setminus L_2 \) were always CF, then so would \(\Sigma^* \setminus L = \bar{L} \).

Inverse homomorphism

Let \(h : \Sigma \to \Theta^* \) be a homom. Let \(L \subseteq \Theta^* \), and define
\[h^{-1}(L) = \{ w \in \Sigma^* : h(w) \in L \} \]

Now we have

Theorem 7.30: Let \(L \) be a CFL, and \(h \) a homomorphism. Then \(h^{-1}(L) \) is a CFL.

Proof: The plan of the proof is

Let \(L \) be accepted by PDA
\[P = (Q, \Theta, \Gamma, \delta, q_0, Z_0, F) \]
We construct a new PDA
\[P' = (Q', \Sigma, \Gamma, \delta', (q_0, \epsilon), Z_0, F \times \{\epsilon\}) \]
where
- \(Q' = \{(q, x) : q \in Q, x \in \text{suffix}(h(a)), a \in \Sigma\} \)
- \(\delta'((q, \epsilon), a, X) = \{(q, h(a)), X) : \epsilon \neq a \in \Sigma, q \in Q, X \in \Gamma\} \)
- \(\delta'((q, bx), \epsilon, X) = \{(p, x), \gamma) : (p, \gamma) \in \delta(q, b, X), b \in T \cup \{\epsilon\}, q \in Q, X \in \Gamma\} \)

Show at home by suitable inductions that
- \((q_0, h(w), Z_0) i^*_P (p, \epsilon, \gamma) \) in \(P \) if and only if
- \(((q_0, \epsilon), w, Z_0) i^*_P ((p, \epsilon), \epsilon, \gamma) \) in \(P' \).
Decision Properties of CFL’s

We’ll look at the following:

• Complexity of converting among CFA’s and PDAQ’s
• Converting a CFG to CNF
• Testing \(L(G) \neq \emptyset \), for a given \(G \)
• Testing \(w \in L(G) \), for a given \(w \) and fixed \(G \).
• Preview of undecidable CFL problems

280

Converting between CFA’s and PDA’s

• Input size is \(n \).

• \(n \) is the total size of the input CFG or PDA.

The following work in time \(O(n) \)

1. Converting a CFG to a PDA (slide 203)

2. Converting a “final state” PDA to a “null stack” PDA (slide 199)

3. Converting a “null stack” PDA to a “final state” PDA (slide 195)

281

Avoidable exponential blow-up

For converting a PDA to a CFG we have

(slide 210)

At most \(n^3 \) variables of the form \([pXq] \)

If \((r, Y_1 Y_2 \cdots Y_k) \in \delta(q, a, X))\), we’ll have \(O(n^n) \) rules of the form

\[[qXr_k] \rightarrow a[rY_1 r_1] \cdots [r_{k-1} Y_k r_k] \]

• By introducing \(k - 2 \) new states we can modify the PDA to push at most one symbol per transition. Illustration on blackboard in class.

282

• Now, \(k \) will be \(\leq 2 \) for all rules.

• Total length of all transitions is still \(O(n) \).

• Now, each transition generates at most \(n^2 \) productions

• Total size (and time to calculate) the grammar is therefore \(O(n^3) \).
Converting into CNF

Good news:

1. Computing $r(G)$ and $g(G)$ and eliminating useless symbols takes time $O(n)$. This will be shown shortly
 (slides 229,232,234)

2. Size of $u(G)$ and the resulting grammar with productions P_1 is $O(n^2)$
 (slides 244,245)

3. Arranging that bodies consist of only variables is $O(n)$
 (slide 248)

4. Breaking of bodies is $O(n)$ (slide 248)

Bad news:

- Eliminating the nullable symbols can make the new grammar have size $O(2^n)$
 (slide 236)

The bad news are avoidable:

- Break bodies first before eliminating nullable symbols

 - Conversion into CNF is $O(n^2)$

Testing emptiness of CFL's

$L(G)$ is non-empty if the start symbol S is generating.

A naive implementation on $g(G)$ takes time $O(n^2)$.

$g(G)$ can be computed in time $O(n)$ as follows:

<table>
<thead>
<tr>
<th>Generating?</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Creation and initialization of the array is $O(n)$

Creation and initialization of the links and counts is $O(n)$

When a count goes to zero, we have to

1. Finding the head variable A, checkin if it already is “yes” in the array, and if not, queueing it is $O(1)$ per production. Total $O(n)$

2. Following links for A, and decreasing the counters. Takes time $O(n)$.

Total time is $O(n)$.
Inefficient way:

Suppose \(G \) is CNF, test string is \(w \), with \(|w| = n\). Since the parse tree is binary, there are \(2^n - 1 \) internal nodes.

Generate all binary parse trees of \(G \) with \(2^n - 1 \) internal nodes.

Check if any parse tree generates \(w \)

The grammar \(G \) is fixed

Input is \(w = a_1 a_2 \cdots a_n \)

We construct a triangular table, where \(X_{ij} \) contains all variables \(A \), such that

\[
A \xrightarrow{G} a_i a_{i+1} \cdots a_j
\]

To fill the table we work row-by-row, upwards

The first row is computed in the basis, the subsequent ones in the induction.

Basis: \(X_{ii} = \{ A : A \rightarrow a_i \text{ is in } G \} \)

Induction:

We wish to compute \(X_{ij} \), which is in row \(j - i + 1 \).

\(A \in X_{ij} \), if

\(A \xrightarrow{*} a_i a_{i+1} \cdots a_j \), if

for some \(k < j \), and \(A \rightarrow BC \), we have

\(B \xrightarrow{*} a_i a_{i+1} \cdots a_k \), and \(C \xrightarrow{*} a_{k+1} a_{k+2} \cdots a_j \), if

\(B \in X_{ik} \), and \(C \in X_{kj} \)
To compute X_{ij} we need to compare at most n pairs of previously computed sets:

$$(X_{ii}, X_{i+1,j}), (X_{i,i+1}, X_{i+2,j}), \ldots, (X_{i,j-1}, X_{jj})$$

as suggested below:

For $w = a_1 \cdots a_n$, there are $O(n^2)$ entries X_{ij} to compute.

For each X_{ij} we need to compare at most n pairs $(X_{ik}, X_{k+1,j})$.

Total work is $O(n^3)$.

Preview of undecidable CFL problems

The following are undecidable:

1. Is a given CFG G ambiguous?
2. Is a given CFL inherently ambiguous?
3. Is the intersection of two CFL's empty?
4. Are two CFL's the same?
5. Is a given CFL universal (equal to Σ^*)?

Problems that computers cannot solve

Evidently, it is important to know that programs do what they are supposed to, IOW, we would like to make sure that programs are correct.

It is easy to see that the program

```c
main()
{
    printf("hello, world\n");
}
```

indeed prints hello, world.
What about the program in Fig. 8.2 in the textbook?

It will print hello, world, for input n if and only if the equation

$$x^n + y^n = z^n$$

has a solution where $x, y,$ and z are integers.

We now know that it will print hello, world, for input $n = 2$, and loop forever for inputs $n > 2$.

It took humanity 300+ years to prove this.

Can we hope to have a program that proves the correctness of programs?

The hypothetical "Hello, world" tester H

Suppose the following program H exists.

Modify the no print statement of H to hello, world. We get program H_1

Modify H_1 so that it takes only P as input, stores P and uses it both as P and I. We get program H_2.

Give H_2 as input to H_2.

- If H_2 prints yes it should have printed hello, world.
- If H_2 prints hello, world it should have printed yes.
- Thus H_2 cannot exist.
- Consequently H cannot exist either.

A TM makes a move depending on its state, and the symbol under the tape head.

In a move, a TM will

1. Change state
2. Write a tape symbol in the cell scanned
3. Move the tape head one cell left or right
A (deterministic) Turing Machine is a 7-tuple
\[M = (Q, \Sigma, \Gamma, \delta, q_0, B, F), \]
where

- \(Q \) is a finite set of states,
- \(\Sigma \) is a finite set of input symbols,
- \(\Gamma \) is a finite set of tape symbols, \(\Gamma \supset \Sigma \)
- \(\delta \) is a transition function from \(Q \times \Gamma \) to \(Q \times \Gamma \times \{L, R\} \),
- \(q_0 \) is the start state,
- \(B \in \Gamma \setminus \Sigma \) is the blank symbol, and
- \(F \subseteq Q \) is the set of final states.

300

The moves and the language of a TM
We’ll use \(\vdash_M \) to indicate a move by \(M \) from a configuration to another.

- Suppose \(\delta(q, X_i) = (p, Y, L) \). Then
 \[X_1X_2 \cdots X_{i-1}qX_iX_{i+1} \cdots X_n \vdash_M X_1X_2 \cdots pX_{i-1}YX_{i+1} \cdots X_n \]
- If \(\delta(q, X_i) = (p, Y, R) \), we have
 \[X_1X_2 \cdots X_{i-1}qX_iX_{i+1} \cdots X_n \vdash_M X_1X_2 \cdots X_{i-1}YpX_{i+1} \cdots X_n \]

We denote the reflexive-transitive closure of \(\vdash_M \) with \(\vdash_M^* \).

- A TM \(M = (Q, \Sigma, \Gamma, \delta, q_0, B, F) \) accepts the language
 \[L(M) = \{ w \in \Sigma^* : q_0w \vdash_M^* \alpha \beta, p \in F, \alpha, \beta \in \Gamma^* \} \]

300

Instantaneous Description
A TM changes configuration after each move.

We use Instantaneous Descriptions, ID’s, to describe configurations.

An ID is a string of the form
\[X_1X_2 \cdots X_{i-1}qX_iX_{i+1} \cdots X_n \]
where

1. \(q \) is the state of the TM.
2. \(X_1X_2 \cdots X_n \) is the non-blank portion of the tape.
3. The tape head is scanning the \(i \)th symbol

302

A TM for \(\{0^n1^n : n \geq 1\} \)
\[M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\}) \]
where \(\delta \) is given by the following table

<table>
<thead>
<tr>
<th>(\rightarrow)</th>
<th>0</th>
<th>1</th>
<th>X</th>
<th>Y</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(01, A, R)</td>
<td>(q_1, Y, L)</td>
<td>(q_0, X, R)</td>
<td>(q_3, Y, R)</td>
<td>(q_4, B, R)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_2, 0, L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We can represent \(M \) by the following transition diagram

303
A TM with "output"

The following TM computes

\[m - n = \max(m - n, 0) \]

<table>
<thead>
<tr>
<th>(q)</th>
<th>(0)</th>
<th>(1)</th>
<th>(\text{B})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>((q_0, B, R))</td>
<td>((q_1, B, R))</td>
<td>((q_2, 1, R))</td>
</tr>
<tr>
<td>1</td>
<td>((q_3, 1, L))</td>
<td>((q_4, 1, R))</td>
<td>((q_3, B, L))</td>
</tr>
<tr>
<td>q_0</td>
<td>((q_0, 0, L))</td>
<td>((q_1, 1, L))</td>
<td>((q_0, B, R))</td>
</tr>
<tr>
<td>q_1</td>
<td>((q_6, B, R))</td>
<td>((q_6, B, R))</td>
<td>((q_6, B, R))</td>
</tr>
</tbody>
</table>

The transition diagram is

Programming Techniques for TM's

Although TM's seem very simple, they are as powerful as any computer.

Lots of "features" can be simulated with a "standard" machine.

- **Storage in State**

 A TM \(M \) that "remembers" the first symbol.

 \[M = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0, B], B, \{[q_1, B]\}) \]

 where

 \[Q = \{q_0, q_1\} \times \{0,1,B\} \]

 \[\Sigma = \{[B, 0], [B, 1], [B, c]\} \]

 \[\Gamma = \{B, \ast\} \times \{0,1,c,B\} \]

 \[\delta = \{([q_0, B], B, R) \rightarrow ([q_1, 1], 1, R), ([q_1, B], B, R) \rightarrow ([q_1, B], B, R)\} \]

 \[\text{L}(M) = \text{L}(01^* + 10^*) \]

- **Subroutines**

 The TM computes \(0^m10^n1 \mapsto 0^{m-n} \)

 Here is the "Copy" TM

- **Multiple Tracks for \(\{wcw : w \in \{0,1\}^*\} \)**

 \[M = (Q, \Sigma, \Gamma, \delta, [q_1, B], [B, B], \{[q_0, B]\}) \]

 where

 \[Q = \{q_1, q_2, \ldots, q_9\} \times \{0,1,B\} \]

 \[\Sigma = \{[B, 0], [B, 1], [B, c]\} \]

 \[\Gamma = \{B, \ast\} \times \{0,1,c,B\} \]
Variations of the basic TM

- Multitape TM's. Input on first tape.

In one move the TM

1. Remains in the same state or enters a new state.
2. For each tape, writes a new symbol in the current cell.
3. Independently moves each head left or right.

Theorem: Every language accepted by a multi-tape TM M is RE

Proof idea: Simulate M by multitrack TM N

1. $2k$ tracks for k tape simulation. Even tracks = tape content. Odd tracks = head position.
2. N has to visit k head markers to simulate a move of M. Store the number of heads visited in state.
3. For each head N does what M does on the corresponding tape.
4. N changes state according to M.

Nondeterministic TM's

Theorem: For every nondeterministic TM M_N there is a deterministic TM M_D such that $L(M_N) = L(M_D)$.

Proof idea: Suppose at each state M_N has k choices for each symbol.

1. M_D has transitions $\delta(q, a, k)$.
2. For each ID copy it to scratch tape. For each k create a new ID at the end of the queue.
3. Unmark the current ID and go to next ID.

Undecidability

We want to prove undecidable L_u which is the language of pairs (M, w) such that:

1. M is a TM (encoded in binary) with input alphabet $\{0, 1\}$.
2. $w \in \{0, 1\}^*$.
3. M accepts w.

Finite control

Queue of ID's

Scratch tape

\cdots \cdots \cdots

ID1 ID2 ID3 ID4

Finite control

\cdots \cdots \cdots

ID1 ID2 ID3 ID4
1. The recursive languages L:

There is a TM M that always halts and such that $L(M) = L$. IOW there is an algorithm that on input w answers “yes” if $w \in L$, and answers “no” if $w \notin L$.

2. The recursively enumerable languages L:

There is a TM M that halts and accepts if $w \in L$, and might run forever otherwise.

3. The non-RE languages L:

There is no TM whatsoever for L.

Example:

$M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_1, B, \{q_2\})$, where

$$
\begin{array}{c|c|c|c}
\delta & 0 & 1 & B \\
\hline
\rightarrow q_1 & (q_1, 1, R) & (q_2, 0, R) & (q_3, 1, L) \\
\end{array}
$$

The code for transitions C_1, C_2, C_3, C_4:

010010001}
Theorem: If L is recursive, so is \overline{L}.

Proof:

\[
\begin{array}{c}
M \\
\text{Accept} \\
\text{Reject} \\
\text{Accept} \\
\text{Reject}
\end{array}
\]

Theorem: If L is RE and \overline{L} also is RE, then L is recursive.

Proof:

\[
\begin{array}{c}
M_1 \\
\text{Accept} \\
\text{Accept} \\
\text{Accept} \\
\text{Reject}
\end{array}
\]

\[
\begin{array}{c}
M_2 \\
\text{Accept} \\
\text{Reject} \\
\text{Reject} \\
\text{Accept}
\end{array}
\]

\[
M_3
\]

The universal language L_u

\[L_u = \{(\text{enc}(M), \text{enc}(w)) : w \in L(M)\}\]

TM U where $L(U) = L_u$

Operation of U:

1. If $\text{enc}(M)$ is not legitimate halt and reject

2. Write $\text{enc}(w)$ on tape 2. Use the blank of U for 1000

3. Write the start state 0 on tape 3. Place head of tape 2 on first simulated cell

4. Search tape 1 for $0^i10^j10^k10^\ell10^m$, where
 \(a\) 0^i is the state on tape 3
 \(b\) 0^j is tape symbol of M that begins under the head on 2

5. Make the move
 \(a\) Change tape 3 to 0^k
 \(b\) Replace 0^j on tape 2 by 0^ℓ
 \(c\) Move head 2 left (if $m = 1$) or right (if $m = 2$) to next 1
 \(d\) If no $0^i10^j1\cdots1\cdots$ is not found on tape 1, then halt and reject
 \(e\) If M enters its accepting state then accept and halt
Theorem: L_u is RE but not recursive.

Proof: L_u is RE since $L(U) = L_u$.

Suppose L_u were recursive. Then L_u is also recursive. Let M be an always halting TM with $L(M) = L_u$.

We modify M to M', such that $L(M') = L_d$

- $w_i \in L(M') \Rightarrow w_i111w_i \in L_u \Rightarrow w_i \notin L_d$
- $w_i \notin L(M') \Rightarrow w_i111w_i \in L_u \Rightarrow w_i \in L(M) \Rightarrow w_i \notin L_d$

320

Recoverings for proving lower bounds

Find an algorithm that reduces a known hard problem P_1 to P_2.

Theorem: If there is a reduction from P_1 to P_2, then

1. If P_1 is undecidable, then so is P_2
2. If P_1 is non-RE, then so is P_2.

Proof: by contradiction. If there were an algorithm for P_2 you could also solve P_1 by first reducing P_1 to P_2 and then running the algorithm for P_2.

321

A non-recursive and a non-RE language

$L_e = \{\text{enc}(M) : L(M) = \emptyset\}$

$L_{ne} = \{\text{enc}(M) : L(M) \neq \emptyset\}$

Theorem: L_{ne} is recursively enumerable.

Proof: Non-deterministic TM for L_{ne}

We have reduced L_u to L_{ne}.

Suppose there is an algorithm for L_{ne}.

Run the algorithm to see if $L(M') \neq \emptyset$.

Since L_u is not recursive, L_{ne} cannot be recursive either.
Theorem: \(L_e = \{ \text{enc}(M) : L(M) = \emptyset \} \) is not RE

Proof: If \(L_e \) were RE then \(L_{ne} \) would be recursive, since \(L_e = L_{ne} \).

Other undecidable properties of TM's

1. \(L_{fin} = \{ \text{enc}(M) : L(M) \text{ is finite} \} \)
2. \(L_{reg} = \{ \text{enc}(M) : L(M) \text{ is regular} \} \)
3. \(L_{cfl} = \{ \text{enc}(M) : L(M) \text{ is a CFL} \} \)

These follow from Rice's Theorem.

Properties of the RE languages

Every nontrivial property of the RE languages is undecidable.

Property of RE languages (example): “the language is CF”

Formally: A nontrivial property is a nonempty strict subset of all RE languages.

Let \(\mathcal{P} \) be a nontrivial property of the RE languages.

\(L_\mathcal{P} = \{ \text{enc}(M) : L(M) \in \mathcal{P} \} \).

Rice's Theorem: \(L_\mathcal{P} \) is not recursive.

Proof of Rice's Theorem:

Suppose first \(\emptyset \notin \mathcal{P} \).

Let \(L \in \mathcal{P} \) and \(M_L \) be a TM such that \(L(M_L) = L \).

Transform instance \((M,w)\) of \(L_u \) into TM \(M' \) such that

\[
L(M') = \begin{cases}
L & \text{if } w \in L(M), \\
\emptyset & \text{if } w \notin L(M)
\end{cases}
\]

We have reduced \(L_u \) to \(L_\mathcal{P} \).

Suppose there is an algorithm for \(L_\mathcal{P} \).

Run the algorithm to see if \(L(M') \neq \emptyset \).

Since \(L_u \) is not recursive, \(L_\mathcal{P} \) cannot be recursive either.

Proof of Rice's Theorem:

Suppose then that \(\emptyset \in \mathcal{P} \)

Consider \(\overline{\mathcal{P}} \): the set of RE languages that do not have property \(\mathcal{P} \). Based on the above \(\overline{\mathcal{P}} \) is undecidable.

Since every TM accepts an RE language we have

\[
\overline{L_\mathcal{P}} = L_{\overline{\mathcal{P}}}
\]

If \(L_\mathcal{P} \) were decidable then \(L_{\overline{\mathcal{P}}} \) would also be decidable.
Post’s Correspondence Problem

PCP is a problem about strings that is undecidable (RE)

Let $A = w_1, w_2, \ldots, w_k$ and $B = x_1, x_2, \ldots, x_k$, where $x_i, y_i \in \Sigma^*$ for some alphabet Σ.

The instance (A, B) has a solution if there exists indices i_1, i_2, \ldots, i_m, such that

$$w_{i_1}w_{i_2} \cdots w_{i_m} = x_{i_1}x_{i_2} \cdots x_{i_m}$$

Example:

<table>
<thead>
<tr>
<th>List A</th>
<th>List B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>011</td>
</tr>
<tr>
<td>3</td>
<td>101</td>
</tr>
</tbody>
</table>

Solution: $i_1 = 2, i_2 = 1, i_3 = 1, i_4 = 3$ gives

$$w_2w_1w_3 = x_2x_1x_3 = 10111110$$

Another solution: $2, 1, 1, 3, 2, 1, 1, 3$

If $i_2 = 1$ we cannot match $w_1w_2x_1x_2 = 11101$

If $i_2 = 2$ we cannot match $w_1w_2x_1x_2 = 11011$

Only $i_2 = 3$ is possible giving $w_1w_3 = 10101$

Now we are back to "square one:"

Only $i_3 = 3$ is possible giving $w_1w_3 = 10101101$

Only $i_4 = 3$ is possible giving $w_1w_3 = 1010110101$

Conclusion: The first list can never catch up with the second

Example:

Let $A = w_1, w_2, \ldots, w_k$ and $B = x_1, x_2, \ldots, x_k$, where $x_i, y_i \in \Sigma^*$ for some alphabet Σ.

The modified PCP A, B has a solution if there exists indices i_1, i_2, \ldots, i_m, such that

$$w_{i_1}w_{i_2} \cdots w_{i_m} = x_{i_1}x_{i_2} \cdots x_{i_m}$$

Example:

<table>
<thead>
<tr>
<th>List A</th>
<th>List B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101</td>
</tr>
<tr>
<td>2</td>
<td>011</td>
</tr>
<tr>
<td>3</td>
<td>101</td>
</tr>
</tbody>
</table>

This PCP instance has no solution.

Suppose i_1, i_2, \ldots, i_m is a solution:

If $i_1 = 2$ we cannot match $w_2 = 011$

If $i_1 = 3$ we cannot match $w_3 = 101$

Therefore $i_1 = 1$ and a partial solution is $w_1 = 101$

If $i_2 = 1$ we cannot match $w_1w_2x_1x_2 = 11101$

If $i_2 = 2$ we cannot match $w_1w_2x_1x_2 = 11011$

Only $i_2 = 3$ is possible giving $w_1w_3 = 10101$

We are back to "square one:"

If $i_3 = 3$ is possible giving $w_1w_3 = 10101101$

Only $i_4 = 3$ is possible giving $w_1w_3 = 1010110101$

Any solution would have to begin with $w_1 = 111$

If $i_2 = 2$ we cannot match $w_1w_2 = 111011$

If $i_2 = 3$ we cannot match $w_1w_2 = 110$

If $i_2 = 1$ we have to match $w_1w_2 = 111111$

We are back to "square one:"

328

329

330

331
We reduce MPCP to PCP

Let MPCP be $A = w_1, w_2, \ldots, w_k, B = x_1, x_2, \ldots, x_k$

We construct PCP $A' = y_0, y_1, \ldots, y_{k+1}$, $B' = z_0, z_1, \ldots, z_{k+1}$ as follows:

$y_0 = *y_1$ and $z_0 = z_1$

If $w_i = a_1a_2\ldots a_\ell$ then $y_i = a_1 * a_2 * \ldots * a_\ell$

If $x_i = b_1b_2\ldots b_p$ then $z_i = *b_1 * b_2 * \ldots * b_p$

$y_{k+1} = \$ and $z_{k+1} = \$$

Now (A, B) has a solution iff (A', B') has one.

PCP is undecidable

Given an instance (M, w) of L_u we construct instance (A, B) of MPCP such that $w \in L(M)$ iff (A, B) has a solution.

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ be the TM. WLOG assume that M never prints a blank, and never moves the head left of the initial position.

1. The initial pair

<table>
<thead>
<tr>
<th>List A</th>
<th>List B</th>
</tr>
</thead>
<tbody>
<tr>
<td># # q_0 w #</td>
<td></td>
</tr>
</tbody>
</table>

2. For each $X \in \Gamma$

<table>
<thead>
<tr>
<th>List A</th>
<th>List B</th>
</tr>
</thead>
<tbody>
<tr>
<td>X X</td>
<td></td>
</tr>
<tr>
<td># #</td>
<td></td>
</tr>
</tbody>
</table>

3. $\forall q \in Q \setminus F, \forall p \in Q, \forall X, Y, Z \in \Gamma$

<table>
<thead>
<tr>
<th>List A</th>
<th>List B</th>
</tr>
</thead>
<tbody>
<tr>
<td>qX Yp</td>
<td>if $\delta(q, X) = (p, Y, R)$</td>
</tr>
<tr>
<td>ZqX pZY</td>
<td>if $\delta(q, X) = (p, Y, L)$, $Z \in \Gamma$</td>
</tr>
<tr>
<td>q# Yp#</td>
<td>if $\delta(q, B) = (p, Y, R)$</td>
</tr>
<tr>
<td>Zq# pZY#</td>
<td>if $\delta(q, B) = (p, Y, L)$, $Z \in \Gamma$</td>
</tr>
</tbody>
</table>
4. \(\forall q \in F, \forall X, Y \in \Gamma \)

\[
\begin{array}{c|c|c}
\text{List A} & \text{List B} & XqY \qquad qXq \qquad qYq \\
\end{array}
\]

5. Final pair

\[
\begin{array}{c|c|c}
\text{List A} & \text{List B} & q## # \\
\end{array}
\]

Example: \(L_u \) instance: \((M, 01)\)

\[
M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_1, B, \{q_3\})
\]

\[
\begin{array}{cc|cc}
\delta & 0 & 1 & B \\
\hline
\rightarrow q_1 & (q_2, 1, R) & (q_2, 0, L) & (q_2, 1, L) \\
\star q_3 & (q_1, 0, R) & (q_1, 0, R) & (q_2, 0, R) \\
\end{array}
\]

The corresponding MPCP is:

<table>
<thead>
<tr>
<th>Rule</th>
<th>List A</th>
<th>List B</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>#</td>
<td>#q101</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>0</td>
<td>0</td>
<td>#</td>
</tr>
<tr>
<td>(3)</td>
<td>1q3</td>
<td>0q30</td>
<td>from (\delta(q_1, 0) = (q_2, 1, R))</td>
</tr>
<tr>
<td></td>
<td>1q3</td>
<td>0q31</td>
<td>from (\delta(q_1, 1) = (q_2, 0, L))</td>
</tr>
<tr>
<td></td>
<td>1q3#</td>
<td>0q30#</td>
<td>from (\delta(q_1, B) = (q_2, 1, L))</td>
</tr>
<tr>
<td></td>
<td>1q20</td>
<td>0q20</td>
<td>from (\delta(q_2, 0) = (q_2, 0, L))</td>
</tr>
<tr>
<td></td>
<td>0q2#</td>
<td>0q2#</td>
<td>from (\delta(q_2, B) = (q_2, 0, R))</td>
</tr>
<tr>
<td>(4)</td>
<td>0q31</td>
<td>q2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0q32</td>
<td>q3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1q30</td>
<td>q3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1q31</td>
<td>q3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0q32</td>
<td>q3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1q31</td>
<td>q3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0q30</td>
<td>q3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0q31</td>
<td>q3</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>q3##</td>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>