
Mining Frequent Itemsets from Secondary Memory

Gösta Grahne and Jianfei Zhu
Concordia University, Montreal, Canada

{grahne, jzhu}@cs.concordia.ca

Abstract

Mining frequent itemsets is at the core of mining associ-
ation rules, and is by now quite well understood algorith-
mically for main memory databases. In this paper, we in-
vestigate approaches to mining frequent itemsets when the
database or the data structures used in the mining are too
large to fit in main memory. Experimental results show that
our techniques reduce the required disk accesses by orders
of magnitude, and enable truly scalable data mining.

1 Introduction

Mining frequent itemsets is a fundamental problem for
mining association rules [2, 3, 5]. It also plays an impor-
tant role in many other data mining tasks such as sequen-
tial patterns, episodes, multi-dimensional patterns and so
on [4, 9, 8]. In addition, frequent itemsets are one of the
key abstractions in data mining.

The description of the problem is as follows. LetI =
{i1, i2, . . . , in}, be a set ofitems. Items will sometimes
also be denoted bya, b, c, . . .. An I-transactionτ is a sub-
set ofI. An I-transactionaldatabaseD is a finite bag of
I-transactions. Thesupportof an itemsetS ⊆ I is the pro-
portion of transactions inD that containS. The task of
mining frequent itemsets is to find allS such that the sup-
port of S is greater than some givenminimum supportξ,
whereξ either is a fraction in[0, 1], or an absolute count.

Most of the algorithms, such as Apriori [3], DepthPro-
ject [1], and dEclat [12] work well when the main mem-
ory is big enough to fit the whole database or/and the data
structures (candidate sets, FP-trees, etc). When a database
is very large or when the minimum support is very low, ei-
ther the data structures used by the algorithms may not be
accommodated in main memory, or the algorithms spend
too much time on multiple passes over the database. In
theFirst IEEE ICDM Workshop on Frequent Itemset Min-
ing Implementations, FIMI ’03[5], many well known al-
gorithms were implemented and independently tested. The
results show that “noneof the algorithms is able to grace-
fully scale-up to very large datasets, with millions of trans-
actions” [5].

At the same time very large databases do exist in real
life. In a medium sized business or in a company big as

Walmart, it’s very easy to collect a few gigabytes of data.
Terabytes of raw data are ubiquitously being recorded in
commerce, science and government. The question of how
to handle these databases is still one of the most difficult
problems in data mining.

In this paper we consider the problem of mining fre-
quent itemsets fromvery large databases. We adopt a
divide-and-conquer approach. First we give three algo-
rithms, the general divide-and-conquer algorithm, then an
algorithm using basic projection (division), and an algo-
rithm using aggressive projection. We also analyze the disk
I/O’s required by these algorithms.

In a detailed divide-and-conquer algorithm, called
Diskmine, we use the highly efficientFPgrowth* method
[6] to mine frequent itemsets from an FP-tree for the main
memory part of data mining. We describe several novel
techniques useful in mining frequent itemsets from disks,
such as theFP-array technique, and theitem-grouping
technique.

We also present experimental results that demonstrate
the fact that ourDiskmine-algorithm can outperform pre-
vious algorithms by orders of magnitude, and scales up to
terabytes of data.

2 Mining from disk

How should one go about when mining frequent item-
sets from very large databases residing in a secondary
memory storage, such as disks? Here “very large” means
that the data structures constructed from the database for
mining frequent itemsets can not fit in the available main
memory.

One approach issampling[11]. Unfortunately, the re-
sults of sampling are probabilistic, some critical frequent
itemsets could be missing. Besides the sampling, there are
basically two strategies for mining frequent itemsets, the
datastructures approach, and the divide-and-conquer ap-
proach.

The datastructuresapproach consists of reading the
database buffer by buffer, and generate datastructures (i.e.
candidate sets or FP-trees). Since the datastructure do not
fit into main memory, additional disk I/O’s are required.
The number of passes and disk I/O’s required by the ap-
proach depend on the algorithm and its datastructures. For
examples, if the algorithm is Apriori [3] using a hash-tree

1



for candidate itemsets, disk based hash-trees have to be
used. If the algorithm is FP-growth method, as suggested
in [7], FP-trees have to be written to the disk. Then the
number of disk I/O’s for the trees depends on the size of
the trees on disk. Note that the size of the trees could be
the same as or even bigger than the size of the database.

The basic strategy for thedivide-and-conquerapproach
is shown in the procedurediskmine. In the approach,|D|
denotes the size of the data structures used by the mining
algorithm, andM is the size of available main memory.
Function mainmineis called if candidate frequent item-
sets (not necessary all) can be mined without writing the
data structures used by a mining algorithm to disks. In
diskmine, a very large database is decomposed into a num-
ber of smaller databases. If a “small” database is still too
large, i.e, the data structures are still too big to fit in main
memory, the decomposition is recursively continued un-
til the data structures fit in main memory. After all small
databases are processed, all candidate frequent itemsets are
combined in some way (obviously depending on the way
the decomposition was done) to get all frequent itemsets
for the original database.

Procedurediskmine(D,M )

if |D| ≤ M then return mainmine(D)
elsedecomposeD intoD1, . . .Dk.

return combine diskmine(D1,M ),
.... ,

diskmine(Dk,M ).

The efficiency ofdiskminedepends on the method used
for mining frequent itemsets in main memory and on the
number of disk I/O’s needed in the decomposition and
combination phases. Sometimes the disk I/O is the main
factor. Since the decomposition step involves I/O, ide-
ally the number of recursive calls should be kept small.
The faster we can obtain small decomposed databases, the
fewer recursive call we will need. On the other hand,
if a decomposition cuts down the size of the projected
databases drastically, the trade-off might be that the combi-
nation step becomes more complicated and might involve
heavy disk I/O.

In the following we discuss two decomposition strate-
gies, namely decomposition by partition, and decomposi-
tion by projection.

Partitioning [10] is an approach in which a large
database is decomposed into cells of small non-overlapping
databases. The cell-size is chosen so that all frequent item-
sets in a cell can be mined without having to store any data
structures in secondary memory. However, since a cell
only contains partial frequency information of the origi-
nal database, all frequent itemsets from the cell are local
to that cell of the partition, and could only becandidate
frequent itemsets for the whole database. Thus the candi-
date frequent itemsets mined from a cell have to be verified
later to filter out false hits. Consequently, those candidate
sets have to be written to disk in order to leave space for

processing the next cell of the partition. After generating
candidate frequent itemsets from all cells, another database
scan is needed to filter out all infrequent itemsets. The par-
tition approach therefore needs only two passes over the
database, but writing and reading candidate frequent item-
sets will involve a significant number of disk I/O’s, depend-
ing on the size of the set of candidate frequent itemsets.

We can conclude that the partition approach to decom-
position keeps the recursive levels down to one, but the
penalty is that the combination phase becomes expensive.

To get an easier combination phase, we adopt another
decomposition strategy, which we callprojection. This ap-
proach projects the original database on several databases,
each determined by one or more frequent item(s). One ad-
vantage of this approach is that any frequent itemset mined
from a projected database is a frequent itemset in the orig-
inal database. To getall frequent itemsets, we only need
to take the union of the frequent itemsets discovered in
the small projected databases. The biggest problem of the
projection approach is that the total size of the projected
databases could be too large, and there could be too many
disk I/O’s for the projected databases. Thus, there is a
tradeoff between the easier combination phase and possi-
ble too many disk I/O’s.

To analyze the recurrence and required disk I/O’s of the
general divide-and-conquer algorithm when the decompo-
sition strategy is projection, let us suppose that:

- The original database size isD bytes.

- The data structure is an FP-tree.

- The FP-tree constructed from original databaseD is
T , and its size is|T | bytes.

- If a conditional FP-treeT ′ is constructed from an FP-
treeT , then|T ′| ≤ c · |T |, for some constantc < 1.

- The main memory mining method is theFP-growth
method [7]. Two database scans are needed for con-
structing an FP-tree from a database.

- The block size isB bytes.

- The main memory available isM bytes.

In the first line of the algorithmdiskmine, if T can not fit
in memory, then projected databases will be generated. We
assumed that the size of the FP-tree for a projected database
is c·|T |. If c·|T | ≤ M , functionmainminecan be called for
the projected database, otherwise, the decomposition goes
on. At passm, the size of the FP-tree constructed from a
projected database iscm · |T |. Thus, the number of passes
needed by the divide-and-conquer projection algorithm is
1+ dlogc M/T e. Based on our experience and the analysis
in [7], we can say that for all practical purposes the number
of passes will be at most two. For example, LetD = 100
gigabytes,T = 10 gigabytes,M = 1 gigabytes, andc =
10%. Then the number of passes is1 + dlog0.1 230/(10 ×
230)e = 2. In five passes we can handle databases up to 100
Terabytes. Namely, we get1+dlog0.1 230/(10×240)e = 5.

Assume that there are two passes, and that the sum of
the sizes of all projected databases isD′. After the first

2



database scan for finding all frequent single items, the sec-
ond database scan attempts to construct an FP-tree from the
database. If the main memory is not big enough, the scan
will be aborted. We assume on average half ofD is read
at this stage, which means1/2 ·D/B disk I/O’s. The third
scan is for decomposition. Totally, there are5/2 × D/B
disk I/O’s. The projected databases have to be written to
the disks first, then later each scanned twice for building
the FP-tree. This step needs3 × D′/B disk I/O’s. Thus,
the total disk number of disk I/O’s for the general divide-
and-conquer projection algorithm is at least

5/2 ·D/B + 3 ·D′/B. (1)

Obviously, the smallerD′, the better the performance.
One of the simplest projection strategies is to project

the database on each frequent item, which we callbasic
projection. First we need some formal definitions.

Definition 1 Let I be a set of items. ByI∗ we will de-
notestringsover I, such that each symbol occurs at most
once in the string. Ifα, β are strings, thenα.β denotes the
concatenation of the stringα with the stringβ.

Let D be anI-database. Thenfreqstring(D) is the
string overI, such that each frequent item inD occurs in
it exactly once, and the items are in decreasing order of
frequency inD.

As an example, consider the{a, b, c, d, e}-databaseD =
{{a, c, d}, {b, c, d, e}, {a, b}, {a, c}}. If the minimum sup-
port is 50%, thenfreqstring(D) = acbd.

Definition 2 Let D be an I-database, and let
freqstring(D) = i1i2 · · · ik. For j ∈ {1, . . . , k}
we defineDij

= {τ ∩ {i1, . . . , ij} : ij ∈ τ, τ ∈ D}.
Let α ∈ I∗. We defineDα inductively:Dε = D, and let

freqstring(Dα) = i1i2 · · · ik. Then, forj ∈ {1, . . . , k},
Dα.ij = {τ ∩ {i1, . . . , ij} : ij ∈ τ, τ ∈ Dα}.

Obviously,Dα.ij
is an{i1, . . . , ij}-database. The de-

composition ofDα intoDα.i1 , . . . ,Dα.ik
is called thebasic

projection.
To illustrate the basic projection, let’s consider the

above example, starting from the least frequent item in the
freqstring, we obtainDd = {{a, c, d}, {b, c, d}}, Db =
{{c, b}, {a, b}}, Dc = {{a, c}, {c}, {a, c}}, andDa =
{{a}, {a}, {a}}.

Definition 3 Let α ∈ I∗, ij ∈ I, and letDα.ij
be anI-

database. Thenfreqsets(ξ,Dα.ij
) denotes the subsets of

I that containij and are frequent inDα.ij
when the min-

imum support isξ. Usually, we shall abstractξ away, and
write justfreqsets(Dα.ij ).

Lemma 1 Let Dα be an I-database, and
freqstring(Dα) = i1i2 · · · ik. Then

freqsets(Dα) =
⋃

j∈{1,...,k}

freqsets(Dα.ij )

In the previous example, for Dd,
freqsets(Dd)={{d}, {c, d}}. Note though{c} is also
frequent inDd, it is not listed since it does not con-
tain d. It will be listed in freqsets(Dc). Similarly,
freqsets(Db)={{b}}, freqsets(Dc)={{c}, {a, c}} and
freqsets(Da)={{a}}. We also can notice thatDd andDc

are not that much smaller than the original database. The
upside is though that the set of all frequent itemsets in
D now simply is the union offreqsets(Dd), freqsets(Db),
freqsets(Dc) and freqsets(Dd). This means that the
combination phase is a simple union.

The following procedurebasicdiskminegives a divide-
and-conquer algorithm that uses basic projection. A trans-
actionτ inDα will be partly inserted intoDα.ij

if and only
if τ containsij . The parallel projection algorithm intro-
duced in [7] is an algorithm of this kind.

Procedurebasicdiskmine(Dα,M )

if |Dα| ≤ M then return mainmine(Dα)
elselet freqstring(Dα) = i1i2 · · · in,

return basicdiskmine(Dα.i1 ,M) ∪
. . . ∪

basicdiskmine(Dα.in
,M).

Let’s analyze the disk I/O’s of the algorithmba-
sicdiskmine. As before, we assume that there are two
passes, that the data structure is an FP-tree, and that the
main memory mining method isFP-growth. If in Dε, each
transaction contains on the averagen frequent items, each
transaction will be written ton projected databases. Thus
the total length of the associated transactions in the pro-
jected databases isn+(n−1)+· · ·+1 = n(n+1)/2, the to-
tal size of all projected databases is(n+1)/2·D ≈ n/2·D.

Still there are two full database scans and a incomplete
database scan forDε, as explained for formula (1). The
number of total disk I/O’s is5/2 · D/B. The projected
databases have to be written to the disks first, then later
scanned twice each for building an FP-tree. This step needs
at least3 · n/2 × D/B. Thus, the total disk I/O’s for the
divide-and-conquer algorithm with basic projection is

5/2 ·D/B + n · 3/2 ·D/B (2)

The recurrence structure ofbasicdiskmineis shown in
Figure 1. The reader should ignore nodes in the shaded area
at this point, they represent processing in main memory.

�

� �� � �� � �� � ��

� �� � ��� ��

���� ���� ����

����� ����� �����

������

����

�����

���� ����

� ��

Figure 1. Recurrence of Basic Projection

3



In a typical applicationn, the average number of fre-
quent items could be hundreds, or thousands. It therefore
makes sense to devise a smarter projection strategy. Before
we go further, we introduce some definitions and a lemma.

Definition 4 Let Dα be an I-database, and let
freqstring(Dα) = β1.β2. · · · .βk, where eachβj

is a string in I∗. We call β1.β2. · · · .βk a group-
ing of freqstring(Dα). Let βj = ij1 . . . . .ijm

, for
j ∈ {1, . . . , k}. We now defineDα.βj

=

{τ ∩ {i11 , . . . , ijm
}, τ ∈ Dα, τ ∩ {ij1 , . . . , ijm

} 6= ∅}.

In Dα.βj , items inβj are calledmaster items, items in
β1, . . . , βj−1 are calledslave items.

For the previous example,freqstring(Dα) = acbd,
β1 = ac, β2 = bd gives the groupingac.bd of acbd.
Now Dbd = {{a, c, d}, {b, c, d}, {a, b}} and Dac =
{{a, c}, {c}, {a}, {a, c}}.

Definition 5 Let {α, β} ⊂ I∗, and letDα.β be anI-
database. Thenfreqsets(Dα.β) denotes the subsets ofI
that contain at least one item inβ and are frequent inDα.β .

Lemma 2 Let α ∈ I∗, Dα be an I-database, and
freqstring(Dα) = β1β2 · · ·βk. Then

freqsets(Dα) =
⋃

j∈{1,...,k}

freqsets(Dα.βj
)

By following the above example, we can get
freqsets(Dbd)={{d}, {b}, {c, d}}, and freqsets(Dac)=
{{c}, {a}, {a, c}}.

Based on Lemma 2, we can obtain a more aggressive
divide-and-conquer algorithm for mining from disks. The
following shows the algorithmaggressivediskmine. Here,
freqstring(Dα) is decomposed into several substringsβj ,
each of which could have more than one item. Each sub-
string corresponds to a projected database. A transaction
τ in Dα will be partly inserted intoDα.βj

if and only if τ
contains at least one itema in βj . Since there will be fewer
projected databases, there will be fewer disk I/O’s. Com-
pared with the algorithmbasicdiskmine, we can expect that
a large amount of disk I/O will be saved by the algorithm
aggressivediskmine.

Procedureaggressivediskmine(Dα,M )

if |Dα| ≤ M then return mainmine(Dα)
elselet freqstring(Dα) = β1β2 · · ·βk,

return aggressivediskmine(Dα.β1 ,M) ∪
. . . ∪

aggressivediskmine(Dα.βk
,M).

Let’s analyze the recurrence and disk I/O’s of the ag-
gressive divide-and-conquer algorithm. The number of
passes needed is still1 + dlogc M/T e ≈ 2, since grouping
items does not change the size of an FP-tree for a projected

database. However, for disk I/O, suppose inDε, each trans-
action contains on averagen frequent items, and that we
can group them intok groups of equal size. Then then
items will be written to the projected databases with total
lengthn/k +2 ·n/k + . . .+ k ·n/k = (k +1)/2 ·n. Total
size of all projected databases is(k + 1)/2 ·D ≈ k/2 ·D.
The total disk I/O’s for the aggressive divide-and-conquer
algorithm is then

5/2 ·D/B + k · 3/2 ·D/B (3)

The recurrence structure of algorithmaggres-
sivediskmineis shown in Figure 2. Compared to Figure 1,
we can see that the part of the tree that corresponds to
decomposition (the nonshaded part) is much smaller in
Figure 2. Although the example is very small, it exhibits
the general structure of the two trees.

�

� ��� � ���

� �� � �� � ��� ��

���� ���� ����

����� ����� �����

������

����

�����

���� ����

� ��� � ���

Figure 2. Recurrence of Aggressive Projec-
tion

If k � n, we can expect the aggressive divide-and-con-
quer algorithm will significantly outperform the basic one.

3 Algorithm Diskmine

The algorithmDiskmineis shown below. In the algo-
rithm,Dα is the original database or a projected database,
andM is the maximal size of main memory that can be
used byDiskmine.

ProcedureDiskmine(Dα,M)
scanDα and computefreqstring(Dα)
call trialmainmine(Dα,M)
if trialmainmine(Dα,M) abortedthen

compute a groupingβ1β2 · · ·βk of freqstring(Dα)
DecomposeDα intoDα.β1 , . . . ,Dα.βk

for j = 1 to k do begin
if βj is a singletonthen Diskmine(Dα.βj

,M)
elsemainmine(Dα.βj

)
end

else return freqsets(Dα)

Diskmineuses the FP-tree [7] as data structure andFP-
growth* [6] as main memory mining algorithm. Since the
FP-tree encodes all frequency information of the database,
we can shift into main memory mining as soon as the FP-
tree fits into main memory.

4



Since an FP-tree usually is a significant compression
of the database, ourDiskminealgorithm begins optimisti-
cally, by callingtrialmainmine, which starts scanning the
database and constructing the FP-tree. If the tree can be
successfully completed and stored in main memory, we
have reached the bottom level of the recursion, and can ob-
tain the frequent itemsets of the database by runningFP-
growth* on the FP-tree in main memory.

Proceduretrialmainmine(Dα,M)
start scanningDα and building the FP-tree

Tα in main memory.
if |Tα| exceedsM then return the incompleteTα

elsecall FPgrowth*(Tα) andreturn freqsets(Dα).

If, at any time duringtrialmainmine we run out of
main memory, we abort and return the partially constructed
FP-tree, and a pointer to where we stopped scanning the
database. We then resume processingDiskmine(Dα,M)
by computing a groupingβ1, . . . , βk of freqstring(Dα),
and then decomposingDα into Dα.β1 , . . . ,Dα.βk

. We re-
cursively process each decomposed databaseDα.βj

. Dur-
ing the first level of the recursion, some groupsβj will
consist of a single item only. Ifβj is a singleton, we call
Diskmine, otherwise we callmainminedirectly, since we
put several items in a group only when we estimate that the
corresponding FP-tree will fit into main memory.

In computing the groupingβ1, . . . , βk we assume that
transactions in a very large database are evenly distributed,
i.e., if the size of the FP-tree isn for p% of the database,
then the size of the FP-tree for whole database isn/p ·100.
Most of the time, this gives an overestimation, since an FP-
tree increases fast only at the beginning stage, when items
are encountered for the first time and inserted into the tree.
In the later stages, the changes to the FP-tree will be mostly
counter updates.

Proceduremainmine(Dα.β)
build a modified FP-treeTα.β for Dα.β

for each i in β do begin
construct the FP-treeTα.i for Dα.i from Tα.β

call FPgrowth*(Tα.i) andreturn freqsets(Dα.i).
end

In basicdiskmine, since there is only one master item in
each projected database (forDε, no master item at all), an
FP-tree can be constructed without considering the mas-
ter item. In proceduremainmine, sinceDα.β is for mul-
tiple master items, the FP-tree constructed fromDα.β has
to contain those master items. However, the item order is
a problem for the FP-tree, because we only want to mine
all frequent itemsets that contain master items. To solve
this problem, we simply use the item order in the partial
FP-tree returned by the abortedtrialmainmine(Dα). This
is what we mean by a “modified FP-tree” on the first line
in the algorithmmainmine.

The entire recurrence structure ofDiskminecan be seen
in Figure 2. Compared to the basic projection in Figure 1

we see that since the aggressive projection uses main mem-
ory more effective, and that the decomposition phase is
shorter, resulting in fewer disk I/O’s.

In Figure 2, the shaded area shows the recursive struc-
ture of FP-growth*. Comparing with the shaded area in
Figure 1 which shows the recursive structure of the FP-
growth method, we can see that the main difference is the
extra shaded level in Figure 2. This level is for the FP-trees
of groups. For each group, since the total size of all FP-
trees for its master items may be greater than the size of
main memory, a “modified FP-tree” is constructed. This
FP-tree will fit in main memory. From the FP-tree, smaller
FP-trees can be constructed one by one, as shown in both
figures. As an example, in Figure 1,basicdiskmineenters
the main memory phase for instance for the conditional
databaseDε.a. Then FP-growth first constructs the FP-tree
Tε.a fromDε.a (in Figure 2,Tε.a is constructed fromTε.ab).
The tree rooted atTε.a shows the recursive structure of FP-
growth, assuming for simplicity that the relative frequency
remains the same in all conditional pattern bases.

Theorem 1 Diskmine(D) returnsfreqsets(D) .

Applying the FP-array Technique. In Diskmine, the Fre-
quent Pairs Array (FP-array) technique developed for FP-
growth* [6] is also applied to save one tree traversal for
each recursive call. Furthermore, when projected databases
are generated, the FP-array technique can save a great num-
ber of disk I/O’s.

Recall that intrialmainmine, if an FP-tree can not be ac-
commodated in main memory, the construction stops. Sup-
pose now we decided to stop scanning the database. Then
later, after generating all projected databases, two database
scans are required to construct an FP-tree from a projected
database. To save one scan, inDiskminewe calculate an
FP-array for each FP-tree. When constructing the FP-tree
fromDα, if it is found that the tree can not fit in main mem-
ory, the construction of the FP-treeTα stops, but the scan of
the databaseDα continues so that we finish filling the cells
of the arrayAα. Later, only one database scan is needed to
construct an FP-tree from a projected database because of
the existence of the arrayAα.

Grouping items. In Diskmine, the fourth line computes a
groupingβ1β2 · · ·βk of freqstring(Dα). For eachβ, a
new projected databaseDα.β will be computed fromDα,
then written to disk and read from disk later. Therefore,
the more groups, the more disk I/O’s. In other words, there
should be as many items in eachβ as possible. To group
items, two questions have to be answered.

1. If β currently only has one itemij , after projection,
is the main memory big enough for accommodating
Tα.ij

constructed fromDα.ij
and running theFP-

growth* method onTα.ij ?

2. If more items are put inβ, after projection, is the main
memory big enough for accommodatingTα.β con-
structed fromDα.β and runningFPgrowth* on Tα.β

only for items inβ?

5



To answer the questions, algorithmDiskmine col-
lects statistics on the partial FP-treeTα and the rest of
databaseDα.

For the first question, for each itemij , by counting the
number of nodes in the FP-treeTα.ij

constructed from the
partial FP-treeTα, we can use the number to estimate the
size of FP-treeTα.ij constructed fromDα. We write the
number asµ[j](Tα) for eachij , and suppose the num-
ber of transactions inDα is t(Dα) and the number of
transactions used for constructing the partial FP-treeTα

is t(Tα). By the assumption that the transactions inDα

are evenly distributed and that the partialTα represents the
whole FP-tree forDα, the estimated size of FP-treeTα.ij

is µ[j](Tα) · t(Dα)/t(Tα).
Before answering the second question, we introduce the

cut pointfrom which the first group can be easily found.

Finding the cut point. Notice that inFPgrowth*, when
mining frequent itemsets forik, all frequency information
aboutik+1, . . . , in is useless. Thus, though a complete FP-
treeTα constructed fromDα could not fit in main memory,
we can find manyk’s such that the trimmed FP-tree con-
taining only nodes for itemsik, . . . , i1 will fit into main
memory. All frequent itemsets forik, . . . , i1 can be then
mined from one trimmed tree. We call the biggest of such
k’s thecut point. At this point, main memory is big enough
for storing the FP-tree containing onlyik, . . . , i1, and there
is also enough main memory for runningFPgrowth* on
the tree. Obviously, if the cut pointk can be found, items
ik, . . . , i1 can be grouped together. Only one projected
database is needed forik, . . . , i1.

There are two ways to estimate the cut point. One way is
to get cut point from the value oft(Dα) andt(Tα). Figure 3
illustrates the intuition behind the cut point. In the figure,
l = t(Tα), andm = t(Dα). Since the partial FP-tree
for t(Tα) of t(Dα) transactions can be accommodate in
main memory, we can expect that the FP-tree containing
ik, . . . , i1, wherek = bn · t(Tα)/t(Dα)c, also will fit in
main memory.

τ
1

τ
2

i
1

i
2

i
k

i
n

τ
l

τ
m

Figure 3. Cut Point

The above method works well for many databases, es-
pecially for those databases whose corresponding FP-trees
have plenty of sharing of prefixes for items fromi1 to
the cut point. However, if the FP-tree constructed from
a database does not share prefixes that much, the estima-
tion could fail, since now the FP-tree for items fromi1 to
the cut point could be too big. Thus, we have to consider

another method. Letν[j](Tα) be the size of the FP-tree
after the partial FP-treeTα is trimmed and only contains
items i1, . . . , ij . Based onν[j](Tα) the number of nodes
in the complete FP-tree for itemij can be estimated as
ν[j](Tα) · t(Dα)/t(Tα). Now, supposeν(Tα) is the num-
ber of nodes inTα, finding the cut point becomes finding
the biggestk such thatν[k](Tα) · t(Dα)/t(Tα) ≤ ν(Tα),
andν[k + 1](Tα) · t(Dα)/t(Tα) > ν(Tα).

Sometimes the above estimation only guarantees that
the main memory is big enough for the FP-tree which con-
tains all items betweeni1 and the cut point, while it does
not guarantee that the descendant trees from that FP-tree
can fit in main memory. This is because the estimation
does not consider the size of descendant trees correctly.
Actually, from µ[j](Tα) we can get a more accurate es-
timation of the size of the biggest descendant tree. To
find the cut point, we need to find the biggestk, such
that (ν[k](Tα) + µ[j](Tα)) · t(Dα)/t(Tα) ≤ ν(Tα), and
(ν[k + 1](Tα) + µ[m](Tα)) > ν(Tα), where j ≤ k,
µ[j](Tα) = maxj∈{1,...,k}µ[j](Tα), and m ≤ k + 1,
µ[m](Tα) = maxm∈{1,...,k+1}µ[m](Tα).

Grouping the rest of the items. Now we answer the sec-
ond question, how to put more items into a group? Here
we still needµ[j](Tα). Starting withµ[cutpoint + 1](Tα),
we test ifµ[cutpoint + 1](Tα) · t(Dα)/t(Tα) > ν(Tα).
If not, we put next item cutpoint+2 into the group,
and test if(µ[cutpoint + 1](Tα) + µ[cutpoint + 2](Tα))
·t(Dα)/t(Tα) > ν(Tα). We repeatedly put next item in
freqstring(D) into the group until we reach an itemij ,
such that

j∑
m=cutpoint+1

µ[m](Tα) · t(Dα)/t(Tα) > ν(Tα).

Then starting fromij , we put items into next group, until
all items find its group.

Why can we put itemsij , . . . , ik together into group
β? This is because even if we constructTα.ij

, . . . , Tα.ik

from the projected databasesDα.ij
, . . . ,Dα.ik

and put
all of them into main memory, the main memory is big
enough according to the grouping condition. At this stage,
Tα.ij , . . . , Tα.ik

all can be constructed by scanningDα

once. Then we mine frequent itemsets from the FP-trees.
However, we can do better. ObviouslyTα.ij

, . . . , Tα.ik

overlap a lot, and the total size of the trees is definitely
greater than the size ofTα.β . It also means that we can put
more items into eachβ, only if the size ofTα.β is estimated
to fit in main memory. To estimate the size ofTα.β , part of
Tα has to be traversed by following the links for the master
items inTα.

The disk I/O’s. Let’s re-count the disk I/O’s used in
Diskmine. The first scan is still for obtaining all fre-
quent items inDε, and it needsD/B disk I/O’s. In the
second scan we construct a partial FP-treeTε, then con-
tinue scanning the rest database for statistics. The second
scan is a full scan, which needs anotherD/B disk I/O’s.

6



Suppose then thatk projected databases have to be com-
puted. According to Section 2, the total size of the pro-
jected databases is approximatelyk/2 ·D. For computing
the projected databases, the frequency information inTε is
reused, so only part ofDε is read. We assume on average
half of Dε is read at this stage, which means1/2 · D/B
disk I/O’s. By using of the FP-array technique [6], writ-
ing and later readingk projected databases now only take
2 · k/2 ·D/B = k ·D/B disk I/O’s. Suppose all frequent
itemsets can be mined from the projected databases without
going to the third level. Then the total disk I/O’s is

5/2 ·D/B + k ·D/B (4)

Compared with formula 3,Diskminesaves at leastk/2 ·
D/B disk I/O’s, thanks to the various techniques used in
the algorithm.

4 Performance Study

In this section, we present the results from a perfor-
mance comparison ofDiskminewith the Parallel Projec-
tion algorithm in [7] and thePartitioningalgorithm in [10].
The scalability ofDiskmineis also analyzed, and the accu-
rateness of our memory size estimations are validated.

As mentioned in Section 2, theParallel Projectional-
gorithm is a basic divide-and-conquer algorithm, since for
each item a projected database is created. For perfor-
mance comparison, we implementedParallel Projection
algorithm, by usingFP-growthas main memory method,
as introduced in [7]. The Partitioning algorithm is also a
divide-and-conquer algorithm. We implemented the parti-
tioning algorithm by using the Apriori implementation1.
We chose this implementation, since it was well written
and easy to adapt for our purposes.

We ran the three algorithms on both synthetic datasets
and real datasets. Some synthetic datasets have millions
of transactions, and the size of the datasets ranges from
several megabytes to several hundreds gigabytes. Due to
lack of space, only the results for some synthetic datasets
and a real dataset are shown here.

All experiments were performed on a 2.0Ghz Pentium 4
with 256 MB of memory under Windows XP. ForDiskmine
and theParallel Projectionalgorithm, the size of the main
memory is given as an input. For the Partitioning algo-
rithm, since it only has two database scans and each main-
memory-sized partition and all data structures for Apriori
are stored into main memory, the size of main memory is
not controlled, and only the running time is recorded.

We first compared the performance of three algorithms
on synthetic dataset. DatasetT100I20D100Kwas gener-
ated from the benchmark application of IBM research cen-
ter 2. The dataset has 100,000 transactions and 1000 items,
and occupies about 40 megabytes of memory. The average
transaction length is 100, and the average pattern length is

1www.cs.helsinki.fi/u/goethals/software
2www.almaden.ibm.com/software/quest/Resources

20. The dataset is very sparse and FP-tree constructed from
the dataset is bushy. For Apriori, a large number of candi-
date frequent itemsets will be generated from the dataset.

Disk I/O

10

100

1000

10000

10 9 8 7 6 5 4 3 2

Minimum Support (%)

T
im

e 
(s

)

10

100

1000

10000

Parallel Projection

Aggressive Projection

(a) Time for Disk I/O’s

CPU Time

1

10

100

1000

10 9 8 7 6 5 4 3 2

Minimum Support (%)

T
im

e 
(s

)

1

10

100

1000

Aggressive Projection

Parallel Projection

(b) CPU time

Figure 4. Experiments on synthetic dataset

When running the algorithms, the main memory size
was given as 128 megabytes. Figure 4 shows the experi-
mental results. In the figure, “Basic” represents thePar-
allel Projectionalgorithm, and “Aggressive” represents the
Diskminealgorithm. Since the Partitioning algorithm is the
slowest in the group, its total running time is always an or-
der of magnitude greater than theBasicalgorithm and the
Aggressivealgorithm, we didn’t separate its CPU time and
the time for disk I/O’s. Consequently the lines for Parti-
tioning algorithm are not shown in the figures. From Fig-
ure 4 (a), as expected, we can see that the disk I/O time
of theAggressivealgorithm is orders of magnitude smaller
than that of theBasicalgorithm. On the other hand, in Fig-
ure 4 (b) we can see that theBasicalgorithm, however, is
not slower than theAggressivealgorithm if we only com-
pare their CPU time. In [6], where we were concerned
with main memory mining, we found that if a dataset is
sparse the boostedFPgrowth* method has a much better
performance than the originalFP-growth. The reason here
the CPU time of theAggressivealgorithm is not always
less than that ofBasicalgorithm is that theAggressiveal-
gorithm has to spend CPU time on calculating statistics.
However, from Figure 4, we also can see that the CPU
overhead used by theAggressivealgorithm now become
insignificant compared to the savings in disk I/O.

We then ran the algorithms on a real datasetKosarak,
which is used as a test dataset in [5]. The dataset is about
40 megabytes. Since it is a dense dataset and its FP-tree is
fairly small, we set the main memory size as 16 megabytes
for the experiments. Results are shown in Figure 5.

Disk I/O

10

100

1000

0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1

Minimum Support (%)

T
im

e 
(s

)

10

100

1000

Parallel Projection

Aggressive Projection

(a) Time for Disk I/O’s

CPU time

1

10

100

0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1

Minimum Support (%)

T
im

e 
(s

)

1

10

100

Aggressive Projection

Parallel Projection

(b) CPU time

Figure 5. Experiments on real dataset

7



In Figure 5, for the same reason as above, results for the
Partitioning algorithm is not shown. It is still the slowest
comparing the total running time. This is because it gener-
ates too many candidate frequent itemsets from the dense
dataset. Together with the data structures, the candidate
sets use up main memory and virtual memory was used.
In Figure 5 (a), the time used for disk I/O’s of theAggres-
sivealgorithm is still remarkably less than the time used for
disk I/O’s of the Basic Algorithm. We can again notice that
the CPU time of the Basic Algorithm is less than that of the
Aggressivealgorithm. This is becauseKosarakis a dense
dataset so the FP-array technique does not help a lot. In
addition, calculating the statistics takes an amount of time.

To test the effectiveness of the techniques for grouping
items, we runDiskmineon T100I20D100Kand see how
close the estimation of the FP-tree size for each group is
to its real size. We still set the main memory size as 128
megabytes, the minimum support is 2%. When generating
the projected databases, items were grouped into 7 groups
(the total number of frequent items is 826). As we can
see from Figure 6 (a), in all groups, the estimated size is
always slightly larger than the real size. Compared with
the Basic Algorithm, which constructs an FP-tree for each
item from its projected database, theAggressivealgorithm
almost fully uses the main memory for each group to con-
struct an FP-tree.

Estimation size vs. Real size

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7

Group

M
em

o
ry

 (
M

eg
ab

yt
es

)

Estimated size

Real size

(a)

Scalability

0

100

200

300

400

500

600

700

200 400 600 800 1000 1200 1400 1600 1800 2000

NO. of Transactions (k)

T
im

e 
(s

)

CPU

Disk I/O

(b)

Figure 6. Estimation Accuracy and Scalabil-
ity of Diskmine

As a divide-and-conquer algorithm, one of the most im-
portant properties ofDiskmineis its good scalability. We
ranDiskmineon a set of synthetic datasets. In all datasets,
the item number was set as 10000 items, the average trans-
action length as 100, and the average pattern length as
20. The number of the transactions in the datasets var-
ied from 200,000 to 2,000,000. Datasets size ranges from
100 megabytes to 1 gigabyte. Minimum support was set as
1.5%, and the available main memory was 128 megabytes.
Figure 6 (b) shows the results. In the figure, the CPU and
the disk I/O time is always kept in a small range of ac-
ceptable values. Even for the datasets with 2 million trans-
actions, the total running time is less than 1000 seconds.
Extrapolating from these figures using formula (4), we can
conclude that a dataset the size of the Library of Congress
collection (25 Terabytes) could be mined in around 18
hours with current technology.

5 Conclusions

We have investigated several divide-and-conquer algo-
rithms for mining frequent itemset from secondary mem-
ory. We also analyzed the recurrences and disk I/O’s of all
algorithms. We then gave a detailed divide-and-conquer al-
gorithm which almost fully uses the limited main memory
and saves a numerous number of disk I/O’s. We introduced
many novel techniques used in our algorithm.

Our experimental results show that our algorithm suc-
cessfully reduces the number of disk access, sometimes by
orders of magnitude, and that our algorithm scales up to
terabytes of data. The experiments also validate that the
estimation techniques used in our algorithm are accurate.

Future extensions of this work will include mining max-
imal and closed frequent itemsets, as well as exploring disk
layout for various datastructures, for instance for candidate
sets, since there are some situations where Apriori indeed
outperforms the FP-tree based methods.

References

[1] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth
first generation of long patterns. InKDD’00, pages 108–
118, 2000.

[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining associ-
ation rules between sets of items in large databases. InACM
SIGMOD’93, pages 207–216, Washington, D.C., 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules. InVLDB’94, pages 487–499, 1994.

[4] R. Agrawal and R. Srikant. Mining sequential patterns. In
ICDE’95, pages 3–14, 1995.

[5] B. Goethals and M. J. Zaki. Advances in frequent item-
set mining implementations: Introduction to fimi03. In
Prodeeding of the 1st IEEE ICDM Workshop on Frequent
Itemset Mining Implementations (FIMI’03), Nov 2003.

[6] G. Grahne and J. Zhu. Efficiently using prefix-trees in min-
ing frequent itemsets. In1st IEEE ICDM Workshop on
Frequent Itemset Mining Implementations (FIMI’03), Nov
2003.

[7] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent pat-
terns without candidate generation: A frequent-pattern tree
approach.Data Mining and Knowledge Discovery, 8:53–
87, 2004.

[8] M. Kamber, J. Han, and J. Chiang. Metarule-guided min-
ing of multi-dimensional association rules using data cubes.
In Knowledge Discovery and Data Mining, pages 207–210,
1997.

[9] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery
of frequent episodes in event sequences.Data Mining and
Knowledge Discovery, 1(3):259–289, 1997.

[10] A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient
algorithm for mining association rules in large databases. In
VLDB’95, pages 432–444, 1995.

[11] H. Toivonen. Sampling large databases for association
rules. InVLDB’96, pages 134–145, Sep. 1996.

[12] M. Zaki and K. Gouda. Fast vertical mining using diffsets.
In ACM SIGKDD’03, Washington, DC, Aug. 2003.

8


