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Abstract. In this paper, we introduce preferential regular path queries.
These are regular path queries whose symbols are annotated with prefer-
ence weights for “scaling” up or down the intrinsic importance of match-
ing a symbol against a (semistructured) database edge label. Annotated
regular path queries are expressed syntactically as annotated regular
expressions. We interpret these expressions in a uniform semiring frame-
work, which allows different semantics specializations for the same syn-
tactic annotations. For our preference queries, we study three important
aspects: (1) (progressive) query answering (2) (certain) query answer-
ing in LAV data-integration systems, and (3) query containment and
equivalence. In all of these, we obtain important positive results, which
encourage the use of our preference framework for enhanced querying of
semistructured databases.

1 Introduction

Regular path queries are one of the basic building blocks of virtually all the
mechanisms for querying semistructured data, commonly found in information
integration applications, Web and communication networks, biological data man-
agement, etc. Semistructured data is conceptualized as edge-labeled graphs, and
regular path queries are in essence regular expressions over the edge symbols.
The answer to a regular path query on a given graph (database) is the set of
pairs of objects, which are connected by paths spelling words in the language of
the regular path query.

Seen from a different angle, regular path queries provide the user with a
simple way of expressing preferences for navigating database paths. Let us take
an example from road network databases. Suppose that the user wants to retrieve
all the pairs of objects preferentially connected by highways, and tolerating up to
k provincial roads or city streets. Clearly, such preferences can easily be captured
by the regular path query

Q = highway" | (road + street + €)*,

where | is the shuffle operator.

It is exactly this ability of regular expressions to capture pattern preferences
that has made them very popular, starting from the early days of computers.
However, let us take a more careful look at the above example. It surely captures
the user preferences, but in a “Boolean” way. A pair of objects will be produced



as an answer if there exists a path between them satisfying the user query. In
other words, there is just a “yes” or “no” qualification for the query answers.
But, the answers are not equally good! A pair of objects connected by a highway
path with only 1 intervening road is obviously a “better” answer than a pair of
objects connected by a highway path with 5 intervening roads.

Clearly, preferences beyond the “Boolean” ones cannot be captured by simple
regular path queries.

In this paper, we introduce preferentially annotated regular path queries,
which are regular path queries (regular expressions) with a very simple syn-
tactic addition: the user can annotate the symbols in the regular expressions
with “markers” (typically natural numbers), which “strengthen” or “weaken”
her (pattern) preferences. For example, she can write

Q = (highway : 0)* | (road : 1 + street : 2 + €)*,

to express that she ideally prefers highways, then roads, which she prefers less,
and finally she can tolerate streets, but with an even lesser preference. Given
such a query, the system should produce first the pairs of objects connected by
highways, then the pairs of objects connected by highways intervened by 1 road,
and so on.

The above “so on” raises some important semantical questions. Is a pair of
objects connected by a highway path intervened by two roads equally good as
another pair of objects connected by a highway path intervened by one street
only? Indeed, in this example, it might make sense to consider them equally
good, and “concatenate” weights by summing them up.

However, let us consider another example regarding travel itineraries. Assume
that the preferentially annotated user query is

Q = (viarail : 0)* | (greyhound : 1 + aircanada : 2 + €)*.

Is now a pair of objects connected by a path with two greyhound segments equally
equally preferrable as a pair of objects connected with one aircanada segment?
Here the answer is not clear anymore. If the user is afraid of flying, she might
want to “concatenate” edge-weights by choosing the maximum of the weights.
Then an itinerary with no matter how many greyhound segments is preferrable
to an itinerary containing only one flight segment.

We say that in the first case the preference semantics are “quantitative,”
while in the second case they are “qualitative.” We study both semantics for
regular path queries, and leave the choice as an option specified by the user
during query time.

We also consider another choice of semantics, which is a hybrid between the
quantitative and qualitative semantics. Continuing the travel itinerary example,
by following a purely qualitative approach, greyhound itineraries are always pre-
ferrable to itineraries containing aircanada segments, while these itineraries are
equally preferrable, no matter how many lags the flight has. Although, there
might be applications where such qualification is all what is needed, in the par-
ticular example we need to distinguish among itineraries on the same “level of



discomfort.” Namely, we should be able to (quantitatively) say for example that
a direct aircanada route is preferable to an aircanada route with a stop-over,
which again is preferrable to an aircanada route with three lags. Notably, such
user preferences can concisely be captured by our hybrid semantics.

In total, from all the above, we have four kind of preference semantics:
Boolean, quantitative, qualitative, and hybrid. Other semantics can also be pro-
posed, tailored to specific applications. In all these semantics, we aggregate
(“concatenate”) preference markers or weights along edges of the paths, and
then we aggregate path preferences when there are multiple paths connecting
a pair of objects. Hence, we regard the preference annotations as elements of a
semiring, with two operations: the “plus” and “times.” The “times” aggregates
the preferences along edges of a path, while the “plus” aggregates preferences
among paths.

An interesting feature of our preference framework is that for all new se-
mantics (quantitative, qualitative, and hybrid), the syntactic user interface (i.e.
annotated regular expressions) is exactly the same. After the user writes the
query, she also specifies which semantics the system should assume for answer-
ing the query. It is straightforward for the user to preferentially annotate regular
path queries, and moreover, such annotation can be easily facilitated by system
default values.

In this paper, we study three important aspects of our preferentially an-
notated queries. First, we focus on query answering and design a progressive
algorithm, which produces the answer tuples in order of their “goodness” with re-
spect to the user preferences. Notably, answering annotated regular path queries
is computationally no more difficult than the answering of classical regular path
queries. In both cases, a database object is accessed at most once.

Second, we turn our attention to query answering in data integration systems,
in which we have only incomplete information about databases. Such systems
have been the focus of many studies (cf. [2,3]?) and reasoning about query an-
swering in this setting is a very important technology. We introduce a technique,
which we call “query sphering” and show how to progressively compute answer
tuples in this variant of incomplete information.

Third, we study query containment and equivalence of prefential regular
path queries. We show that containment is undecidable for the quantitative and
the hybrid semantics and decidable for qualitative semantics. Then, we present
an important class of queries for which the containment is decidable for both
quantitative and hybrid semantics.

Due to space constraints we omit this third part. The interested reader can
find it in the full version of the paper available online (see [7]). Also, the full
proofs of most of our results can be found at this online reference.

The rest of the paper is organized as follows. In Section 2, we overview
related work. In Section 3, we introduce the semiring framework for preferentially
annotated regular path queries. In Section 4, we give a progressive algorithm
for computing the answer to an annotated query. In Section 5, we define and

3 For the semistructured data case.



reason about the certain answer to annotated queries in LAV data integration
systems. In Section 6, we introduce the concept of query spheres and give a
characterization of the certain answer in terms of query spheres. Finally, in
Section 7, we present algorithms for computing query spheres under the different
preference semantics.

2 Related Work

In relational databases, the most important work on preferences is by Chomicki
in a series of papers. One of his recent papers, which gives a detailed overview of
the field, is [4]. However, in Chomicki’s work, the preference framework is about
reasoning on fixed-arity tuples of attribute values. In contrast, here we define
“structural” preferences, in the sense that they apply to the paths used for
obtaining query answers. Because of this difference, the meaning of our “quanti-
tative” and “qualitative” adjectives is different from the ones mentioned in [4].

Preferences for XML are studied by [9]. These preferences are aimed at com-
paring attribute values of XML elements rather than structure of (parts of)
documents. As characterized by [4], the preferences of [9] seem to largely con-
form to the relational paradigm.

Regarding our qualitative preferences, they are similar in spirit with con-
straints in the framework of Infinitesimal Logic studied in [11]. However, [11]
focuses on the relational case only.

In [5], weighted path queries are introduced. Syntactically, such queries are
the same as our preferentially annotated queries. However, [5] do not give any
semantics on their queries. Technically, one can use their query answering algo-
rithm to answer our queries on a given database. However, we carefully study
some important details of query answering, which are not taken into consider-
ation in [5]. Moreover, query answering on a given database is not our most
important contribution in this paper.

Regarding query answering (on a given database), one can also use, assuming
quantitative semantics only, the algorithm of [6] for queries under distortions.
In that paper, there are also some technical results, which can be adapted to
help in some of our derivations. However, we do not do this, due to the high
computational complexity of constructs in [6]. Rather, we devise new and better
constructs, which are original and can contribute in research regarding formal
languages as well. Such research will be mentioned in relevant places during the
exposition of the paper.

Finally, [12] and [13] deal with distributed evaluation of weighted regular
path queries. However, the algorithms of [12] and [13] apply to quantitative
semantics only. We believe that they can also be adapted for other semantics
as well, and thus, [12,13] should be considered to nicely complement this work
regarding query answering on distributed databases.



3 Databases and Preferential Regular Path Queries

Databases and classical regular path queries. We consider a database to
be an edge-labeled graph. Intuitively, the nodes of the database graph represent
objects and the edges represent relationships between the objects.

Formally, let A be an alphabet. Elements of A will be denoted r,s,.... As
usual, A* denotes the set of all finite words over A. Words will be denoted by
u,w, . ... We also assume that we have a universe of objects, and objects will be
denoted a,b,c,...,. A database DB is then a graph (V, E), where V is a finite
set of objects and E C V x A x V is a set of directed edges labeled with symbols
from A.

Before introducing preferentially annotated regular path queries, it will help
to first review the classical regular path queries.

A regular path query (RPQ) is a regular language over A. For the ease of
notation, we will blur the distinction between regular languages and regular
expressions that represent them. Let @ be an RPQ and DB = (V, E) a database.
Then, the answer to Q on DB is defined as

Ans(Q, DB) = {(a,b) € V : for some w € Q, a —* b in DB},
where —— denotes a path spelling the word w in the database.

Semirings and annotated regular path queries. By a semiring we mean a
tuple Z = (R, ®, ®,0, 1) such that

1. (R,®,0) is a commutative monoid with 0 as the identity element for .
2. (R,®,1) is a monoid with 1 as the identity element for ®.
3. ® distributes over @: for all z,y, z € R,

(zeyRz=02®2)®(y®=2)
@0y =(>e2)0(210Y).

4. 0 is an anihilator for ®: Vx € R,z ®0=0® x = 0.

The natural order < on R is defined as: ¢ < y if and only if t ® y = x. It is
easily verified that < is a partial order.

In this paper, we will in addition require for semirings of preferences to have
a total natural order. All the preference semirings mentioned in Introduction
posses such an order.* Observe that 0 is the “biggest” element of the semiring,
and it corresponds to the “infinitely worst” preference weight.

Now, let Z = (R, ®,®,0,1) be a semiring as above. An #Z-annotated lan-
guage @ over A is a function

Q:A* >R

4 We want to note here that for database paths, it is difficult to find intuitively plau-
sible preference semantics, which would ask for a partial order only.



We will call such Q’s annotated queries for short. Frequently, we will write
(w,x) € @ instead of Q(w) = x. When such annotated queries are given by “an-
notated regular expressions,” we have annotated regular path queries (ARPQ’s).
Computationally, ARPQ’s are represented by “annotated automata.”

An annotated automaton A is a quintuple (P, A, %, 1,po, F), where 7 is a
subset of P x A x R x P. Each annotated automaton A defines the annotated
language (query) [A] defined by

A = {(w,z) e A" x R :
wW="r1r2. .. T, & = D {R_12; : (Di=1,Ti,Ti,Pi) € T,Pn € F}}.

Given a a database DB, and a query (), annotated over a semiring #Z =
(R,®,®,0,1) we define the preferentially weighted answer of Q on DB as

Ans(Q, DB, %) ={(a,b,z) € VXV x R:
r=&{{y: (w,y) € Q and a > b in DB} U{0}}.

Intuitively, we have (a,b, 0) as an answer to Q, if there is no path in DB spelling
some word in Q.

Let us now discuss each of the preference semirings that we mentioned in
Introduction. The Boolean semiring is

B =T, F},V,\ F,T),

where T and F stand for “true” and “false” respectively, and V, A are the usual
“and,” and “or” Boolean operators. ARPQ’s in the Boolean semiring correspond
exactly to classical RPQ’s. The user does not annotate explicitly the regular
expression symbols by 7" or F. By default, all the symbols present in the query
are assumed to be annotated with T'. Also, the system produces only the “T-
ranked” answers. In general, for any semiring it only makes sense to produce the
answers, which are not ranked by the 0 of the semiring. In practice, a 0-ranked
answer means in fact “no answer.” For the & semiring, we formally have that

Ans(Q, DB, #B) = {(a,b,T) : (a,b) € Ans(Q, DB)} U
{(a,b,F): (a,b) & Ans(Q, DB)}.
It is easy to see that a Boolean annotated automaton A = (P, A, %, 1, po, F) is

indeed an “ordinary” finite state automaton (P, A, T, pg, F).
In the case of quantitative preferences we have

A = (NU {oo}, min, +, 00, 0),

where min and + are the usual operators for integers. This semiring is also known
as the tropical semiring in the literature. The user annotates query symbols by
natural numbers.

In the case of qualitative preferences, we have

F = (NU{oo}, min, maz, 0, 0).



This semiring is also known as the fuzzy semiring in the literature. Similarly
to the quantitative case, the user annotates query symbols by natural numbers.
This is however, only syntactically “the same” as the quantitative case. The
semantics of the two cases are different. The numbers here represent the “level
of discomfort” for traversing database edges. As we mentioned in Introduction,
it is the choice of the user to specify the semantics that she desires.

Finally, for hybrid preferences, the user again uses the same query syntax
as for the quantitative and qualitative case. That is, the user annotates the
query symbols with natural numbers. However, here the set N is just the “user
interface.” In fact the support set of the semiring 57, for hybrid preference
semantics is

R={0,1,1®....2,2® YU {0},

where the symbolic ingredients, n and i, of a semiring element n(*) are natu-
ral numbers. [Elements 1,2,... are shorthand for 1, 2(1) ] Intutitively, n
represents the level of discomfort, while ¢ represents how many times a user is
“forced to endure” that level of discomfort. While the subset {0,1,2,...} is the
user interface for annotating queries, set R is richer in elements in order to allow
for a finer ranking of query answers.

Regarding the semiring operations, we introduce

n(9) ifn<m n® ifn>m
n® @ m@ = m ifn>m n@eom® ={mb ifn<m
nmindidd) if n = m, n(+) if n=m

and for these we have 0 = oo, 1 = 0. It is easy to verify that the semiring axioms
are satisfied.

Reiterating, the user, the same as before, annotates query symbols with nat-
ural numbers representing her preferences. However, semantically the queries
will be different from both the quantitative and qualitative case, while bearing
similarities with both of them. Similarly with the qualitative semantics, only
database edges matched by transitions annotated with the “worst” level of dis-
comfort will really count in computing a preferential weight for a traversed path.
On the other hand, differently from the qualitative semantics, and similarly with
the quantitative semantics, paths with the the same “worst-level of discomfort”
are comparable. Namely, the best path will be the one with the fewest “worst-
level of discomfort” edges.

4 Answering Preferentially Annotated RPQ’s

Our goal here is to not only compute preferentially weighted answers to a query,
but to compute the answers in a progressive way, i.e. to compute the best answers
first. First, we will review the well-known method for the evaluation of classical
RPQ’s (cf. [1]). In essence, the evaluation proceeds by creating state-object pairs
from the query automaton and the database. For this, let A be an NFA that
accepts an RPQ @. Starting from an object a of a database DB, we first create



the pair (pg,a), where pg is the initial state in 4. Then, we create all the pairs
(p, b) such that there exist a transition from pg to p in A, and an edge from a to
bin DB, and furthermore the labels of the transition and the edge match. In the
same way, we continue to create new pairs from existing ones, until we are not
anymore able to do so. In essence, what is happening is a lazy construction of
a Cartesian product graph of the query automaton with the database graph. Of
course, only a small (hopefully) part of the Cartesian product is really contructed
depending on the selectivity of the query. The implicit assumption in [1] is that
this part of the Cartesian product fits in main memory and each object is not
accessed more than once in secondary storage.

After obtaining the above Cartesian product graph, producing query answers
becomes a question of computing reachability of nodes (p,b), where p is a final
state, from (po, a), where pg is the intial state. Namely, if (p, b) is reachable from
(po, a), then (a,b) is a tuple in the query answer.

Now, when having instead an annotated query automaton, we can modify
the classical matching algorithm to build an annotated (or weighted) Cartesian
product graph. This can be achieved by assigning to the edges of this graph the
corresponding (automaton) transition annotations (weights).

It is not difficult to see that, in order to compute preferentially weighted
answers, we have to find, in the Cartesian product graph, the (semiring) shortest
paths from (pg,a) to all the nodes (p,b), where p is a final state in the query
automaton A.

In our algorithm, we, in a similar spirit with [1], lazily build the above men-
tioned Cartesian product. However, we also compute “on the fly” shortest paths
needed for preferentially weighting the answer tuples.

Our algorithm is progressive, i.e. it computes answer tuples (w.r.t. each po-
tential starting object a) in the order of their preference rank. For this, Dijkstra’s
algorithm is the best choice (compared to Flloyd-Warshall algorithm). It fits per-
fectly with the lazy strategy of constructing the Cartesian product graph, and
it reaches the b objects in a “best first” fashion. Our general algorithm, which
works with all the proposed preference semirings is as follows.

Algorithm 1

Input: An e-free automaton A for an Z-annotated query @), and a database DB.
Output: Ans(Q, DB, %).

Method: For each potential start object a® compute the set Reach, as follows.

1. Initialize Reach, to {(po,a, 1, false)}.
2. Repeat 3-5 until Reach, no longer changes.
3. Choose a quadruple (p, b, z, false) € Reach,, such that

z = &{y: (p,b,y, false) € Reach}.
Update (p, b, x, false) to (p, b, z, true).

® Finding potential start objects can be facilitated by classical indexes on the database
edge labels.



4. If p is a final state, then insert (a,b,z) in Ans(Q, DB, %).

5. If there is a transition (p, 7,3, q) in A and there is an edge b — ¢ in DB
then add (g, ¢,z ® y, false) to Reach,.

5 Preferentially Ranked Answers on Possible Databases

In a semistructured LAV data integration system (cf. [2, 10, 3]), we do not have a
database in the classical sense. Instead what we have is incomplete information,
which is in the form of a set of “data-sources,” characterized by an algebraic
definition over a “global schema.”

Each data-source also has a name, and the set of these names constitutes the
“local schema.” The LAV system also has a set of tuples over the local schema.
The queries are formulated on the “integrated” global schema. Since the data
exists in the local schema only, a translation from the global to the local schema
has to be performed in order to be able to compute query answers.

When the user gives an ARPQ, the question is: What does it mean to pref-
erentially answer such a query in a LAV system?

Formally, let A be the global schema. Let S = {S1,...,S,} be a set of
data-source definitions, with each S; being a regular language over the global
schema A. Associated with each data-source is a name s;, for ¢ = 1,...,n. The
local schema is the set 2 = {s1,...,s,} of all the data-source names. There is a
natural mapping between the local and global schema: for each s; € {2, we set
def(s;) = S;. The mapping or substitution® def associates with each data-source
name s; the definition language S;. The substitution def is applied to words,
languages, and regular expressions in the usual way.

Let 2 = {s1,...s,} be the local schema as before. Then, a source collection
S over (S, {2) is a database over (D, {2). As mentioned earlier, in a LAV system,
the user formulates queries on the global schema, i.e. A, and the system has to
compute the answer on the data available in the local schema, i.e. 2. For this,
we have to reason about hypothetical databases over (D, A) that a database
over (D, £2) could possibly represent.

A source collection S defines a set poss(S) of databases over (D, A) as follows:

poss(S) = {DB : there exists a path a “S5% b in DB for each (a,s4,b) € S}

This definition reflects the intuition about the connection of an edge (a,s;,b)
in S with paths between a and b in hypothetical DB’s.

For classical regular path queries, what we usually compute is the certain
answer using S, which is the set of all tuples, which are in the query answer on
each possible database.

Consider a classical regular path query as a preferentially annotated query
over the Boolean semiring Z. In a semiring terminology, what we do is an “A”
aggregation of query answers on the possible databases. Also, let us overload A

5 In a language theoretic terminology.



operator to work for answer tuples and sets as follows:
(a,b,2) A (a,b,y) = (a,b,z Ay), and

Ans(Q, DBy, %) A Ans(Q, DBy, B) =
{(a,b,2 Ay): (a,b,z) € Ans(Q, DBy, #) and (a,b,y) € Ans(Q, DBs, #)}.

Then, the certain answer w.r.t. S and “weighted” over £ is

CAns(Q,8,2)=  \  Ans(Q,DB, %),

DBeposs(S)

It is easy to verify that this definition is equivalent with the definition of the
certain answer given in other works as for example [2].

In fact, A for aggregating the answers on possible databases is the “dual op-
erator” of V used for aggregating paths when computing answers on databases.”
Generalizing, in order to define the certain answer for other semirings, we in-
troduce the ® operator, which is the dual of the path aggregation operator ®.

Namely,
_Jrz ifzoy=y

This is possible since @ induces a total order, and so, x @y is equal to either x or
y. Clearly, A is the dual of V according to this definition. Observe also that the
operator ® induces the reverse order (with respect to @) among the elements of
the semiring.

Similarly with the above overloading of A, we overload ® to work with answer
tuples and sets. Now, for a query @), annotated over a preference semiring %,
we define the certain answer as

CAns(Q,8,%2)= () Ans(Q,DB,%).

DBeposs(S)

In the above definition, a tuple (a,b,x), with = # 0, will belong to
CAns(Q, S, Z) iff for each DB € poss(S) there exists y < x such that (a,b,y) €
Ans(Q, DB, %). This definition reflects the certainty that objects a and b are
always connected with paths, which are preferentially weighted not more than
x. As an example, consider the query

Q = (highway : 0)* |(road : 1 + €)™,

and a source collection (consisting of single source with a single tuple)
S ={(a,s,b)}, with definition

S = highway* |(road + €)°.

The possible databases for S are all those databases, which have at least a path
(between a and b) labeled by highways intervened by at most 5 roads. Now

" The fact that this operator A is the same as the “multiplication” operator of the
Boolean semiring for aggregating edge-weights along paths, is just a coincidence.



let us discuss the certain answer considering the semirings for the quantitative,
qualitative, and hybrid preference semantics.

In the quantative case, ® is maz, and we have (a,b,5) as a certain answer.
The weight of 5 states exactly our certainty that in any possible database, there
is a path from a to b, whose preferential weight w.r.t. the given query is not more
than 5. Also, there exists a possible database in which the best path between a
and b is exactly 5.

In the qualitative case, ® is again max. However, we have now (a,b,1) as a
certain answer. The weight of 1 states our certainty that in any possible database,
there is a path from a to b, and the level of discomfort (w.r.t. the query) for
traversing that path is not more than 1.

Finally, in the hybrid case, ® is as follows

m() ifn<m
n® omb) = { n® ifn>m
n(maz{i}) if n = m.

We have that (a, b, 1(5)) as a certain answer. This is because although the level
of discomfort of the best path connecting a with b in any possible database is 1,
in the worst case (of such best paths), we need to endure up to 5 times such
discomfort (w.r.t. the query). Of course 1(%) is infinitely better than 2.

6 Certain Answers via Query Spheres

In [2], there is given an algorithm, which computes the certain answer of a
classical RPQ @ given a source collection S. This translates into having available
an algorithm for computing CAns(Q, S, %).

Now, let @ be an ARPQ with annotations over a preference semiring %. In
this section, we cast computing tuples in CAns(Q, S, #) into computing tuples
in CAns(Q, S, %), which is the Boolean certain answer of @, after “collapsing”
all the annotations in @ into element T' of the Boolean semiring.

For this, we introduce the notion of “query spheres.” We formally define the
y-sphere of @), where y € R, as

QY ={(w,z) € A" x R: (w,z) € Q and = < y, or otherwise y = 0}.

Let A be an annotated automaton recognizing Q. Then, Q¥ will be the query
recognized by the automaton .4Y obtained from A by retaining only (transition)
paths weighted by some x, which is no more than y. We show in the next
section how to obtain such automata for the different preference semirings that
we consider.

Clearly, Q* C QY for x < 3.8

For semirings in which the notion of the “next” element is well defined,
we give a necessary and sufficient condition for a tuple (a,b,y) to belong to

8 Tt is this property that motivates the use of “query spheres.”



CAns(Q,S,%). We give the following definition about the “next element” prop-
erty of a semiring.

A semiring Z = (R, ®,®,0,1) is said to be discrete iff for each x # 0 in R
there exists y in R, such that (a) x < y, and (b) there does not exist z in R,
such that x < z < y. The element y is called the next element after x.

Notably, all our preference semirings are discrete. Let Z be a discrete semir-
ing. Also, let y (as above) be the next element after (some) x. We can show
that

Theorem 1.

(a,b,y) € CAns(Q, S, %) iff
(a,b,T) € CAns(QY,S,A) and (a,b, F) € CAns(Q*, S, %),
(a,b,1) € CAns(Q, S, %) iff (a,b,T) € CAns(Q*,S, A).

From the above theorem, we conclude that if we are able to compute QY for
each y (relevant to the query), then we could generate all the y-ranked tuples
(a,b,y) of CAns(Q, S, Z) by computing with the algorithm of [2] CAns(QY, S, %)
and CAns(Q*,S, #), and then taking the set difference of their T-tuples.

We present in the next section algorithms, which for a given y compute QY,
for the different preference semirings that we study.

Now the question is, for what y’s to apply the method suggested by Theo-
rem 1 for generating (a, b, y) tuples of the certain answer? For this, let z = ©{z :
(w,z) € Q}. We state the following theorem, which can be easily verified.

Theorem 2. Q% = Q.

For the quantitative and qualitative semirings, the existence of a z < 0 (strict <)
guarantees a terminating procedure for ranking all the tuples in the certain
answer. Simply, one has to repeat the method of Theorem 1 starting with y
equal to 1 and continuing for up to y equal to z. On the other hand, for the
hybrid semiring a “global” (upper bound) z is not enough. Rather, we need to
reason about “level-wise” z’s, as we explain later in this section.
Quantitative case. Interestingly, determining whether there exists sucha z < 0
coincides with deciding the “limitedness” problem for “distance automata.” The
later problem is widely known and positively solved in the literature (cf. for
example [8]).

If the query automaton is limited in distance, and this limit is z, then we
need to compute query spheres up to @Q*, which will be equivalent to @. On the
other hand, if the query automaton is not limited in distance, we can still apply
the same procedure utilizing query spheres for ranking the tuples in the certain
answer. However, the ranking in this case is only eventually computable.

In practice, the user might provide beside the query, also an upper bound 2z’
on the preferential weight of the answers that she is interested to retrieve. In
such a case, we need to compute not more than 2’ query spheres in order to
return all the tuples weighted less or equal to 2’ in CAns(Q, S, Z).



Qualitative case. Here, the existence of z < oo (semiring 0) is guaranteed.
This is because z will be less or equal to the biggest transition weight in the
query automaton.

Hybrid case. In this case, the existence of a global z < co does not guarantee
the ability to rank all the tuples in the certain answer. Rather we need for this
the existence of the level-wise z’s. Namely, we define the upper bound for level n
as zp, = O{z : (w,z) € Q and x < n+1} (strict <, and recall n+1 is a shorthand
for (n 4 1)(M). If there exists i € N, such that z, = n("), we say that z, is finite.

Now, if z, is finite, then for determining the exact weight of the “n-range”
tuples (a,b,n®)) in the certain answer, we need to compute query spheres from
Q("(l)) up to Q("m).

If z, = 2, for m < n (strictly), then there cannot be any n-range tuple in
the certain answer.

On the other hand, if z, > n'? for each i € N, then the exact weight of the
“n-range” tuples is only eventually computable.

Hence the question is how can we determine the existence of a finite z,,7 For
this, we first introduce the generalized query spheres Q"(w) = U;ﬁo Q”(Z). If z, is
finite, then there exists j € N, such that Q”(m) =UL, Q”m. But, the existence
of such j can be found by deciding the limitedness of an automaton for Q"(m).
Thus, we state that

Theorem 3. z, is finite iff Q"(W) is limited in distance.

The question is, how can we compute Q"<m)? In essence we want to extract
the paths in a query automaton A = (P, A,N,pg, 74, F), which are weighted
strictly less than n + 1. Such paths cannot recognize words weighted more or
equal to n + 1. In order to perform this extraction, we build a one-state mask
automaton M,, on the alphabet {0,1,...,n}. Let 7, be the transition relation
of the query automaton A. Then, M, = ({¢},{0,1,...,n},q,7a,{q}), where
™ = {(g,m,q) : (p,7,m,p’) € 7, and m < n}.

Finally, we construct a Cartesian product automaton

Cn = A X Mn = (P_A X {q}vAvTv (p07q)7FA X {Q})7

where 7 = {((p,q),r,n,(®',q)) : (p,r,m,p’) € 74 and (¢, m,q’) € 7,}. It can be
shown that
Theorem 4. The weighted automaton C, accepts exactly Q”(OO).

Here again, the user can practically specify an upper bound k on the prefer-
ential weight of the tuples in each range that she is interested to exactly rank.
Such a bound will serve as an accuracy index. By computing query spheres up
to Q(”(k)), we accurately rank the n-range tuples having a weight, which is not
more than n(*). Finally, we can “inaccurately” derive the rest of n-range tuples,
by computing the whole CAns(Q"(oc),S ,#). By “inaccurately” we mean that
for the n-range tuples weighted more than n(¥), we only know that their weight
is from n®) to n + 1 exclusive.



7 Computing Query Spheres

Quantitative Case. In this section we present an algorithm, which for any
given number k € N constructs the k-th sphere Q* of an ARPQ Q.
For this, we build a mask automaton My, on the alphabet K = {0,1,...,k},
which formally is as follows: My = (Px, K, 7, o, Fx), where P, = F, = {po, 1,
., Pk}, and

Tk = {(Pi, Ny Pitn) : 0 <i <k, and 0 <n < k —i}.

The automaton My, has a nice property. It captures all the possible paths
(unlabeled with respect to A) with weight equal to k. Formally, we can show
that

Theorem 5. My, contains all the possible paths m with weight(w) < k, and it
does not contain any path with weight greater than k.

Now by using My, we can extract from a weighted automaton A for @ all the
transition paths with a weight less or equal to k, giving so an effective procedure
for computing the k-th sphere Q(¥).

For this, let A = (P4, A, 74,40, F4) be a weighted automaton for Q. We
construct a Cartesian product automaton

Ck:AXMk:(PA XPkaAaTa(q07p0)7FA XF/C)7

where 7 = {((¢,p),r,n,(¢d',p")) : (g,r,n,¢") € 74 and (p,n,p’) € 7}. We can
show that

Theorem 6. The weighted automaton Ci, accepts exactly the k-th sphere Q)
of query Q.

It can be easily seen that the size of automaton M, is O(k?). Thus, the
above algorithm for computing Q) through Cy, is in fact exponential in k, since
k is represented in a binary format. However, as we show by the next theorem,
this is the best one could do unless P = N P. In fact, our suggested incremental
computation of the certain answer is a parametrically optimal procedure. We
can show that

Theorem 7. Our algorithm for computing Q™) is essentially optimal.

Qualitative Case. Here the mask automaton is polynomial in k, and it coincides
with the mask automaton for computing Q*” in the hybrid case (see previous
section). The procedure for computing query spheres is repeated as many times
as the number of different annotations in the query automaton, i.e. the number
of repetitions does not depend on k. Hence, we conclude that to compute the
certain answer is polynomial in k for the qualitative case.

Hybrid Case. For computing a query sphere QV, where y = n®)_ for n,k € N,
we need to extract from a query automaton all the paths (not necessary simple)
with (a) any number of transitions weighted strictly less than n, and (b) not
more than k transitions weighted exactly n.



For this, we build a mask automaton M, ;, as follows:

Mn,k - (Pn,ka {07 13 e an}aTn,k7p07Fn,k)7

where PnJg = Fn,k} = {p07p17 s 7pk}’ and

Tngk = {(Pism,p;) :0<m<nand 0 <i<k}U
{(pi,n,pit1) : 0 < i < k}.

Formally, we can show that

Theorem 8. M, contains all the possible paths © with weight(r) < n®), and
it does not contain any path with weight greater than n*).

Now by using M,, j,, similarly with the previous cases, we can extract from

an automaton A for Q all the transition paths weighted less or equal to n(¥),

giving so an effective procedure for computing the Q(”(k)) query sphere.

Observe that the above algorithm for computing Q(”(m) is polynomial in n,

but unfortunately exponential in k (due to a binary representation of n). It is

open whether or not Q(”(k)) can be computed in better time with respect to k.
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