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Abstract. We give a general framework for approximate query pro-
cessing in semistructured databases. We focus on regular path queries,
which are the integral part of most of the query languages for semistruc-
tured databases. To enable approximations, we allow the regular path
queries to be distorted. The distortions are expressed in the system by
using weighted regular expressions, which correspond to weighted regular
transducers. After defining the notion of weighted approximate answers
we show how to compute them in order of their proximity to the query.
In the new approximate setting, query containment has to be redefined
in order to take into account the quantitative proximity information in
the query answers. For this, we define approximate containment, and
its variants k-containment and reliable containment. Then, we give an
optimal algorithm for deciding the k-containment. Regarding the reliable
approximate containment, we show that it is polynomial time equivalent
to the notorious limitedness problem in distance automata.

1 Introduction

The semi-structured data model [ABS99] is now widely used as a foundation for
reasoning about a multitude of applications, where the data is best formalized in
terms of labeled graphs. Such data is usually found in Web information systems,
XML data repositories, digital libraries, communication networks, and so on.

Regarding the query languages for semi-structured data, virtually all of them
provide the possibility for the user to query the database through regular expres-
sions. The design of query languages using regular expressions is based on the
observation that many of the recursive queries, which arise in practice, amount
to graph traversals. In essence, these queries are graph patterns, and the an-
swers to the query are subgraphs of the database that match the given pattern
[MW95,ABS99,C+99,C+00]. In particular, the (sub)queries expressed by regular
expressions are called regular path queries.

For example, for answering the query

Q = ∗ · article · ∗ · ref · ∗ · article.hopcroft

one should find all the paths having at some point an edge labeled article, fol-
lowed by any number of other edges then by an edge ref followed at some point



by an edge article and immediately after concluding with an edge labeled with
hopcroft.

However, we are often willing to live with structural information that is
approximate. In other words, the semistructured data represented by a graph
database can be an approximation of the real world, rather than an exact rep-
resentation. On the other hand, the user herself can have an approximate idea
and/or knowledge about the world, and this has as a consequence a need for non
exact information to be extracted from the database. In both cases the conclu-
sion is that we need to deal with approximate queries and databases, and give
approximate answers to the user queries. As an example, suppose that the user
gives the above query, but in the database we have edges labeled papers instead
of article or we have recorded in the database only books by Hopcroft, and no
papers authored by him. In both cases, the user would get an empty answer
under exact query semantics, while it would be very desirable if the system had
the ability to substitute article by paper “for free,” and to substitute article
by book with some “cost,” say 3. The system could then warn the user about
the distortions, by producing a query answer, weighted by the distortion cost.
The database system administrator could capture such allowed distortions by
building a weighted regular expression

(∆, 0,∆)∗. ((article, 0, paper) + (article, 3, book)) . (∆, 0,∆)∗

This regular expression is defined over symbol-weight-symbol triplets (R, k, S),
where k is the semantic “cost” of distorting R to S 3, and (∆, 0,∆) is a shorthand
for

∑
R∈∆(R, 0, R), with ∆ being the underlying (finite) alphabet. It is easy

to see that such extended regular expressions exactly correspond to weighted
transducers, if we think of the transducers as finite automata over symbol-weight-
symbol triplets.

For simplicity, we can also allow the system administrator to use word-weight-
word triplets (v, k, w) for building such weighted regular expressions. It can easily
be shown that the (corresponding) weighted transducers over such word-weight-
word can be transformed into transducers over symbol-weight-symbol triplets.
Although the weighted regular expressions over word-weight-word triplets are
equivalent to the ones over symbol-weight-symbol triplets, the former are easier
to use when we want to capture path structural distortion, as for example

(automata.book.author.hopcroft, 0, automata.book.author.ullman).

We can even allow full general regular expressions in the above triplets as for
example

(automata. ∗.book. ∗.hopcroft, 0, automata. ∗.book. ∗.ullman).

The semantics of such triplets is that we can distort any word in the language of
the first regular expression to any database path spelling a word in the language
3 R or S could be ε as well, but not both.



of the second. It can be shown, that we are still able to find an equivalent
weighted regular expression over the symbol-weight-symbol triplets.

In this paper, we formally define the notion of weighted approximate answers
to regular path queries. Given such a query and having available a weighted
transducer (through a weighted regular expression) we show that we can effec-
tively compute all the approximate answers on a database. Furthermore, we can
produce the approximate answers in increasing order of their weight, i.e. from
the less to the more distorted.

The similar problem of finding approximate patterns in sequence databases
is treated in depth in [JMM95]. There, Jagadish, Mendelzon and Milo formalized
a very powerful rule-based system through which one can specify the possible
allowed distortions of a word to some other word. Unfortunately, their distortion
model has an undecidable word problem. Hence, should we use the model of
[JMM95], we would not be able to decide in general the membership of a tuple
in the approximate answer to a query.

We can say that, the motivation for using weighted regular expressions (i.e.
weighted transducers) as a distortion model is similar to the motivation for
using regular expressions for querying recursive graph patterns and not the more
powerful formalisms such as context-free rule-based grammars.

Having built our query approximation framework, we turn to defining a query
containment notion, which takes into account the quantitative distortion infor-
mation available in the tuples of the answer sets. For this, we define the approx-
imate containment, and its variants k-containment, and reliable containment.
For the first notion, we say that a query is approximately contained in a another
query, if for any database the tuples for the first query are also tuples for the
second one, and furthermore, in the second query, those tuples are more reliable,
i.e. they are obtained through less query distortion. The reason behind this view
is that, since for obtaining a tuple, the first query needs more distortion than
the second one, semantically the first is “smaller” than the second. However, as
we show, this unrestricted notion of approximate query containment does not
help to much. Hence, in addition, we shall require that on any database the (dis-
tortion) weight of the tuples for the first query to not be greater than a given
number, say k, compared to the weight of the corresponding tuples for the sec-
ond query. We call this k-containment, and we give an optimal algorithm, based
on algebraic properties of automata, for deciding such containment between two
given queries.

Depending on the application, we might be interested only in the existence
of the above number k. Namely, we would like to know, for two given queries
and a distortion transducer, whether there exists a number k, such that on
any database, the (distortion) weight of the tuples for the first query is not
greater than k compared to the weight of the corresponding tuples for the second
query. We call this variant reliable containment, and show that it is polynomial
time equivalent with the intricate limitedness problem for distance automata, in-
tensely investigated by Hashiguchi and others [Has82,Has90,Has00,Leu91,Sim94].



A practical application for the k- and reliable containment appears in the
data integration framework of answering queries using views, which are approx-
imate descriptions of datasources. Namely, suppose that those views have been
approximately evaluated and as a consequence their tuples are weighted. Nor-
mally, we can use a view V for answering a given user query Q if V is contained
in Q, and in such a case we produce the tuples of V as answers for Q. However,
by just doing that, we don’t have a good quantitative estimation of each tuple
reliability in the answer for the query. If a tuple in V has a distortion weight of
n, then the weight of this tuple for Q could be any number between n and 0.

Now, if we have available the fact the view V is k-contained in the query Q
then we get a narrowed interval for the distortion weight of each tuple produced
in the answer for Q. For this, suppose that some tuple t is in V with a weight
n. Then, this tuple t will have (with respect to Q) a reliability m, which lies
between n and n− k, i.e. n− k ≤ m ≤ n.

The above says that the tuple t will never be “better” than n−k in any pos-
sible database on which the view V could have been (hypothetically) evaluated.
As it is the case of the pure information integration framework, the database on
which the view has been evaluated doesn’t exist at all, and hence, we should be
content with the range (n− k, n) for some tuple t.

However, in the case of warehouses, where the database exists but is expensive
to access, we can go in the database and try to approximately evaluate the
query only if there exists at least one tuple produced (from the view), whose
lower bound of the distortion is less than some cut-off level that the user desires.
Otherwise, it doesn’t make sense to try to approximately answer the query on
the database, since all the tuples that we will get will have greater distortion
weight than the cut-off level.

Finishing this discussion, having also an algorithm for finding whether or not
V is reliably contained in Q helps in deciding if we should try to find the exact k
of this contaiment or not. If yes, then we can use our optimal algorithm to test
for each k from 1 to the greatest distortion weight the tuples in V , and find in
this way the exact k of the approximate containment of V in Q.

Finally, the more general problem of finding an approximate rewriting of
a query having available a set of views is also very interesting and surely will
benefit from our notion of approximate query containment. This is one of our
directions for future work.

2 Basic Definitions

We consider a database to be an edge labeled graph. This graph model is typical
in semistructured data, where the nodes of the database graph represent the
objects and the edges represent the attributes of the objects, or relationships
between the objects.

Formally, let ∆ be a finite alphabet. Elements of ∆ will be denoted R,S, . . ..
As usual, ∆∗ denotes the set of all finite words over ∆. Words will be denoted
by u, w, . . .. We also assume that we have a universe of objects, and objects will



be denoted a, b, c, . . .. A database DB is then a graph (V,E), where V is a finite
set of objects and E ⊆ V ×∆×V is a set of directed edges labeled with symbols
from ∆. Figure 1 shows an example of a database. If there is a path labeled
R1, R2, . . . , Rk from a node a to a node b we write a

R1R2...Rk−→ b.

Fig. 1. An example of a graph database

A query Q is a regular language over ∆. Let Q be a query and DB = (V,E)
a database. Then, the exact answer to Q on DB is defined as

ans(Q,DB) = {(a, b) : {a, b} ⊆ V × V and a
w−→ b in DB for some w ∈ Q}.

For instance, if DB is the graph in Figure 1, and Q = {SR, T}, then ans(Q, DB)
= {(b, d), (d, b), (c, a)}.

Let N = {0, 1, 2, . . .}. A weighted transducer T = (P,∆, τ, P0, F ) consists of
a finite set of states P , an input/output alphabet ∆, a set of starting states P0,
a set of final states F , and a transition relation τ ⊆ P ×∆∗ ×∆∗ × N× P .

An example of a weighted transducer ({p0, p1, p2}, {R,S, T}, τ , {p0}, {p2})
is shown in Figure 2. Intuitively, for instance (p0, RT, RS, 2, p1) ∈ τ means that
if the transducer is in state p0 and reads word RT , it emits the word RS at cost
2 and goes to state p1.

Fig. 2. A weighted transducer.



Given a weighted transducer T = (P,∆, τ, P0, F ), and a word u ∈ ∆∗

we say that a word w ∈ ∆∗ is an output of T for u through a k-weighted
distortion if there exists a sequence (p0, u1, w1, k1, p1), (p1, u2, w2, k2, p2), . . . ,
(pn−1, un, wn, kn, pn) of state transitions of τ , such that p1 ∈ P0, pn ∈ F ,
u = u1 . . . un, w = w1 . . . wn, and k = k1 + · · · + kn. We denote the set of
all outputs of T for u (regardless of distortion) by T (u). For a language L ⊆ I∗,
we define T (L) =

⋃
u∈L T (u). Later we will also use the notation rel(T ) to de-

note the set of all pairs (u, w) ∈ ∆∗ × ∆∗, where w is an output of T when
providing u as input. Similarly, dom(T ) and ran(T ), will be used to denote the
domain and range of rel(T ).

Given a weighted transducer T , and words u and w, the T -distance between
u and w is defined as

dT (u, w) =
{

inf{k : w is an output of T for u through a k-weighted distortion}
∞, if w 6∈ T (u).

Now, the approximate answer of Q on DB , through a distortion transducer
T , is defined as

ansT (Q,DB) = {(a, b, k) ∈ V × V × N :

k = inf{dT (u, w) : u ∈ Q and a
w−→ b in DB}}

For example, in the database DB of Figure 1, if Q = {RTT}, and the distor-
tion transducer is as in Figure 2, then T (Q) = {RSR,RSS}. We thus have
ans(Q,DB) = ∅, while ansT (Q, DB) = {(a, d, 2), (c, b, 2)}.

For a query Q we want to get also the query itself from the transduction.
For this reason we will usually consider that the distortion transducers also
have the ability to “leave everything unchanged.” This can be easily achieved
automatically by the system, which can add to a distortion transducer a new
additional initial state, say pid, and the neutral transitions {(pid, R, R, 0, pid) :
R ∈ ∆}. Notably, all our lower complexity bounds will be derived by considering
this class of distortion transducers, i.e. those having in addition the ability to
“leave everything unchanged.”

A transducer (P,∆, τ, P0, F ) is said to be in the standard form if τ is a relation
over P×(∆∪{ε})×(∆∪{ε})×N×P . Intuitively, the standard form restricts the
input and output of each transition to be only a single letter or ε. We call such
transitions elementary transitions. It is easy to see that any weighted regular
transducer is equivalent to a weighted regular transducer in standard form. The
transducer transformation is done by applying the following two steps.

In the first step, we eliminate the transitions of the form (p, w, R1 . . . Rn, h, q).
For this, we introduce new states p1, . . . , pn−1 and replace such a transition by
the elementary transitions (p, w, R1, h, p1), (p1, ε, R2, 0, p2), . . ., (pn−1, ε, Rn, 0, q).

In the second step, we eliminate the transitions of the form (p, S1 . . . Sm, R, k, q).
For this, we introduce new states p1, . . . , pm−1 and replace such a transition by
the elementary transitions (p, S1, R, k, p1), (p1, S2, ε, 0, p2), . . ., (pm−1, Sm, ε, 0, q).



3 Computing Approximate Answers

A graph database can be seen as an NFA where the graph nodes are the automa-
ton states and all states are both initial and final. Seen from another perspec-
tive, in the “classical” case of exact semantics (see [MW95,ABS99]), computing
ans(Q,DB) given the automata AQ for Q and ADB for the database, essen-
tially amounts to constructing the Cartesian product automaton AQ×ADB (in
a lazy way) and outputting the pair (a, b), if and only if there is, in the Cartesian
product automaton, an initial state ( , a) leading to a final state ( , b).

We show next that for computing ansT (Q, DB) we can construct an automa-
ton from the Cartesian product of AQ, T , and ADB . The approximate answer
can then be read from this automaton, similarly to the “classical” case.

Let AQ = (PQ,∆, τQ, P0Q
, FQ) be an ε-free NFA that accepts Q, and let T =

(PT , ∆, τT , P0T , FT ) be the distortion transducer in standard form. Considering
the database DB as another ε-free NFA, ADB = (PDB ,∆, τDB , PDB , PDB), we
construct the transducer C = (P,∆, τ, P0, F ), where P = PQ × PT × PDB ,
P0 = P0Q

× P0T × PDB , F = FQ × FT × PDB , and the transition relation τ is
defined by, for (p, q, r) ∈ P and R,S ∈ ∆,

τ = {((p, q, r), R, S, k, (p′, q′, r′)) :
(p, R, p′) ∈ τQ, (q, R, S, k, q′) ∈ τT , (r, S, r′) ∈ τDB} ∪

{((p, q, r), ε, S, k, (p, q′, r′)) : (q, ε, S, k, q′) ∈ τT , (r, S, r′) ∈ τDB , p ∈ PQ} ∪
{((p, q, r), R, ε, k, (p′, q′, r)) : (p, R, p′) ∈ τQ, (q, R, q′, ε, k) ∈ τT , r ∈ PDB}.

It is easy to see that (a, b, k) ∈ ansT (Q, DB), if and only if there exists, in
the graph representation of C, a final state ( , , b) reachable from an initial state
( , , a), and the shortest path between them has cost k.

For shortest paths, both Dijkstra’s algorithm and the Floyd-Warshall algo-
rithm (see e.g. [AHU74]) could be used. Although the running times for both
Dijkstra’s and Floyd-Warshall algorithms are asymptotically the same, perhaps
Dijkstra’s algorithm is better suited in our scenario. The first reason is that
in practice the user might be interested in computing objects reachable only
from a limited number of objects, for example when we have a rooted database
graph. In such a case, the running time of Dijkstra’s algorithm is better, since
we don’t need to compute the shortest paths between all pairs of objects, as in
the Floyd-Warshall algorithm.

The second reason is that most of the time the user is interested only in
receiving, say, the 20 best answers. Then, the Dijkstra’s algorithm is the ideal
choice: It processes the nodes in the order of their distance from the source.
Hence, if we could construct the transducer C on the fly, while at the same
time applying the Dijkstra algorithm, then we could stop the execution of the
algorithm after 20 iterations.

We can construct the transducer C on the fly by utilizing a lazy algorithm
similar to the lazy query evaluation algorithm of [ABS99], which in essence con-
structs the Cartesian product of a query with a database. Notably, the Dijkstra



algorithm can be elegantly combined with such a lazy construction of C. By
assuming in addition a temporary cache of the “so far reached” objects (the
set reach in the afore mentioned book), we can avoid accessing the same ob-
ject in the database more than once. Because of space limitation, we omit the
presentation of such a query evaluation algorithm.

4 Containment

In this section, we define and study three notions of containment for regular
path queries under approximate semantics.

Recall, that a query Q1 is (in the usual sense) contained in a query Q2,
denoted Q1 v Q2 iff ans(Q1,DB) ⊆ ans(Q2,DB), for all DB ’s [GT01]. It is
easy to see that this notion of query containment coincides with the (algebraic)
language containment of Q1 and Q2, i.e. Q1 v Q2 iff Q1 ⊆ Q2. However, under
approximate semantics the tuples in the query answers are weighted, and so the
containment should take into consideration the tuple weights.

As we know, the smaller the weight of a tuple the better or more reliable it
is. For out first notion of containment, we say that a query Q1 is approximately
contained in a query Q2, if for any database the answer-tuples for Q1 are also
answer-tuples for Q2, and furthermore, under Q2, those tuples are more reliable.
The reason behind this view is that, since for obtaining a tuple, Q1 needs more
distortions than Q2, semantically Q1 is “smaller” than Q2.

However, the approximate query containment is perhaps not very useful. This
is because the distance between the corresponding tuples can be arbitrarily large.
In other words, it could happen that, for any n ∈ N we can find a database such
that the tuples obtained for Q1 on this database, have a distortion weight greater
than n compared to the weight of the corresponding tuples for Q2 obtained on
the same database.

Hence, we are also interested in the quality of the approximate query contain-
ment. For this, we define the k-containment, which in addition to approximate
containment requires that the weights of the corresponding tuples do not differ
more than a given number k. Also, depending on the application, the mere exis-
tence of such a number k could be useful to know. For this, we define the reliable
containment, which asks whether or not there exists a number k, for which the
k-containment holds. Formally, we have

1. A query Q1 is approximately contained in a query Q2, denoted Q1 vT Q2,
when for any database DB , if (a, b, n) ∈ ansT (Q1,DB), then (a, b, m) ∈
ansT (Q2,DB) and m ≤ n.

2. A query Q1 is k-contained in a query Q2, denoted Q1 vT,k Q2, if in the
above we also have that n−m ≤ k.

3. A query Q1 is reliably contained in a query Q2, denoted Q1 vT,ω Q2, if there
exists a k ∈ N, such that Q1 vT,k Q2.

Surprisingly enough, the (unbounded) approximate containment does not
offer more information in reasoning about queries, than the containment under
exact semantics. Namely, we show that for any distortion transducer T



Theorem 1. Q1 vT Q2 iff Q1 ⊆ Q2.

Proof ”If.” From the definition of the approximate answers through a distortion
transducer, we have that for any database DB , if (a, b, n) ∈ ansT (Q1,DB), there
exists a word w ∈ Q1, and a word u such that a

u−→ b in DB , and dT (w, u) = n.
Since Q1 ⊆ Q2, we have that w ∈ Q2 as well, and so, for sure there exists an m
not bigger than n (i.e. m ≤ n) such that (a, b, m) ∈ ansT (Q2,DB).

”Only if.” We show that Q1 vT Q2 implies Q1 ⊆ Q2. Let w = R1 . . . Rh be a
word in Q1. We construct a canonical database DB with vertices {a, c1, . . . , ch−1, b}
and edges {(a,R1, c1), . . . , (ch−1, Rh, b)}. Clearly, (a, b, 0) ∈ ansT (Q1,DB), and
from Q1 vT Q2 we have that (a, b, m) ∈ ansT (Q2,DB), where m ≤ 0, i.e.
m = 0. So, there is a word in Q2 that without being distorted at all can label
a path from a to b in DB . Since there is only one path between a and b in DB
and this path spells w, we have that w ∈ Q2. ut

In the rest of the paper, we will be interested in the k- and reliable contain-
ments because of their practical usability.

Although related, the problems of k-containment and the reliable contain-
ment are different. For the k-containment problem, the input is two queries, a
distortion transducer, and a fixed number k that the user provides. Then, the
question is whether the queries are at most “k steps apart,” or not. On the other
hand, for the reliable containment problem, k is not part of the input, and the
question is existential.

Now, we will define the T -distance between two queries, and then give a
necessary and sufficient condition for the k- and reliable containment, based on
their T -distance.

Consider a word w on ∆. The T -distance between Q1 and w is

dT (Q1, w) = inf{dT (u, w) : u ∈ Q1}.

Based on that, the T -distance between Q1 and Q2 can be naturally defined as

dT (Q1, Q2) = sup{dT (Q1, w) : w ∈ Q2}.

Returning to our problem, we give the following characterization.

Theorem 2.

1. Q1 vT,k Q2 if and only if Q1 ⊆ Q2 and dT (Q1, Q2) ≤ k.
2. Q1 vT,ω Q2 if and only if Q1 ⊆ Q2 and there is a k ∈ N, such that

dT (Q1, Q2) ≤ k.

Proof. We will prove only the first claim, since the second one follows directly
from the first.

”If.” Let DB be a database and (a, b, n) ∈ ansT (Q1,DB). Since Q1 ⊆ Q2

we have that there exists a m ≤ n, such that (a, b, m) ∈ ansT (Q2,DB). Now,
we want to prove that n−m ≤ k. Since (a, b, m) ∈ ansT (Q2,DB), there exists
a word w2 ∈ Q2 such that dT (w2, u) = m, for some a

u−→ b in DB. Now, from



the condition dT (Q1, Q2) ≤ k, we have that for the word w2, there exists a word
w1 ∈ Q1, such that dT (w1, w2) ≤ k. In plain language, w1 needs less than k
transducer distortions to become w2. Hence, we finally have

n ≤ inf{dT (w1, u) : a
u−→ b in DB}

≤ k + inf{dT (w2, u) : a
u−→ b in DB}

= k + m,

i.e. n−m ≤ k.
“Only if.” The fact that Q1 vT,k Q2 implies Q1 ⊆ Q2 follows directly from

Theorem 1. Now, we continue showing that Q1 vT,k Q2 implies dT (Q1, Q2) ≤
k. Let w = R1 . . . Rl be a word in Q2. We construct a canonical database
DB with vertices {a, c1, . . . , cl−1, b} and edges {(a,R1, c1), . . . , (cl−1, Rl, b)}.
Clearly, (a, b, 0) ∈ ansT (Q2,DB) and from Q1 vT,k Q2 we have that (a, b, n) ∈
ansT (Q1,DB), where n ≤ k. Observe that, there is only one path between
a and b in DB and this path spells w. So, we have that dT (Q1, w) = n,
i.e. dT (Q1, w) ≤ k. Since w was an arbitrary word in Q2, we finally get that
dT (Q1, Q2) ≤ k. ut

Now we will focus on reasoning about dT (Q1, Q2). Let A1 = (P1, ∆, τ1,
P01 , F1) and A2 = (P2, ∆, τ2, P02 , F2) be two ε-free automata for Q1 and Q2

respectively, and let C = A2×T ×A1 = (P, ∆, τ, P0, F ) be a Cartesian product
transducer constructed as in Section 3.

For simplicity of exposition, we we will call a sequence of transitions a path
(not necessarily simple) in the transducer. Suppose that a path π is the sequence
of transitions (p1, u1, w1, k1, p2), (p2, u2, w2, k2, p3), . . . , (pn, un, wn, kn, pn+1).
We say that π spells u1 . . . un as input, and denote this as in(π) = u1 . . . un. Ad-
ditionally, we say that π spells w1 . . . wn as output, and denote this as out(π) =
w1 . . . wn. Finally, we say that π has weight k, and denote this as weight(π) = k,
if k = k1 + · · ·+ kn.

The following lemma says that measuring the distortion through the trans-
ducer T or C is in essence the same.

Lemma 1. For u, w ∈ ∆∗ we have that dT (u, w) = dC(u, w)

Proof. From the construction of the Cartesian product transducer C, if there
is a path π in T , such that in(π) = u and out(π) = w, then π is also in C and
vice versa. Hence, we get dT (u, w) = dC(u, w). Otherwise, if there is not such a
path, we can easily see that dT (u, w) = dC(u, w) = ∞. ut

Now, consider the weighted automaton A, that we get if we project out the
input column of the transition relation of C. Formally, A = (P, ∆, τA, P0, F ),
where τA = {(p,R, k, q) : (p, S,R, k, q) ∈ τ}. Let p and q be two states of A,
and let π be a path between them. Suppose out(π) = w. Note that there can
be more than one path 4 between p and q spelling w. In reasoning about the
4 Such paths could have some ε-transitions as well.



k-containment we will be interested in the “best” path(s) spelling w, i.e. the
one(s) with the smallest weight. Let therefore

dA(p, w, q) = inf{weight(π) : π is a path spelling w and going from p to q in A}.

Now, we define the distance of A, as

d(A) = sup{dA(p, w, p) : w is accepted by A, p ∈ P0, q ∈ F}.

Based on the these definitions, Lemma 1, and the construction of the weighted
automaton A, the following theorem can be easily verified.

Theorem 3. dT (Q1, Q2) = d(A).

We say that, a weighted automaton A is k-limited (for a given k) if d(A) ≤ k,
and A is limited if there exists a k ∈ N, such that A is k-limited.

Now, Theorem 3 along with Theorem 2, say that the k-containment (re-
liable containment) is reducible to the k-limitedness (limitedness) of weighted
automata. Since such an automaton is constructible in polynomial time on the
size of Q1, Q2, and T , we have that the afore mentioned reduction is polynomial
as well.

If we restrict ourselves in weighted automata without ε-transitions, we get
a class of automata, which are widely known as distance automata, and whose
limitedness problem is well known for its intricacy. The first solution was ob-
tained by Hashiguchi in 1982, and it gave him the key for solving the star height
problem, that had been open for over two decades. Hashiguchi’s solution runs in
doubly exponential time. By now, it is known that the problem is PSPACE hard
[Leu91]. The best known algorithm for deciding whether a distance automaton
is limited is by Leung [Leu91] and it runs in single exponential time.

Leung’s algorithm is based on the notion of “distance matrices” which can
elegantly capture the behavior of distance automata. However, the fact that the
distance automata are ε-free is of essential importance in using Leung’s distance
matrices.

In order to make use of Leung’s algorithm for deciding the reliable contain-
ment (which corresponds to the limitedness problem), we show in Section 6,
that we can efficiently transform the transducer C into one with ε-free output
transitions, while preserving the semantics of C. Consequently, the automaton
A, that we obtain from this ε-free output transducer, will be ε-free as well.

Unfortunately, Leung’s algorithm is unable to decide the k-limitedness of
a distance automaton, which in turn is needed to decide the k-containment
of queries. Also, as far as the authors know, there is no previous work on k-
limitedness of distance automata.

In the next section, we provide an optimal solution to the k-limitedness
problem, by automata constructs. Our solution is applicable to general weighted
automata, as opposed to only distance automata.



5 Deciding k-Containment

We consider the automaton A, constructed in the previous section, having as
weights on its transitions only 0 and 1. If not, we can easily “normalize” it by
replacing each transition (p, R,m, q), where m > 1, by the sequence of transitions
(p, R, 1, r1), (r1, ε, 1, r2), . . ., (rm−1, ε, 1, q). For technical reasons, we also add to
the transition relation of A the neutral transitions (p, ε, p, 0) for each state, i.e.
self-loops of weight 0, and labeled with ε. Evidently, these neutral transitions do
not alter any salient features of A. However, we can now assume that for any two
transitions in the automaton A there is always a 0-weighted transition between
them.

We will need a few simple operations on automata. Let A and B be automata.
Then we denote with A∪B the automaton, obtained by the usual construction,
recognizing L(A) ∪ L(B). Similarly, A • B, denotes the automaton recognizing
L(A).L(B).

Now, let’s assume that all automata have their states labeled by consecutive
integers starting from 1. We denote with Ai,j the automaton obtained from A,
by shifting the set of initial states to be {i} and the final states to be {j}. Also,
let 0(A) be the automaton obtained from A by deleting all transitions with cost
1. Finally, for {i, j} ⊂ {1, . . . , n}, we consider the set of elementary automata
1i,j(A), each obtained from A by retaining only transitions between i and j,
and only those that have cost 1. Observe that, an automaton, say (0(A))i,j , can
be a full-fledged automaton i.e. with loops, while an elementary automaton, say
1i,j(A), is simple in the sense that it does not contain any loops.

Given a normalized weighted automaton A = ({1, . . . , n},∆, τ, S, F ), we wish
to compute an automaton k(A), such that L(k(A)) = {w ∈ L(A) : dA(w) ≤ k}.

Clearly, if we are able to construct k(A), then we can decide whether or not
d(A) ≤ k, by testing the language equality L(k(A)) = L(A). Hence, by this, we
cast the decision of the (weighted) k-containment into a pure regular language
equivalence test, which can be done in polynomial space.

We will construct k(A) by a recursive algorithm obtained from the following
equations:

k(A) = A0 ∪ A1 ∪ . . . ∪ Ak

where A0 = 0(A), and for 1 ≤ h ≤ k

Ah =
⋃

i∈S,j∈F

Ah
i,j

where

Ah
i,j =


⋃

m∈{1,...,n}A
h/2
i,m • Ah/2

m,j for h even

⋃
m∈{1,...,n}A

(h−1)/2
i,m • A(h+1)/2

m,j for h odd

for h > 1, and

A1
i,j =

⋃
{m,l}⊂{1,...,n}

(0(A))i,m • 1m,l(A) • (0(A))l,j .



We can now show that indeed:

Theorem 4. L(k(A)) = {w ∈ L(A) : dA(w) ≤ k}.

Proof. We will prove that for all 0 ≤ h ≤ k, the automaton Ah, considered as
graph, consists of all the paths5 in A with weight exactly h, and going from an
initial to a final state. So, a word spelled by such a path cannot have distance
more than h. As a consequence the automaton

k(A) = A0 ∪ A1 ∪ . . . ∪ Ak

will accept all the words in L(A) that cannot haveA-distance more than 0, 1, . . . , k.
From this, our claim follows.

We proceed by induction on h. For h = 0, the automaton A0 is in fact 0(A),
so it consists of all the 0-weighted paths in A, going from some initial to some
final state. For h = 1, the automaton, say

A1
i,j =

⋃
{m,l}⊂{1,...,n}

(0(A))i,m • 1m,l(A) • (0(A))l,j ,

consists of the A-paths starting from state i and traversing any number of 0-
weighted arcs (transitions) up to some state m, then a 1-weighted arc going
to some state l, and after that, any number of 0-weighted arcs ending up in
state j. Since m and l range over all the possible states, we have that the above
described paths are in fact all the 1-weighted paths of A going from state i to
state j. Hence, A1 will consists of all the 1-weighted paths of A going from an
initial to a final state.

For h = 2, the automaton, say

A2
i,j =

⋃
m∈{1,...,n}

A1
i,m • A1

m,j ,

consists of concatenations of the 1-weighted paths of A starting from state i and
going to some state m, with the 1-weighted paths of A starting from that state
m and ending up in state j. Since m ranges over all the possible states, these
concatenations are in fact all the possible 2-weighted paths of A going from state
i to state j. Hence, A2 will consists of all the 2-weighted paths of A going from
an initial to a final state.

Now we want to show that for some h > 2, the automaton, say Ah
i,j consists

of all the h-weighted paths of A going from state i to state j. We assume that
this is true for all Am

i,j , when m < h. Suppose that h is even. The case when h
is odd can be similarly dealt with. We have that

Ah
i,j =

⋃
m∈{1,...,n}

Ah/2
i,m • Ah/2

m,j .

5 Talking about paths we do not necessarily mean simple paths. Some authors call
such paths also walks.



From the induction hypothesis, Ah/2
i,m and Ah/2

m,j consists of all the h/2-weighted
paths of A going from state i to some state m, and all the h/2-weighted paths
of A going from that state m to state j respectively. Since m ranges over all
the possible states, from the above equation we get that Ah

i,j consists of all the
possible h-weighted paths of A going from state i to state j. Hence, Ah will
consists of all the h-weighted paths of A going from an initial to a final state.

ut

Notably, writing Ah
i,j =

⋃
m∈{1,...,n}A

h/2
i,m •A

h/2
m,j (supposing h is even) instead

of naively writing equivalently Ah
i,j =

⋃
m∈{1,...,n}A

h−1
i,m • A1

m,j , makes us very
efficient with respect to h (and in turn with respect to k) for computing Ah

i,j

(and in turn Ak
i,j). In order to see that, suppose for simplicity that h is a power

of 2. Now, from our equation Ah
i,j =

⋃
m∈{1,...,n}A

h/2
i,m • Ah/2

m,j we have that A2
i,j

will be a union of n automata of size 2p (where p is a polynomial on n), A4
i,j

will be a union of n automata of size 4np, A8
i,j will be a union of n automata

of size 8n2p, and so on. Hence, by using our recurrence equation we will get a
resulting automaton Ah

i,j , which is a union of n automata of length hnlog2h−1p,
i.e. the size of Ah

i,j will be hnlog2hp. In other words, had we used the equivalent
equation Ah

i,j =
⋃

m∈{1,...,n}A
h−1
i,m • A1

m,j , the automata Ah
i,j would be a union

of n automata of size pnh−1, i.e. the total size would be pnh.
We are now ready to show the following theorem.

Theorem 5. The k-limitedness problem is in PSPACE with respect to the size of
the automaton. Furthermore, the decision can be made in space sub-exponential
with respect to k.

Proof. Recall that to decide whether d(A) ≤ k, amounts to testing the language
equality L(k(A)) = L(A). Now, from the above discussion it is clear that the size
of k(A) is O(k2nlog2k). So, we can test the language equivalence L(k(A)) = L(A)
in polynomial space on the size of A (see [HRS76]), and in sub-exponential space
on k. ut

Based on the above Theorem and on Theorem 3, we can state the following
corollary.

Corollary 1. The problem of deciding whether Q1 vT,k Q2 is in PSPACE with
respect to the combined size of Q1, Q2, and T . Furthermore, the decision can be
done in space sub-exponential with respect to k.

We turn now on the lower bound for deciding the k-containment.

Theorem 6. The problem of deciding whether Q1 vT,k Q2 is PSPACE-hard,
even if we know that Q1 ⊆ Q2.

Proof. First recall from Theorem 2 that Q1 vT,k Q2 is equivalent to dT (Q1, Q2)
≤ k. We will now reduce the NFA universality problem to the dT (Q2, Q1) ≤ k



problem. The universality problem says: given an NFA A, is ∆∗ ⊆ L(A)? The
universality problem is PSPACE complete [HRS76].

For an an arbitrary NFA A on ∆ we take Q1 = L(A). We choose Q2 = ∆∗

and we take as a distortion transducer T the one that corresponds to the
free applications of the three edit operations insertion, deletion, and substi-
tution. The transducer will consist of a single state which will be both initial
and final and loop transitions to this single state. Formally, this transducer is
T = ({p},∆, τ, {p}, {p}), where the transition relation is

τ = {(p,R, R, 0, p) : R ∈ ∆} ∪
{(p, ε, R, 1, p) : R ∈ ∆} ∪
{(p,R, ε, 1, p) : R ∈ ∆} ∪
{(p,R, S, 1, p) : {R,S} ⊂ ∆ and S 6= R}.

Intuitively, the above says: For each symbol R in ∆ we will have a transition R/R
leaving the symbol unchanged at no cost, or, at cost 1, through the transitions
ε/R and R/ε we can insert and delete respectively a symbol or finally we can sub-
stitute at cost 1 a symbol by another through R/S transitions. Clearly, through
the edit distance transducer any word can be transformed (or distorted) to any
other word. From this fact, we have that ∆∗ ⊆ T (L(A)). However, a word can be
transformed to another different word only through the application of non-zero
cost edit operations. Hence, dT (Q1, Q2) ≤ 0 if and only if ∆∗ ⊆ L(A). ut

Finally, Corollary 1 and Theorem 6 imply

Corollary 2. To problem of deciding whether Q1 vT,k Q2 is PSPACE complete
with respect to the combined size of Q1, Q2, and T .

6 Deciding Reliable Containment

As we already mentioned in Section 4, the problem of limitedness for distance
automata (ε-free weighted automata) has been thoroughly investigated
by [Has82,Has90,Has00,Leu91,Sim94]. However, in all previous works, the re-
quirement of ε-freeness is very essential in devising algorithms for deciding the
limitedness of automaton distance.

In this section, we show how to efficiently transform the transducer C into
one with ε-free output transitions, is such a way that the essential features of
C are preserved. As a consequence, the automaton A, that we obtain from this
output ε-free transducer, will be ε-free as well.

From the transducer C we will construct another “distance equivalent” trans-
ducer D. We shall use ε-closureC(p), similarly to [HU79], to denote the set of all
vertices q such that there is path π, from p to q in C, with out(π) = ε.

Obviously, we will keep all the transitions with non-ε output of C in the
transducer D, that we are constructing.

Now, we will insert a transition with R-output (R 6= ε) in D from a state
p to a state q whenever there is in C a path π, with out(π) = ε, from p to an



intermediate state r and there is a transition with R-output, from that state r
to the state q. Formally, if C = (P, ∆, τ, P0, F ), then D = (P, ∆, ρ, P0, G),
where

G = F ∪ {p : p ∈ P0 and ε-closureC(p) ∩ F 6= ∅}

and

ρ = {(p,R, S, k, q) : (p, R, S, k, q) ∈ τ and R 6= ε} ∪
{(p, w, S, `, q) : S 6= ε,∃r ∈ ε-closureC(p), such that (r, R, S, m, q) ∈ τ},

where w will be a word, such that w = in(π), where π is the6 cheapest path
from p to r in C, such that out(π) = ε. Also, the weight ` will be the weight of
π (going from p to r) plus the weight of the7 cheapest transition with R-output,
from state r to state q in C.

It is easy to verify about the above constructed transducer D that

Lemma 2. rel(D) ⊆ rel(C), dom(D) ⊆ dom(C), and ran(D) = ran(C).

Then, we show that the distance features of C are preserved in D.

Lemma 3. Let w ∈ ran(C) = ran(D). Then dC(dom(C), w) = dD(dom(D), w)

Proof. We have that

dC(dom(C), w) = inf{dC(u, w) : u ∈ dom(C)}.

Let u0 ∈ dom(C) such that dC(u0, w) = dC(dom(C), w), and consider the corre-
sponding cheapest path π, labeled u0/w, in C. For simplicity suppose that u0 is
unique. The case when u0 is not unique can be handled with some additional
straightforward omitted technicalities. If none of the edges of π is labeled with
ε as output, then by the construction we know that the path π is also in D and
the proof is finished.

Now, let’s suppose that some part of the path π is

p1
R1/ε, h1−→ p2, . . . , pk−1

Rk−1/ε, hk−1−→ pk, pk
Rk/S, hk−→ pk+1,

where S 6= ε.
We claim that in D we will have the transition (p1, R1 . . . Rk, S, h, pk+1) with

weight h = h1 + · · ·+ hk.
The only way that this could not be true is, if in C there is a path, comprised of

ε-output transitions, which is cheaper than using π, of getting from p1 to pk. Sup-
pose this cheap path is labeled T1/ε, . . . , Tm−1/ε. There could also be a transition
from pk to pk+1, labeled with Tm/S, that is cheaper than the last π-transition.
If such a cheaper path were to exist, and if we think of u0 as being of the
form xR1 . . . Rk−1Rky, then for the word u1 = xT1 . . . Tm−1Tmy, we would have
6 The cheapest path can be non-unique.
7 The cheapest transition can also be non-unique.



dC(u1, w) < dC(u0, w), which is a contradiction. Hence (p1, R1 . . . Rk, S, pk+1, h)
belongs to the transition relation of D. Now, we can decompose the path π into
disjoint (with respect to edges) subpaths such as the above, and subpaths that
do not have any edge labeled by ε on the output. Recall that the subpaths that
do not have any edge labeled by ε on the output are kept in D, and so finally,
we have that there exists a path σ in D labeled u0/w and with the same weight
as π. From this, we conclude that dC(dom(C), w) ≥ dD(dom(D), w).

To prove dC(dom(C), w) ≤ dD(dom(D), w) we reason in the following way.
From the Lemma 2, we have that rel(D) ⊆ rel(C). So, if (u, w) ∈ rel(D) then
(u, w) ∈ rel(C) and by the construction of D we know that for the cheapest path
in D labeled with u/w there is a corresponding path in D labeled with u/w and
having the same weight. Based on this observation the above inequality follows.

ut

If we now eliminate the input from the transitions in D = (P, ∆, ρ, P0, G),
we obtain an ε-free distance automaton A = (P,∆, τA, P0, G), where

τA = {(p, R, `, q) : (p, w, R, k, q) ∈ ρ for some w},

and the weight ` is given by the weight of the (possibly non-unique) correspond-
ing cheapest transition in the transducer D, i.e.

` = inf{k : (p, w, R, k, q) ∈ ρ for some w}.

Now, we can state the following theorem.

Theorem 7. Let Q1 and Q2 be queries and T a distortion transducer. Com-
pute the output ε-free Cartesian product transducer D and consider the distance
automaton A constructed from A. Then, d(A) = dT (Q1, Q2).

Proof. For p ∈ P0 and q ∈ G, let w be a word in Q2 such that there exists a
path π between the states p and q in D spelling w as output, i.e. w = out(π). By
the construction of D and A, we have that dA(p, w, q) = dD(dom(D), w). Now,
by using Lemma 3 and Lemma 1 we derive

dA(p, w, q) = dD(dom(D), w)
= dC(dom(C), w)
= dT (Q1, w).

Since w was an arbitrary word in Q2, we finally get that d(A) = dT (Q1, Q2). ut

Hence, we are able now to use Leung’s algorithm [Leu91], which is computa-
tionally the best known algorithm for solving the limitedness problem (in single
exponential time), but for which the ε-freeness of the automata is essential.

Additionally, we show the following complexity bound for the reliable con-
tainment, which says that the exponential time algorithm of Leung is almost the
best one could do for deciding the problem of reliable containment.



Theorem 8. The reliable query containment problem is PSPACE-hard.

Proof. We will give a reverse reduction from the limitedness problem, which is
known to be PSPACE-hard [Leu91].

Let A = (P,∆, τ, P0, F ) be a distance automaton. We take another alphabet
Γ of the same size as, but disjoint from ∆. Let ϕ be a one-to-one mapping from
∆ onto Γ . Now, from the automaton A we construct a distortion transducer
T = (P ∪ {pid},∆ ∪ Γ, ρ, P0 ∪ {pid}, F ), where

ρ = {(p, ϕ(R), R, k, q) : (p, R, k, q) ∈ τ} ∪
{(pid, R, R, 0, pid) : R ∈ ∆ ∪ Γ}.

Note that by adding the new state pid in the above transducer, we do have
the property to “leave everything” unchanged that is required from a distortion
transducer, in order include the original query words, undistorted, in the result
of transduction.

Let U be the transducer that get if we drop in T the state pid, and let V
be the identity transducer that get if we drop all the other states and keep pid.
Clearly, the transducer T can be seen as the union of U and V.

Now, let Q1 = dom(U) and Q2 = ran(U) = L(A). Since, Γ ∩ ∆ = ∅ and
Q1 ⊆ Γ ∗, while Q2 ⊆ ∆∗, we have that Q1 ∩ Q2 = ∅. So, we cannot get any
word of Q2 from Q1 through the 0-weighted identity transducer V, i.e. Q1 can
be distorted only through U (which closely corresponds to A) to Q2.

Finally, from all the above we have that dT (Q1, Q2) = dU (Q1, Q2) = d(A).
Hence, d(A) ≤ k if dT (Q1, Q2) ≤ k, which by Theorem 2 is equivalent with
Q1 vT,k Q2. ut
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