Mining Frequent Itemsets from Secondary Memory

Gosta Grahne and Jianfei Zhu
Concordia University, Montreal, Canada
{grahne, jzhu} @cs.concordia.ca

Abstract Walmart, it's very easy to collect a few gigabytes of data.
Terabytes of raw data are ubiquitously being recorded in
Mining frequent itemsets is at the core of mining associ- commerce, science and government. The question of how
ation rules, and is by now quite well understood algorith- to handle these databases is still one of the most difficult
mically for main memory databases. In this paper, we in- problems in data mining.
vestigate approaches to mining frequent itemsets when the In this paper we consider the problem of mining fre-
database or the data structures used in the mining are tooquent itemsets fronvery large databases. We adopt a
large to fit in main memory. Experimental results show that divide-and-conquer approach. First we give three algo-
our technigues reduce the required disk accesses by ordersithms, the general divide-and-conquer algorithm, then an
of magnitude, and enable truly scalable data mining. algorithm using basic projection (division), and an algo-
rithm using aggressive projection. We also analyze the disk
I/O’s required by these algorithms.
In a detailed divide-and-conquer algorithm, called
Diskmine we use the highly efficientPgrowth* method
[6] to mine frequent itemsets from an FP-tree for the main
memory part of data mining. We describe several novel

tant role in many other data mining tasks such as Sequen_techniques useful in mining frequent iter_nsets from.disks,
tial patterns, episodes, multi-dimensional patterns and soSUCh as theFP-array technique, and thétem-grouping

on [4, 9, 8]. In addition, frequent itemsets are one of the €Chnique. _
key abstractions in data mining. We also present experimental results that demonstrate

The description of the problem is as follows. Let= the fact thgt ouDiskminealgorithm gan outperform pre-
{i1,i2,...,in}, be a set oftems Items will sometimes vious algorithms by orders of magnitude, and scales up to
also be denoted by, b, ¢, An I-transactionr is asub- terabytes of data.
set of /. An [-transactionatiatabaseD is a finite bag of
I-transactions. Theupportof an itemsetS C I is the pro-
portion of transactions i that containS. The task of
mining frequent itemsets is to find &l such that the sup-
port of S is greater than some givaminimum support, sets from very large databases residing in a secondary
where¢ either is a fraction if0, 1], or an absolute count. memory storage, such as disks? Here “very large” means

Most of the algorithms, such as Apriori [3], DepthPro- that the data structures constructed from the database for
ject [1], and dEclat [12] work well when the main mem- mining frequent itemsets can not fit in the available main
ory is big enough to fit the whole database or/and the datamemaory.
structures (candidate sets, FP-trees, etc). When a database One approach isampling[11]. Unfortunately, the re-
is very large or when the minimum support is very low, ei- sults of sampling are probabilistic, some critical frequent
ther the data structures used by the algorithms may not betemsets could be missing. Besides the sampling, there are
accommodated in main memory, or the algorithms spendbasically two strategies for mining frequent itemsets, the
too much time on multiple passes over the database. Indatastructures approach, and the divide-and-conquer ap-

1 Introduction

Mining frequent itemsets is a fundamental problem for
mining association rules [2, 3, 5]. It also plays an impor-

2 Mining from disk

How should one go about when mining frequent item-

the First IEEE ICDM Workshop on Frequent Itemset Min-
ing Implementations, FIMI '035], many well known al-

proach.
The datastructuresapproach consists of reading the

gorithms were implemented and independently tested. Thedatabase buffer by buffer, and generate datastructures (i.e.

results show thatrfoneof the algorithms is able to grace-
fully scale-up to very large datasets, with millions of trans-
actions” [5].

candidate sets or FP-trees). Since the datastructure do not
fit into main memory, additional disk 1/0O’s are required.
The number of passes and disk I/O’s required by the ap-

At the same time very large databases do exist in realproach depend on the algorithm and its datastructures. For
life. In a medium sized business or in a company big as examples, if the algorithm is Apriori [3] using a hash-tree

for candidate itemsets, disk based hash-trees have to b@rocessing the next cell of the partition. After generating
used. If the algorithm is FP-growth method, as suggestedcandidate frequent itemsets from all cells, another database
in [7], FP-trees have to be written to the disk. Then the scan is needed to filter out all infrequent itemsets. The par-
number of disk 1/O’s for the trees depends on the size of tition approach therefore needs only two passes over the
the trees on disk. Note that the size of the trees could bedatabase, but writing and reading candidate frequent item-
the same as or even bigger than the size of the database. sets will involve a significant number of disk I/0’s, depend-
The basic strategy for thdivide-and-conqueapproach ing on the size of the set of candidate frequent itemsets.
is shown in the procedurdiskmine In the approach|D| We can conclude that the partition approach to decom-
denotes the size of the data structures used by the miningoosition keeps the recursive levels down to one, but the
algorithm, andM is the size of available main memory. penalty is that the combination phase becomes expensive.
Function mainmineis called if candidate frequent item- To get an easier combination phase, we adopt another
sets (not necessary all) can be mined without writing the decomposition strategy, which we cplbjection This ap-
data structures used by a mining algorithm to disks. In proach projects the original database on several databases,
diskmine a very large database is decomposed into a num-each determined by one or more frequent item(s). One ad-
ber of smaller databases. If a “small” database is still too vantage of this approach is that any frequent itemset mined
large, i.e, the data structures are still too big to fit in main from a projected database is a frequent itemset in the orig-
memory, the decomposition is recursively continued un- inal database. To getll frequent itemsets, we only need
til the data structures fit in main memory. After all small to take the union of the frequent itemsets discovered in
databases are processed, all candidate frequent itemsets atlee small projected databases. The biggest problem of the
combined in some way (obviously depending on the way projection approach is that the total size of the projected
the decomposition was done) to get all frequent itemsetsdatabases could be too large, and there could be too many

for the original database. disk 1/O’s for the projected databases. Thus, there is a
tradeoff between the easier combination phase and possi-
ProcedurediskmingD, M) ble too many disk I/O’s.
if |D| < M then return mainmine(D) To analyze the recurrence and required disk 1/O’s of the
elsedecompos® into Dy, ... Dy. general divide-and-conquer algorithm when the decompo-
return combine diskmine®, , M), sition strategy is projection, let us suppose that:

- The original database size i3 bytes.
- The data structure is an FP-tree.

- The FP-tree constructed from original datab@ses
T, and its size i$T| bytes.

diskmine(@y, M).

The efficiency ofdiskminedepends on the method used
for mining frequent itemsets in main memory and on the

number of disk 1/0’s needed in the decomposition and - |f & conditional FP-tred” is constructed from an FP-
combination phases. Sometimes the disk I/O is the main treeT’, then|T”| < ¢ - |T'|, for some constant < 1.

factor. Since the decomposition step involves I/O, ide- - The main memory mining method is tfé-growth

ally the number of recursive calls should be kept small. method [7]. Two database scans are needed for con-
The faster we can obtain small decomposed databases, the structing an FP-tree from a database.

fewer recursive call we will need. On the other hand, . The block size is3 bytes.

if a decomposition cuts down the size of the projected
databases drastically, the trade-off might be that the combi-
nation step becomes more complicated and might involve In the first line of the algorithndiskmineif 7" can not fit
heavy disk 1/0. in memory, then projected databases will be generated. We
In the following we discuss two decomposition strate- assumed that the size of the FP-tree for a projected database
gies, namely decomposition by partition, and decomposi-isc-|T)|. If ¢-|T| < M, functionmainminecan be called for
tion by projection. the projected database, otherwise, the decomposition goes
Partitioning [10] is an approach in which a large on. At passn, the size of the FP-tree constructed from a
database is decomposed into cells of small non-overlappingprojected database i&* - |T|. Thus, the number of passes
databases. The cell-size is chosen so that all frequent itemneeded by the divide-and-conquer projection algorithm is
sets in a cell can be mined without having to store any datal + [log,. M /T']. Based on our experience and the analysis
structures in secondary memory. However, since a cellin [7], we can say that for all practical purposes the number
only contains partial frequency information of the origi- of passes will be at most two. For example, I2t= 100
nal database, all frequent itemsets from the cell are localgigabytes, " = 10 gigabytes, M = 1 gigabytes, and =
to that cell of the partition, and could only lmandidate ~ 10%. Then the number of passeslis- [log, ; 23°/(10 x
frequent itemsets for the whole database. Thus the candi23%)] = 2. In five passes we can handle databases up to 100
date frequent itemsets mined from a cell have to be verified Terabytes. Namely, we gétt [log, ; 230/(10 x 24%)] =5.
later to filter out false hits. Consequently, those candidate Assume that there are two passes, and that the sum of
sets have to be written to disk in order to leave space forthe sizes of all projected databasedls After the first

- The main memory available & bytes.

database scan for finding all frequent single items, the sec- In the previous example, for Dy,

ond database scan attempts to construct an FP-tree from thireqset§éD,)={{d}, {¢,d}}. Note though{c} is also
database. If the main memory is not big enough, the scanfrequent inDy, it is not listed since it does not con-
will be aborted. We assume on average halfois read tain d. It will be listed in freqset§D.). Similarly,

at this stage, which meang2 - D/B disk I/O’s. The third freqset$D,)={{b}}, freqset$D.)={{c},{a,c}} and
scan is for decomposition. Totally, there && x D/B freqsetéD,)={{a}}. We also can notice th&?; andD.

disk 1/0O’s. The projected databases have to be written toare not that much smaller than the original database. The
the disks first, then later each scanned twice for building upside is though that the set of all frequent itemsets in
the FP-tree. This step neetlsx D'/B disk 1/O’s. Thus, D now simply is the union ofregset$D,), freqset§Dy),

the total disk number of disk 1/O’s for the general divide- freqset$¢D.) and fregset§D,;). This means that the

and-conquer projection algorithm is at least combination phase is a simple union.
, The following procedurdasicdiskminaives a divide-
5/2-D/B+3-D'/B.) and-conquer algorithm that uses basic projection. A trans-

actiont in D, will be partly inserted intd,, ;, if and only
if 7 containsi;. The parallel projection algorithm intro-
duced in [7] is an algorithm of this kind.

Obviously, the smalleP’, the better the performance.
One of the simplest projection strategies is to project
the database on each frequent item, which we loadlic

projection First we need some formal definitions. ProcedurebasicdiskmingD.,, M)
Definition 1 Let I be a set of items. By* we will de- if [Do| < M then return mainmine(D.,)
notestringsover I, such that each symbol occurs at most ~ €ISelet fregstring(Do) = iriz - - in,
once in the string. Ify, 3 are strings, then.3 denotes the return basicdiskmingD, i, , M) U
concatenation of the string with the strings. o - U
Let D be anl-database. Thelfregstring(D) is the basicdiskmin€D,, i,,, M).

string over!, such that each frequent itemIn occurs in
it exactly once, and the items are in decreasing order of
frequency inD.

Let's analyze the disk 1/O’s of the algorithrba-
sicdiskmine As before, we assume that there are two
passes, that the data structure is an FP-tree, and that the

As an example, consider the, b, c, d, e}-databas® = main memory mining method BP-growth Ifin D, each
{{a,c,d}, {b,c,d, e}, {a,b}, {a, c}}. If the minimum sup- transact!on cqntalns on the avergg&equent items, each
port is 50%, therfregstring(D) = achd. transaction will be written tm_prOJected databasgs. Thus

the total length of the associated transactions in the pro-
Definiton2 Let D be an I-database, and let jecteddatabasesist(n—1)+---+1 =n(n+1)/2,the to-
fregstring(D) = iyig---ip. Forj € {1,...,k} tal size of all projected database$ist-1)/2-D ~ n/2-D.
we defineD;, = {r N {i1,...,i;}:i; € 7,7 € D}. Still there are two full database scans and a incomplete

Leta € I*. We defineD,, inductively: D, = D, and let database scan fdpP., as explained for formula (1). The
fregstring(Dy) = iyig - - -ix. Then, forj € {1,... k}, number of total disk I/O’s i$5/2 - D/B. The projected
Dai; = {7 N {i1,... 45} 105 € 7,7 € Do} [databases have to be written to the disks first, then later

scanned twice each for building an FP-tree. This step needs

Obviously, D, ;; is an{iy,...,i;}-database. The de- atleast3 - n/2 x D/B. Thus, the total disk I/O’s for the
composition oD, iNto D, 4, - .., Da iy, is called thébasic divide-and-conquer algorithm with basic projection is
projection

To illustrate the basic projection, let's consider the 5/2-D/B+n-3/2-D/B 2
above example, starting from the least frequent item in the

fregstring we obtainD, — {{a,c,d}, {b,c,d}}, Dy — The recurrence structure basicdiskminas shown in

Figure 1. The reader should ignore nodes in the shaded area

{{e,b},{a,b}}, D. = {{a,c},{c},{a,c}}, andD, = . . o X

at this point, they represent processing in main memory.
{{a}. {a}, {a}}. P yTepresentp J Y
Definition 3 Leta € I*, i; € I, and letD, ;, be anl- /D\
database. Thefiregsets(, D..i;) denotes the subsets of D o o s

I that containi; and are frequent i®,, ;; when the min-
imum support is. Usually, we shall abstragtaway, and

write just fregsets(Dq.q;). [] /Ty\ /m\ . -
Tab Tac Tad Th.c Thd Ted
LemmallLet D, be an I-database, and 7\
fregstring(Dy) = i1ia - - -ik. Then T"’ i) e oee)
Tabe.d
fregsets(Dy) = U fregsets(Da.i;) |
Je{1,....k} Figure 1. Recurrence of Basic Projection

In a typical applicatiom, the average number of fre-

database. However, for disk I/O, suppos®in each trans-

guent items could be hundreds, or thousands. It thereforeaction contains on averagefrequent items, and that we
makes sense to devise a smarter projection strategy. Beforean group them inté groups of equal size. Then the

we go further, we introduce some definitions and a lemma.

Definition 4 Let D,
fregstring(Dy)
is a string in I*.

be an I-database, and let
B1.02. -+ Bk, where eachp;

We call 8;.62.--- .0 a group-

ing of fregstring(D,). Let 8; = ij..... ij,,, for
je{l,...,k}. We now defineD,, 5, =
{Tﬂ {Z.ll,...,ijm},T S Da7Tﬁ {ijl""7ij7n} 7§ @}

In D, p;, items ing3; are calledmaster itemgsitems in
Bi,...,B;—1 are callecslave items]

For the previous exampléefregstring(D,) acbd,
81 = ac, B2 = bd gives the groupingic.bd of acbd.
Now Dy = {{a,c¢,d},{b,c,d},{a,b}} and D,. =
{{a, c} {c}, {a},{a,c}}.

Definition 5 Let {«,3} C I*, and letD, 3 be anlI-
database. Theffiregsets(D,.g) denotes the subsets Hf
that contain at least one item ihand are frequent i®,, s.

[]

Lemma?2 Let « € I*, D, be an I-database, and
fregstring(Dy) = B182 - - - Bx. Then

U Jregsets(Da.p;)
Fe{l,...k}

fregsets(Dy)

By following the above example,
freqsetéDyq)={{d}, {b}, {c,d}},
{{c}.{a},{a, c}}.

we can get
and fregset§D,.)=

items will be written to the projected databases with total
lengthn/k+2-n/k+...+k-n/k=(k+1)/2-n. Total
size of all projected databasegis+ 1)/2- D ~ k/2 - D.
The total disk 1/O’s for the aggressive divide-and-conquer
algorithm is then

5/2-D/B+k-3/2-D/B @)

The recurrence structure of algorithnaggres-
sivediskminés shown in Figure 2. Compared to Figure 1,
we can see that the part of the tree that corresponds to
decomposition (the nonshaded part) is much smaller in
Figure 2. Although the example is very small, it exhibits
the general structure of the two trees.

3
/\
Deab Decd
\ \
Teab Tecd
o e
Tea Teb Tac Ted
T /\
Tab Ta.c Tad Tbe Tbd T‘ d
. \
ci - Tal

Figure 2. Recurrence of Aggressive Projec-
tion

If & < n, we can expect the aggressive divide-and-con-
quer algorithm will significantly outperform the basic one.

Based on Lemma 2, we can obtain a more aggressive3 Algorithm Diskmine

divide-and-conquer algorithm for mining from disks. The
following shows the algorithnaggressivediskmineHere,
fregstring(D,) is decomposed into several substriggs

each of which could have more than one item. Each sub-

The algorithmDiskmineis shown below. In the algo-
rithm, D,, is the original database or a projected database,
and M is the maximal size of main memory that can be

string corresponds to a projected database. A transactiorused byDiskmine

7 in D, will be partly inserted intd,, s, if and only if 7
contains at least one itemin ;. Since there will be fewer
projected databases, there will be fewer disk I/O’s. Com-
pared with the algorithrbasicdiskmingwe can expect that

a large amount of disk 1/0 will be saved by the algorithm
aggressivediskmine

Procedureaggressivediskmiti®,,, M)

if |Do| < M then return mainmine(D,,)
elselet fregstring(Dy) = B102 - - Prs
return aggressivediskmit®,, g,, M) U
..U
aggressivediskmit®,, s, , M).

Let's analyze the recurrence and disk I/O’s of the ag-
gressive divide-and-conquer algorithm. The number of
passes needed is stilk- [log,. M /T ~ 2, since grouping

Procedure DiskminéD,,, M)

scanD,, and computdreqstringD,,)
call trialmainmine(Dy, M)
if trialmainmine(D,, M) abortecthen
compute a grouping; s - - - Bx of fregstring(D,)
Decomposé,, into Dy, 3, , - .., Da.g,
for j =1 to k do begin
if 3; is a singletorthen Diskmine(Dq.p,, M)
elsemainmine(Dq.g;) '
end
else returnfregset$D,,)

Diskmineuses the FP-tree [7] as data structure BRd
growth* [6] as main memory mining algorithm. Since the
FP-tree encodes all frequency information of the database,

we can shift into main memory mining as soon as the FP-

items does not change the size of an FP-tree for a projectedree fits into main memory.

Since an FP-tree usually is a significant compression
of the database, oubiskminealgorithm begins optimisti-
cally, by callingtrialmainmine which starts scanning the

we see that since the aggressive projection uses main mem-
ory more effective, and that the decomposition phase is
shorter, resulting in fewer disk 1/O’s.

database and constructing the FP-tree. If the tree can be In Figure 2, the shaded area shows the recursive struc-
successfully completed and stored in main memory, weture of FP-growth*. Comparing with the shaded area in
have reached the bottom level of the recursion, and can ob+igure 1 which shows the recursive structure of the FP-
tain the frequent itemsets of the database by runkiRg growth method, we can see that the main difference is the
growth* on the FP-tree in main memory. extra shaded level in Figure 2. This level is for the FP-trees
of groups. For each group, since the total size of all FP-
trees for its master items may be greater than the size of
main memory, a “modified FP-tree” is constructed. This
FP-tree will fit in main memory. From the FP-tree, smaller
FP-trees can be constructed one by one, as shown in both
figures. As an example, in Figure Basicdiskmineenters
_ o o the main memory phase for instance for the conditional
If, at any time duringtrialmainmine we run out of gatabas®. ,. Then FP-growth first constructs the FP-tree
main memory, we abort and return the partially constructed T. . from D, , (in Figure 2,T. , is constructed fror’. ,).
FP-tree, and a pointer to where we stopped scanning therhe tree rooted 4. , shows the recursive structure of FP-
database. We then resume proces$WgkmingD., M) growth, assuming for simplicity that the relative frequency
by computing a groupingd,, ..., 3, of fregstringD,,), remains the same in all conditional pattern bases.

and then decomposirB,, into D, 3,,-..,Dqs.p,. We re- o
cursively process each decomposed databasg,. Dur- ~ 1heorem 1 DiskmingD) returnsfreqset¢D)

ing the first level of the recursion, some grot@swill

ProceduretrialmainmingD,,, M)
start scannin@®,, and building the FP-tree
T, in main memaory.
if |T,,| exceeds\ then return the incompletél’,
elsecall FPgrowth*(T,,) andreturn fregset$D,,).

Applying the FP-array Technique. In Diskming the Fre-
consist of a single item only. If; is a singleton, we call quent Pairs Array (FP-array) technique developed for FP-
Diskming otherwise we calmainminedirectly, since we growth* [6] is also applied to save one tree traversal for
put several items in a group only when we estimate that theeach recursive call. Furthermore, when projected databases

corresponding FP-tree will fit into main memory. are generated, the FP-array technique can save a great num-
In computing the grouping,, ..., 3; we assume that per of disk I/O's.

transactions in a very large database are evenly distributed, Recall that irtrialmainmine if an FP-tree can not be ac-

i.e., if the size of the FP-tree is for p% of the database, commodated in main memory, the construction stops. Sup-
then the size of the FP-tree for whole databasg/js- 100. pose now we decided to stop scanning the database. Then
Most of the time, this gives an overestimation, since an FP-|ater, after generating all projected databases, two database
tree increases fast only at the beginning stage, when itemscans are required to construct an FP-tree from a projected
are encountered for the first time and inserted into the tree.qatabase. To save one scanDiskminewe calculate an

In the later stages, the changes to the FP-tree will be mostly|:|:>_array for each FP-tree. When constructing the FP-tree
counter updates. fromD,,, ifitis found that the tree can not fit in main mem-
ory, the construction of the FP-trég stops, but the scan of

the databas®,, continues so that we finish filling the cells

of the arrayA,,. Later, only one database scan is needed to
construct an FP-tree from a projected database because of
the existence of the array,, .

ProceduremainmingD,, 3)
build a modified FP-tre&, s for D, s
for eachi in 3 do begin

construct the FP-treg, ; for D, ; from T, g

call FPgrowth* (T, ;) andreturn freqsetéD,, ;).
end Grouping items. In Diskmine the fourth line computes a
grouping 313z - - - B, of fregstring(D,). For eachs, a

In basicdiskmingsince there is only one master item in new projected databage, s will be computed fronD,,,
each projected database (¢, no master item at all), an then written to disk and read from disk later. Therefore,
FP-tree can be constructed without considering the mas-the more groups, the more disk I/O’s. In other words, there
ter item. In procedurenainmine sinceD,, s is for mul- should be as many items in ea@has possible. To group
tiple master items, the FP-tree constructed frPms has items, two questions have to be answered.
to contain those master items. However, the item order is
a problem for the FP-tree, because we only want to mine
all frequent itemsets that contain master items. To solve
this problem, we simply use the item order in the partial
FP-tree returned by the abortathimainmingD,,). This
is what we mean by a “modified FP-tree” on the first line
in the algorithmmainmine

The entire recurrence structure@iskminecan be seen
in Figure 2. Compared to the basic projection in Figure 1

1. If 8 currently only has one iteny;, after projection,
is the main memory big enough for accommodating
T,.i, constructed fromD,, ;, and running theFP-
growth* method oril, ;,?

2. If more items are put if¥, after projection, is the main
memory big enough for accommodatirfg, s con-
structed fromD,, g and runningFPgrowth* on T, 3

only for items in3?

To answer the questions, algorithiskmine col-
lects statistics on the partial FP-trgg and the rest of
databasé®,,.

For the first question, for each itein, by counting the
number of nodes in the FP-tr@g, ;, constructed from the
partial FP-tre€l’,,, we can use the number to estimate the
size of FP-tre€l,, ;, constructed fronD,. We write the
number asy[j|(7T,) for eachi;, and suppose the num-
ber of transactions D, is t(D,) and the number of
transactions used for constructing the partial FP-ffge
is t(T,). By the assumption that the transactionsZip
are evenly distributed and that the parfial represents the
whole FP-tree foD,,, the estimated size of FP-trdg, ;,

is M[ﬂ(Ta) : t(Da)/t(Ta)-

another method. Let[j](T,) be the size of the FP-tree
after the partial FP-tre&, is trimmed and only contains
itemsiy,...,i;. Based onv[j](T,) the number of nodes
in the complete FP-tree for iteriy can be estimated as
v[j|(Tw) - t(Dy)/t(Tw). Now, suppose(T,) is the num-
ber of nodes irfl,, finding the cut point becomes finding
the biggest: such that[k](T,) - t(Da)/t(Tw) < v(Ty),
andv[k + 1](T,) - (Do) /t(Tw) > v(Ty).

Sometimes the above estimation only guarantees that
the main memory is big enough for the FP-tree which con-
tains all items betweefy and the cut point, while it does
not guarantee that the descendant trees from that FP-tree
can fit in main memory. This is because the estimation
does not consider the size of descendant trees correctly.

Before answering the second question, we introduce theActually, from [](T.,) we can get a more accurate es-

cut pointfrom which the first group can be easily found.

Finding the cut point. Notice that inFPgrowth*, when
mining frequent itemsets fay;, all frequency information
aboutix1, ..., i, is useless. Thus, though a complete FP-
treeT,, constructed fronD,, could not fit in main memory,
we can find many’s such that the trimmed FP-tree con-
taining only nodes for itemsy, ..., 4; will fit into main
memory. All frequent itemsets fay,,...,i; can be then
mined from one trimmed tree. We call the biggest of such
k's thecut point At this point, main memory is big enough
for storing the FP-tree containing only, . . . , i1, and there
is also enough main memory for runnifggrowth* on
the tree. Obviously, if the cut poirit can be found, items
i, ...,91 can be grouped together. Only one projected
database is needed far, . . . , 1.

There are two ways to estimate the cut point. One way is
to get cut point from the value ofD,,) andt(T,). Figure 3
illustrates the intuition behind the cut point. In the figure,
l = t(T,), andm = t(D,). Since the partial FP-tree
for ¢(T,) of ¢{(D,) transactions can be accommodate in
main memory, we can expect that the FP-tree containing
iy .- -,01, Wherek = |[n - t(T,)/t(Dy)], also will fit in
main memory.

Figure 3. Cut Point

The above method works well for many databases, es-
pecially for those databases whose corresponding FP-tree
have plenty of sharing of prefixes for items froin to

timation of the size of the biggest descendant tree. To
find the cut point, we need to find the biggdst such
that (v[K] (Ta) + plj](Ta)) - H(Da) /HTa) < v(T,), and
(Wlk + 1(Tw) + plm)(Tn)) > v(T.), wherej < k,
plil(Te) = mazjeq,. pymli](Ts), andm < k + 1,
ulm](Ta) = mazpeqa,.. kr1ypm](Ta).

Grouping the rest of the items. Now we answer the sec-
ond question, how to put more items into a group? Here
we still needu|[;](7,,). Starting withu[cutpoint + 1](T,,),

we test if plcutpoint + 1)(Ty) - t(Da)/t(Ta) > v(Ty).

If not, we put next item cutpoint+2 into the group,
and test if(u[cutpoint + 1](Ty,) + plcutpoint + 2](T,))
t(Do)/t(Ty) > v(Ty). We repeatedly put next item in
fregstring(D) into the group until we reach an itefy,
such that

J

>

m=cutpoint+1

ulm)(Ta) - t(Da) /t(Ta) > v(Ta).

Then starting from;, we put items into next group, until
all items find its group.

Why can we put items;, ..., 4 together into group
B? This is because even if we constrdct; , . .., T,
from the projected databaseB, ;,,...,D,.;, and put
all of them into main memory, the main memory is big
enough according to the grouping condition. At this stage,
To.ijs--->Tas, all can be constructed by scannify,
once. Then we mine frequent itemsets from the FP-trees.
However, we can do better. Obviousl, ;,,..., T,
overlap a lot, and the total size of the trees is definitely
greater than the size @, . It also means that we can put
more items into eacH, only if the size off,, s is estimated
to fit in main memory. To estimate the size®f g, part of
T, has to be traversed by following the links for the master
items inT,,.

$he disk 1/O’s. Let's re-count the disk 1/O’s used in
Diskmine The first scan is still for obtaining all fre-

the cut point. However, if the FP-tree constructed from quent items inD,, and it needsD/B disk I/O’s. In the
a database does not share prefixes that much, the estimasecond scan we construct a partial FP-tfegthen con-
tion could fail, since now the FP-tree for items framto tinue scanning the rest database for statistics. The second
the cut point could be too big. Thus, we have to consider scan is a full scan, which needs anotfigfB disk I/O’s.

Suppose then that projected databases have to be com-
puted. According to Section 2, the total size of the pro-
jected databases is approximaté}2 - D. For computing
the projected databases, the frequency informatidf} iis
reused, so only part @, is read. We assume on average
half of D. is read at this stage, which meah& - D/B
disk 1/0’s. By using of the FP-array technique [6], writ-
ing and later reading projected databases now only take
2-k/2-D/B =k-D/Bdisk I/O’s. Suppose all frequent

itemsets can be mined from the projected databases without

going to the third level. Then the total disk I1/O’s is

5/2-D/B+k-D/B (4)

Compared with formula Diskminesaves at leadt/2 -
D/B disk 1/O’s, thanks to the various techniques used in
the algorithm.

4 Performance Study

In this section, we present the results from a perfor-
mance comparison dbiskminewith the Parallel Projec-
tion algorithm in [7] and théPartitioning algorithm in [10].
The scalability oDiskmineis also analyzed, and the accu-
rateness of our memory size estimations are validated.

As mentioned in Section 2, thearallel Projectional-
gorithm is a basic divide-and-conquer algorithm, since for

each item a projected database is created. For perfor

mance comparison, we implementPdrallel Projection
algorithm, by using=P-growthas main memory method,
as introduced in [7]. The Partitioning algorithm is also a
divide-and-conquer algorithm. We implemented the parti-
tioning algorithm by using the Apriori implementatidn
We chose this implementation, since it was well written
and easy to adapt for our purposes.

We ran the three algorithms on both synthetic datasets

20. The dataset is very sparse and FP-tree constructed from
the dataset is bushy. For Apriori, a large number of candi-
date frequent itemsets will be generated from the dataset.

Disk I/0 CPU Time

10000 10000

1000

1000

1000 1000

Time (s)

100

10

0 9 8 7 6 5 4 3 2
Minimum Support (%)

0 9 8 7 6 5 4 3 2
Minimum Support (%)

(a) Time for Disk I/O’s (b) CPU time

Figure 4. Experiments on synthetic dataset

When running the algorithms, the main memory size
was given as 128 megabytes. Figure 4 shows the experi-
mental results. In the figure, “Basic” represents Haa-
allel Projectionalgorithm, and “Aggressive” represents the
Diskminealgorithm. Since the Partitioning algorithm is the
slowest in the group, its total running time is always an or-
der of magnitude greater than tBasicalgorithm and the
Aggressivalgorithm, we didn’t separate its CPU time and
the time for disk I/O’s. Consequently the lines for Parti-
tioning algorithm are not shown in the figures. From Fig-
ure 4 (a), as expected, we can see that the disk I/O time

of the Aggressivealgorithm is orders of magnitude smaller

than that of théBasicalgorithm. On the other hand, in Fig-
ure 4 (b) we can see that tiBasicalgorithm, however, is
not slower than théggressivelgorithm if we only com-
pare their CPU time. In [6], where we were concerned
with main memory mining, we found that if a dataset is
sparse the boostdePgrowth* method has a much better
performance than the origineP-growth The reason here
the CPU time of theAggressivealgorithm is not always

and real datasets. Some synthetic datasets have miIIionéeSS than that oBasicalgorithm is that theAggressiveal-

of transactions, and the size of the datasets ranges fron
several megabytes to several hundreds gigabytes. Due t
lack of space, only the results for some synthetic datasets

and a real dataset are shown here.

All experiments were performed on a 2.0Ghz Pentium 4
with 256 MB of memory under Windows XP. FBiskmine
and theParallel Projectionalgorithm, the size of the main
memory is given as an input. For the Partitioning algo-

rithm, since it only has two database scans and each main

memory-sized partition and all data structures for Apriori
are stored into main memory, the size of main memory is
not controlled, and only the running time is recorded.

We first compared the performance of three algorithms
on synthetic dataset. DatasEt00120D100Kwas gener-
ated from the benchmark application of IBM research cen-

ter?. The dataset has 100,000 transactions and 1000 items,
and occupies about 40 megabytes of memory. The average
transaction length is 100, and the average pattern length is

Iwww.cs.helsinki.fi/u/goethals/software
2www.almaden.ibm.com/software/quest/Resources

orithm has to spend CPU time on calculating statistics.

(l)-Iowever, from Figure 4, we also can see that the CPU

overhead used by thaggressivealgorithm now become
Insignificant compared to the savings in disk 1/O.

We then ran the algorithms on a real datasesarak
which is used as a test dataset in [5]. The dataset is about
40 megabytes. Since it is a dense dataset and its FP-tree is
fairly small, we set the main memory size as 16 megabytes
for the experiments. Results are shown in Figure 5.

Disk /0

CPU time

1000

1000

10
05 045 04 035 03 025 02 015 0.1 05 045 04 035 03 025 02 015 0.1

Minimum Support (%)

(b) CPU time

Minimum Support (%)

(a) Time for Disk 1/O’s

Figure 5. Experiments on real dataset

In Figure 5, for the same reason as above, results fortheb Conclusions
Partitioning algorithm is not shown. It is still the slowest

comparing the total running time. This is because it gener- we have investigated several divide-and-conquer algo-
ates too many candidate frequent itemsets from the densgjthms for mining frequent itemset from secondary mem-
dataset. Together with the data structures, the candidateyry. We also analyzed the recurrences and disk 1/0’s of all
sets use up main memory and virtual memory was used.algorithms. We then gave a detailed divide-and-conquer al-
In Figure 5 (a), the time used for disk I/O’s of tA@gres- gorithm which almost fully uses the limited main memory

sivealgorithm is still remarkably less than the time used for and saves a numerous number of disk 1/0’s. We introduced
disk I/O’s of the Basic Algorithm. We can again notice that many novel techniques used in our algorithm.

the CPU time of the Basic Algorithm is less than that of the Our experimenta| results show that our a|gorithm suc-

Aggressivealgorithm. This is becaus€osarakis a dense cessfully reduces the number of disk access, sometimes by
dataset so the FP-array technique does not help a lot. Irgrders of magnitude, and that our algorithm scales up to
addition, calculating the statistics takes an amount of time. terabytes of data. The experiments also validate that the
To test the effectiveness of the techniques for grouping estimation techniques used in our algorithm are accurate.
items, we runDiskmineon T100120D100Kand see how Future extensions of this work will include mining max-
close the estimation of the FP-tree size for each group isimal and closed frequent itemsets, as well as exploring disk
to its real size. We still set the main memory size as 128 |ayout for various datastructures, for instance for candidate
megabytes, the minimum support is 2%. When generatingsets, since there are some situations where Apriori indeed
the projected databases, items were grouped into 7 groupgutperforms the FP-tree based methods.
(the total number of frequent items is 826). As we can
see from Figure 6 (a), in all groups, the estimated size is References
always slightly larger than the real size. Compared with
the Basic Algorithm, which constructs an FP-tree for each
item from its projected database, thggressivelgorithm
almost fully uses the main memory for each group to con- 118, 2000.

struct an FP-tree. [2] R.Agrawal, T.Imielinski, and A. N. Swami. Mining associ-
Eotimation siz ve. Real size Seatabity ation rules between sets of items in large databasesCM

[l pp— SIGMOD’93 pages 207-216, Washington, D.C., 1993.

- o [3] R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules. I'VLDB'94, pages 487—499, 1994.

[4] R. Agrawal and R. Srikant. Mining sequential patterns. In
ICDE’95, pages 3-14, 1995.

[5] B. Goethals and M. J. Zaki. Advances in frequent item-
set mining implementations: Introduction to fimi03. In

[1] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth
first generation of long patterns. KDD’00, pages 108—

Memory (Megabytes)

O oty Prodeeding of the 1st IEEE ICDM Workshop on Frequent
(b) Itemset Mining Implementations (FIMI'03)ov 2003.
[6] G.Grahne and J. Zhu. Efficiently using prefix-trees in min-
Figure 6. Estimation Accuracy and Scalabil- ing frequent itemsets. IAdst IEEE ICDM Workshop on
ity of Diskmine Frequent Itemset Mining Implementations (FIMI'03jov
2003.

[7] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent pat-
terns without candidate generation: A frequent-pattern tree

As a divide-and-conquer algorithm, one of the most im- approach. Data Mining and Knowledge Discoverg:53—

portant properties obiskmineis its good scalability. We 87, 2004.

ran Diskmineon a set of synthetic datasets. In all datasets, [g] M. Kamber, J. Han, and J. Chiang. Metarule-guided min-
the item number was set as 10000 items, the average trans- ing of multi-dimensional association rules using data cubes.
action length as 100, and the average pattern length as In Knowledge Discovery and Data Miningages 207-210,
20. The number of the transactions in the datasets var- 1997.

ied from 200,000 to 2,000,000. Datasets size ranges from [9] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery
100 megabytes to 1 gigabyte. Minimum support was set as of frequent eplsodes in event sequendeata Mining and
1.5%, and the available main memory was 128 megabytes. _ Knowledge Discoven(3):259-289, 1997. .

. . [10] A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient
Figure 6 (b) shows the results. In the figure, the CPU and . - L .

) . . . algorithm for mining association rules in large databases. In

the disk 1/0O time is always kept in a small range of ac- VLDB'95, pages 432444, 1995.
ceptable values. Even for the datasets with 2 million trans- [11] H. Toivonen. Sampling large databases for association
actions, the total running time is less than 1000 seconds. rules. INVLDB'96, pages 134145, Sep. 1996.
Extrapolating from these figures using formula (4), we can [12] M. Zaki and K. Gouda. Fast vertical mining using diffsets.
conclude that a dataset the size of the Library of Congress In ACM SIGKDD'03 Washington, DC, Aug. 2003.
collection (25 Terabytes) could be mined in around 18
hours with current technology.

