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ABSTRACT

The notion of representation systems describes structures
that are algebraically closed under queries. It has recently
been realized that representation systems are highly relevant
also in the context of data exchange. We extend the notion
of representation system to encompass data exchange map-
pings and their composition. Seen through this lens, two
major classes of representation systems emerge, namely ho-
momorphic data exchange systems and strong data exchange
systems. The homomorphic “OWA” systems encompass the
“classical” part of data exchange. Reasoning is modulo ho-
momorphic equivalence (CQ-equivalence), and only unions
of conjunctive queries and monotone data exchange map-
pings are supported.

We then develop some new technical tools that allow us to
prove that there is a class of ‘”CWA” strong representation
systems in which reasoning is modulo isomorphic equiva-
lence. These systems are based on conditional tables, and
they support first order queries and non-monotonic data ex-
change mappings specified by a large class of second or-
der dependencies. We achieve this by showing that, un-
der a CWA-interpretation, conditional tables are chaseable
with the aforementioned class of second order dependencies,
and that the class is closed under composition in the CWA-
setting.

We also introduce a stricter notion of composability, and
show that the class of (first order) source-to-target tuple
generating dependencies is closed under the stricter notion
of composability.

Categories and Subject Descriptors
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1. INTRODUCTION

Data exchange deals with mappings between schemas and
the realization of the application of the mappings on (data
base) instances through an algebraic proof procedure known
as the Chase. Significant advances have already been made
in determining closure properties of a number of subclasses
of mappings under “schema-management” operations such
as composition and inverse. For a snapshot of this rapidly
advancing area, see e.g. [5].

There has been less focus on closure properties of classes of
instances under various classes of mappings. Recently Are-
nas et al. [4] made an important contribution by showing
that the concept of representation systems, that has long
been used in the semantics of querying incomplete informa-
tion data bases, has useful applications in data exchange.

In this paper we provide a systematic application of repre-
sentation systems in data exchange. A representation sys-
tem for data exchange consists of a class of tables used to
represent incomplete instances, an interpretation function
for the tables, a class of queries, and a class of mappings,
such that the table class is closed both under data exchange
(i.e. application of the mappings, target materialization)
and answering queries over the target. This takes into ac-
count the important interdependence between querying and
exchanging data.

Two major classes of representation systems for data ex-
change emerge. The first, called homomorphic data ex-
change systems accounts for most of the classical results in
data exchange. The “canonical” system consists of classical
tableaux as table class, open world interpretation, unions of
conjunctive queries as query class, and “plain” second or-
der source-to-target tgd’s as mapping class. This system is
closely related to the concept of “universal models” heavily
used in data exchange.

The second class of representation systems for data exchange
consists of so called strong systems that are based on the
closed world assumption and sets of models, rather than
universal models. We obtain important technical results
that allow us to show that the class of conditional tables,
closed world interpretation, the class of first order queries,



and mappings specified by a large class of second order de-
pendencies form such a strong representation system. Our
analysis also shows that in order to get “the full effect” of
second order dependencies, we need strong representation
systems, where the tableaux are upgraded to conditional ta-
bles.

We then integrate the concept of closure of mappings under
composition into the representation systems. When adding
composition to a data exchange system we are interested in
either homomorphic composable data exchange systems or
strong composable data exchange systems. The former sys-
tem account for composition under UCQ-equivalence, cov-
ering most of the current data exchange setting require-
ments. The latter takes into account the composition un-
der a closed world assumption semantics allowing for non-
monotonic queries.

In the mapping composition introduced by Fagin et al. [16],
two mappings M and M ′ are considered ”composable” if
the target schema of the first mapping matches the source
schema of the second mapping. We refer to composing under
this composability criterion as standard composition. Sev-
eral classes of mappings have recently been shown to be
closed under standard composition [16, 3, 7]. Unfortunately,
the class of mappings specified by source-to-target tgd’s, the
most prominent in data exchange setting, has been shown
not to be closed under standard composition. Even more,
it is shown in [16] that one may need second order depen-
dencies to represent the standard composition of two map-
pings specified by source-to-target tgd’s. Second order de-
pendencies are a known cause of intractability. As a rem-
edy we introduce new composability criteria for which the
class mappings specified by source-to-target tgd’s is closed.
The new composability criteria, called semi-LAV compos-
ability, properly subsumes the results on closure under stan-
dard composition for the class of mappings specified by sets
of source-to-target full tgd’s [16] and the class specified by
true-LAV source-to-target tgd’s [7].

The rest of this paper is organized as follows: In Section
2 we review incomplete information and representation sys-
tems. In Section 3 we add classes of mappings to the rep-
resentation systems, and obtain data exchange systems. We
unearth both homomorphic and strong data exchange sys-
tems. Section 4 focuses on the composition of mappings and
introduces new notions of compositions, weak composition
for homomorphic systems and strong composition for strong
systems. In Section 5 we introduce the semi-LAV compos-
ability criteria. These criteria ensure closure under com-
position for larger classes of mappings, still with tractable
membership problem. Conclusions are drawn and further
work is envisioned in Section 5.

In order to emphasize what we consider “canonical” data ex-
change systems in each case, we have highlighted the corre-
sponding theorems with a surrounding box. By a canonical
system we mean a system where every component is opti-
mal, in the sense that “improving” any component no longer
results in a data exchange system. We have however not in-
cluded any negative results to substantiate the optimality,
as there are a plethora of such propositions.

2. INCOMPLETE INFORMATION
AND REPRESENTATION SYSTEMS

For basic definitions and concepts we refer to [1]. We assume
familiarity with relational query languages. We use UCQ for
the class of unions of conjunctive queries, and FO for the
class of first order queries. We use the symbol ⊆ for subset
inclusion, and ⊂ for proper set inclusion.

Relational schemas and instances. A relational schema
R is a finite set {R1, . . . ,Rn} of relation names, each with an
associated arity in N. The arity of Ri is denoted arity(Ri).
Let Cons be a countably infinite set of constants, usually
denoted a, b, c, . . ., possibly subscripted. From the domain
Cons and a schema R we build up a Herbrand structure
consisting of all expressions of the form R(a1, a2, . . . , ak),
where R ∈ R, arity(R) = k, and the ai’s are values in Cons.
Such expressions are called ground atoms, or ground tuples.
A database instance I over R is then simply a finite set of
ground tuples over over R , e.g. {R1(a1, a3),R2(a2, a3, a4)}.
We denote the set of constants occurring in an instance I
with dom(I). The set of all instances over R is denoted
Inst(R).

Incomplete instances. An incomplete database (over a
schema R) is conceptually a set X of complete instances
(over the schema R), or possible worlds I. Given a query
Q and an incomplete database X , the result of Q on X is
Q(X ) = {Q(I) ∶ I ∈ X}. To this exact answer [19] there are
two approximations [24], namely

certQ(X ) = ⋂{Q(I) ∶ I ∈ X}, and

possQ(X ) = ⋃{Q(I) ∶ I ∈ X},

called the certain and the possible answers, respectively. We
now introduce the notion of co-initial sets of possible worlds.
This notion will provide us with a characterization of when
two incomplete instances are “certain-answer equivalent” for
monotone queries. We will couple this with a characteriza-
tion of “certain answer equivalence” with respect to first
order queries.

Definition 1. Let X and Y be sets of possible worlds.
Then we say that X precedes Y, if for all J ∈ Y, there is
an I ∈ X , such that I ⊆ J . This is denoted X ⋐ Y. If both
X ⋐ Y, and Y ⋐ X , we say that X and X are co-initial, and
denote it X ≃ Y.

It is easy to see that co-initiality is an equivalence relation.
We now have two partial orders on sets of possible worlds,
namely X ⋐ Y, and the more obvious X ⊆ Y. Intuitively,
X ⋐ Y means that X has less positive or monotone infor-
mation than Y. The order X ⊆ Y means that X has more
absolute information than Y. This intuition is justified by
the following theorem.

Theorem 1. Let X and Y be denumerable sets of finite
instances. Then

1. X ⋐ Y (X ≃ Y) if and only if certQ(X ) ⊆ certQ(Y)

(certQ(X ) = certQ(Y)) for all monotone queries Q.

2. X ⊆ Y (X = Y) if and only if certQ(Y) ⊆ certQ(X )

(certQ(Y) = certQ(X )) for all first order queries Q.



The only if part of the first claim was proved in [24]. The if
part of the first claim as well as the second claim is from [18].
Note that the class of monotone queries includes UCQ≠, that
is, unions of conjunctive queries with inequalities. It is well
known that allowing inequalities leads coNP-completeness of
query evaluation and other reasoning tasks (see e.g. [2]). A
more practical and also popular notion is UCQ-equivalence,
requiring only that the two sets of instances are indistin-
guishable as far as certain answers to unions of conjunctive
queries are concerned. In order to characterize this notion
we need a few extra concepts.

A mapping from dom(I) to dom(J) is said to be a (in-
stance) homomorphism from an instance I to an instance J ,
if R(a1, . . . , ak) ∈ I implies that R(h(a1), . . . , h(ak)) ∈ J ,
which we usually denote h(I) ⊆ J . Let D ⊆ dom(I). If h
is the identity on D we say that h is a D-homomorphism.
An instance I D-homomorphically precedes an instance J ,
if there is a D-homomorphism h, such that h(I) ⊆ J . Let
X be a denumerable set of finite instances. We say that
⋂{dom(I) ∶ I ∈ X} is the set of visible constants in X .

Definition 2. Let X and Y be denumerable sets of fi-
nite instances, and let D denote the set of visible constants
in X . We say that X homomorphically precedes Y if
for each J ∈ Y there exists an instance I ∈ X and a D-
homomorphism h, such that h(I) ⊆ J . This is denoted
X ⪯ Y. If both X ⪯ Y and Y ⪯ X , we say that X and
Y are homomorphically co-initial, and denote it X ≈ Y.
Note that if X and Y are homomorphically co-initial, then
they have the same set of visible constants.

Finally, we say that a set X has finite index if it contains
a finite number of isomorphically non-equivalent instances1.
We can now give the promised characterization of UCQ-
equivalence.

Theorem 2. Let X and Y have finite index. Then X ⪯ Y

(X ≈ Y) if and only if certQ(X ) ⊆ certQ(Y) (certQ(X ) =

certQ(Y)) for all UCQ-queries Q.

Relational tableaux. Since an incomplete instance X in
general contains infinitely many possible worlds, we need a
mechanism to finitely represent them. The two most impor-
tant such mechanisms are tableaux (naive tables) and con-
ditional tables [24].

Relational tableaux are defined as follows. Let Vars be a
countably infinite set, disjoint from the set of constants. Ele-
ments in Vars are called variables, and are denotedX,Y,Z, . . .,
possibly subscripted. We can then also allow non-ground
atoms, i.e. expressions of the form R(a,X, b, . . . ,X,Y ). A
tableau T is a finite set of atoms (ground, or non-ground).
A non-ground atom represents a sentence where the vari-
ables are existentially quantified. The set of variables and
constants in a tableau is denoted dom(T ).

Let T and U be tableaux. A mapping h from dom(T ) to
dom(U), that is the identity on Cons, is called a (tableau)
homomorphism from T to U if h(T ) ⊆ U . This is denoted
T → U . If h(T ) = U we denote it T ↪ U . If there is a

1Instances I and J are isomorphic if there is an injective
homomorphism h such that h(I) = J , and h−1

(J) = I.

homomorphism from T to U and a homomorphism from U
to T we say that T and T are homomorphically equivalent,
and denote it T ↔ U . If there is an injective homomorphism
h such that h(T ) = U , and h−1

(U) = T , we say that T
and U are isomorphic, which we denote by T ≅ U . An
endomorphism on a tableau T is a mapping on dom(T ) such
that h(T ) ⊆ T . Finally, a valuation is a homomorphism
whose image is contained in Cons.

There are two interpretations of a tableau T as a representa-
tive of incomplete instances, namely the open world (OWA)
interpretation and the closed world (CWA) interpretation,
denoted Repowa

(T ) and Repcwa
(T ), respectively. Formally:

Repowa
(T ) = {I ∶ v(T ) ⊆ I for some valuation v},

Repcwa
(T ) = {I ∶ v(T ) = I for some valuation v}.

The Rep-functions are related to co-initiality, equality, and
homomorphisms as follows.

Theorem 3. [21, 27] Let T and U be tableaux. Then

1. Repowa
(T ) ⪯ Repowa

(U) iff T → U , and
Repowa

(T ) ≈ Repowa
(U) iff T ↔ U .

2. Repcwa
(T ) ⊆ Repcwa

(U) iff U ↪ T , and
Repcwa

(T ) = Repcwa
(U) iff T ≅ U .

Note that the set of visible constants in Repowa
(T ) is ex-

actly the constants appearing in T , and that Repowa
(T ) ≃

Repowa
(U) iff Repowa

(T ) ≈ Repowa
(U).

The core [15] of a tableau T is a tableau denoted core(T ),
such that core(T ) ⊆ T , T → core(T ), and there is no en-
domorphism g, such that g(core(T )) ⊂ core(T ). The core
is unique up to isomorphism. Note that core(T ) ≅ core(U)

iff Repowa
(T ) ≈ Repowa

(U), but it can be that core(T ) ≅

core(U) although Repcwa
(T ) ≠ Repcwa

(U). For an example of
the last point, let T = {R(a, b)} and U = {R(a, b),R(a,X)}.

Representation systems. One of the salient features of
the relational model, taken for granted these days, is that
relations are closed under first order queries, meaning that
the result of an FO-query on a relational instance is another
relational instance. When it comes to incomplete databases
we should expect the same. In their seminal paper [24],
Imielinski and Lipski showed that for any tableau (naive
table) T and query Q in UCQ, one can find a tableau U ,
such that Repowa

(U) ≈ Q(Repowa
(T )). From this it follows

that certQ(Repowa
(T )) = Qnaive

(T ), where Qnaive
(T ) is com-

puted using “naive evaluation,” meaning that the variables
in T are treated as pairwise distinct constants, distinct from
all constants in T , and that from the thus obtained result
tuples with variables are removed. Imielinski and Lipski
called the triple consisting of the class of naive tables (we use
“naive table” and “tableau” interchangeably) with OWA-
interpretation together with the class UCQ a representation
system. In light of Theorem 2 above, we reformulate their
notion of representation systems equivalently as follows.



Definition 3. Let T be a class of tables, Rep a function
that assigns a set of possible worlds to each T ∈ T , and
Q a class of queries. Then a triple (T ,Rep,Q) is called a
homomorphic representation system, if for each T ∈ T
and Q ∈ Q, there exists a table U ∈ T , such that

Rep(U) ≈ Q(Rep(T )).

Let TBL denote the class of tableaux. The result of Imielin-
ski and Lipski can now be stated as follows.

Theorem 4. [24] (TBL, Repowa, UCQ) is a homomor-
phic representation system.

This means that the class of tableaux (naive tables) is closed
(modulo ≈) under unions of conjunctive queries.

Strong representation systems. We now turn our atten-
tion to representation systems that allow for non-monotonic
features such as full FO-queries and possible (maybe) an-
swers. As can be expected, neither monotone nor homo-
morphic representation systems will be adequate. This can
be seen from the following next two lemmas.

Lemma 1. For any tableaux T (even without variables)
and satisfiable conjunctive query Q with at least one negated
atom, it holds that certQ(Repowa

(T )) = ∅.

This means that the answer to any satisfiable conjunctive
query with at least one negated atom consists of the empty
instance. A similar phenomenon was recently also noted by
Fagin et al. [17]. It seems that many of the anomalies stem-
ming from applying non-monotonic queries in data exchange
can be traced back to this mismatch.

If we also are interested in retrieving possible answers we run
into a similar anomaly. The symbol ∞ stands for Consarity(Q).

Lemma 2. For any naive table T and non-Boolean UCQ-
query Q, we have possQ(Repowa

(T )) =∞.

It is easy too see that such phenomena cannot occur in closed
world systems. This motivates the following definition.

Definition 4. Let T be a class of tables, Rep a function
that assigns a set of possible worlds to each T ∈ T , and Q
a class of queries. Then a triple (T ,Rep,Q) is a strong
representation system, if for each T ∈ T and Q ∈ Q,
there exists a table U ∈ T , such that

Rep(U) = Q(Rep(T )).

It is well known [24, 1] that there are first order queries
Q and tableaux T , such that there is no tableau U with
Repcwa

(U) = Q(Repcwa
(T )). It turns out that we need con-

ditional tables in order to obtain a strong representation
system for first order queries. Formally, a conditional table
[24] is a pair (T,ϕ), where T is a tableau, and ϕ is a map-
ping that associates a local condition ϕ(t) with each tuple
t ∈ T . A (local) condition is a Boolean formula built up from
atoms of the form X = Y , X = a, and a = b for X,Y ∈ Vars,
and a, b ∈ Cons. An atomic equality of the form a = a, for
a ∈ Cons is interpreted as “true,” which we will denote ⊺.

Likewise, for any two distinct constants a and b, the equal-
ity a = b is interpreted as “false,” denoted �. A conditional
table (T,ϕ) represents a set of possible worlds (ground in-
stances, complete databases). For this, let v be a valuation,
that is, a ground homomorphism. Then

v(T,ϕ) = {v(t) ∶ t ∈ T, and v(ϕ(t)) = ⊺}.

The set of possible worlds represented by (T,ϕ) under the
closed world and open world interpretations are

Repcwa
(T,ϕ) = {I ∶ I = v(T,ϕ) for some valuation v},

Repowa
(T,ϕ) = {I ∶ I ⊇ v(T,ϕ) for some valuation v}.

Below is an example of a conditional table (T,ϕ) displayed
in tabular form:

t ϕ(t)
R(X, b) X = Y
R(b, c) ⊺

R(Y, d) X = d
T (X, c) ⊺

In “in-line” notation we would write above table (T,ϕ) as
{R(X, b);X = Y, R(b, c);⊺, R(Y, d);X = d, T (X, c);⊺}. Be-
low are some instances from Repcwa

(T,ϕ). For example, I1 is
obtained by considering valuation v where v(X) = v(Y ) = a.

I1
R(a, b)
R(b, c)
T (a, c)

I2
R(d, b)
R(b, c)
R(d, d)
T (d, c)

I3
R(b, c)
R(a, d)
T (d, c)

I4
R(b, c)
T (a, c)

Imielinski and Lipski [24] showed that conditional tables un-
der closed world interpretation is a strong representation for
FO-queries. We denote the class of conditional tables as
COND.

Theorem 5. [24] (COND,Repcwa,FO) is a strong rep-
resentation system.

3. ADDING MAPPINGS
We now extend the notion of representation systems to

also account for data exchange mappings [13]. First we need
to review a few concepts.

Data exchange mappings and systems. The concept
of mappings between schemas was introduced by Bernstein
et al. in [8], and in the relational context by Fagin et al.
in their seminal paper [13]. Let R and S be two disjoint
schemas, which we call the source schema and the target
schema, respectively. A data exchange mapping M from
source R to target S is a subset of Inst(R) × Inst(S). The
intended meaning of M is that a source instance I is mapped
to the set of instances, also called solutions,

SolM(I) = {J ∶ (I, J) ∈M}.

In the sequel we shall, depending on the context, regard a
mapping M as a function from source instances to sets of
target instances, or as a relation between source and target
instances.



Given a mapping M from source R to target S, a source
instance I over R, and a query Q over S (a target query),
the certain answer to query Q on I through M is defined as

certQ,M(I) =⋂{Q(J) ∶ J ∈ SolM(I)}.

One would therefore be interested in scenarios where the
target instances can be (preferably efficiently) materialized
by an approximation that gives the correct certain answer
for all target queries. We are thus led to the following defi-
nition.

Definition 5. Let T be a class of tables, and Rep a func-
tion that assigns a set of possible worlds to each T ∈ T . Let
Q be a class of queries, and M a class of mappings. Then
a quadruple (T ,Rep,Q,M ) is said to be a homomorphic
data exchange system if for each T ∈ T ,M ∈ M , and
Q ∈ Q, there exists a table U ∈ T , such that

Rep(U) ≈ {Q(J) ∶ J ∈ SolM(I), I ∈ Rep(T )}.

Embedded dependencies. A mapping M has to be spec-
ified (finitely) using some formalism. The embedded depen-
dencies [11] are the class of choice. Embedded dependencies
consist of tuple generating dependencies and equality gen-
erating dependencies. A tuple generating dependency (tgd)
is a first order formula of the form

∀x̄, ȳ ∶ α(x̄, ȳ)→ ∃z̄ β(x̄, z̄),

where α and β are conjunctions of relational atoms, and x̄,ȳ
and z̄ are sequences of variables. We assume that the vari-
ables occurring in dependencies are disjoint from all vari-
ables occurring in any tableaux under consideration. To
emphasize this, we use lowercase letters for variables in de-
pendencies. When α is the antecedent of a tgd, we shall
sometimes conveniently regard the set of atoms in it as a
tableau, and refer to it as the body of the tgd. Similarly we
refer to β as the head of the tgd. If there are no existentially
quantified variables the dependency is said to be full, oth-
erwise it is embedded. In case a body of a tgd contains only
one atom, it is called a Local-As-View tgd (LAV-tgd). If a
LAV-tgd does not contain repeated variables in the body it
is called a true-LAV tgd.

Frequently, we omit the universal quantifiers in tgd formu-
lae. Also, when the variables are not relevant in the context,
we denote a tgd α(x̄, ȳ)→ ∃z̄ β(x̄, z̄) simply as α→β.

Let ξ = α→ β be a tuple generating dependency, and I an
instance. Then we say that I satisfies ξ, if I ⊧ ξ in the
standard model theoretic sense, or equivalently, if for every
homomorphism h, such that h(α) ⊆ I, there is an extension
h′ of h, such that h′(β) ⊆ I.

An equality generating dependency (egd) is a first order for-
mula of the form

∀x̄ ∶ α(x̄)→ y = z

where α is a conjunction of relational atoms, x̄ a sequence
of variables, and y, z two variables from x̄.

We say that an instance I satisfies an egd ξ, if I ⊧ ξ in the
model theoretic sense, or equivalently, if for every homomor-
phism h, such that h(α) ⊆ I, it holds that h(x) = h(y).

In order to use embedded dependencies as mappings, we
need some definitions. Let R and S be two disjoint schemas.
A tgd α→ β is said to be a a source-to-target tgd (st-tgd)
from R to S if all the relation symbols in α belong to R, and
all the relation symbols in β belong to S, A target tgd is a
tgd where all relation symbols are from S. Target egd’s are
defined similarly. We abbreviate target dependencies with
t-tgd’s and t-egd’s, respectively. Let Σ = Σst∪Σt, where Σst
is a (finite) set of st-tgd’s, Σt is a (finite) set of t-tgd’s and
t-egd’s. The mapping specified by Σ is

MΣ = {(I, J) ∈ Inst(R) × Inst(S) ∶ (I, J) ⊧ Σ}.

The Chase on tableaux. Let Σ be a set of embedded
dependencies and T a tableau. A trigger for Σ on T is
a pair (ξ, h), where ξ = α → β ∈ Σ is a tgd, and h is a
homomorphism such that h(α) ⊆ T and for no extension h′

of h, does it hold that h′(β) ⊆ T . The standard chase step
[13, 10] on a tableau T with such a trigger results in a tableau
U = T ∪ {h′(β)}, where h′ is an extension of h that assigns
new fresh (uppercase) variables to the existential variables in
β. In case ξ is an egd α(x̄) → y = z, the pair (ξ, h) is called
a trigger, if α(h(x̄)) ⊆ T , and h(y) ≠ h(z). In this case
the standard chase step on tableau T with such a trigger
results in the tableau obtained from T by substituting each
occurrence of one of {h(y), h(z)} with the other, following
the rule that the variable is substituted with the constant,
or in case both are variables, then Xj is substituted with
Xi, if i < j in some fixed enumeration of Vars. In case both
of h(y) and h(z) are constants, the chase step results in
an inconsistent state, denoted �. The standard chase on
a tableau T is defined as a sequence T0, T1, T2, . . . , Tn, . . .
where T0 = T , and for each i we have that Ti+1 was obtained
from Ti in one chase step. If a chase step ever results in �,
the sequence is said the be unsuccessful, and the process
aborted. A successful process, on the other hand, might not
terminate. However if there is an integer i such that there is
no trigger for Ti, the chase is said to terminate. In this case
we call the tableau Ti the result of the chase, and denote it
ChaseΣ(T ).

Fagin et al. [13] showed that when Σ is a set of embedded de-
pendencies, I an instance, and ChaseΣ(I) terminates, then

Repowa
(ChaseΣ(I)) ≈ SolMΣ(Repowa

(I)).

This fundamental result was later generalized in [17] to allow
the input to be tableaux.

Weak acyclicity and beyond. Deutsch et al. [10] showed
that it is undecidable whether the chase terminates with a
set Σ of embedded dependencies on an instance I. Several
classes of dependencies ensuring termination of the chase
have been defined. The most important such classes are the
weakly acyclic sets of tgd’s [13], and their subclass called
richly acyclic tgd’s [23]. In the following we define these
concepts.

For a set Σ of tgd’s over a database schema R the depen-
dency graph of Σ is the directed graph that has as vertices
(R, i), where R ∈ R, and i ∈ {1, . . . ,arity(R)}. The graph
has two types of edges:



1. Regular edges. There is a regular edge between vertices
(R, i) and (S, j) if there is a tgd in Σ that has a variable
y that appears both in position (R, i) in the body, and
in position (S, j) in the head.

2. Existential edges. There is an existential edge between
vertices (R, i) and (S, j) if there is a tgd in Σ that has
a variable y that appears in position (R, i) of the body
and in some position in the head, and an existentially
quantified variable z that appears in position (S, j) in
the head.

A set Σ of tgd’s is said to be weakly acyclic if the dependency
graph of Σ does not have any cycles containing an existential
edge [13].

Hernich and Schweikardt [23] defined a slight restriction on
the weakly acyclic sets of dependencies as follows: If the pre-
vious dependency graph is extended by also adding an exis-
tential edge from position (R, i) and (S, j) whenever there
is a dependency in Σ that has a variable x that appears in
position (R, i) of the body and an existentially quantified
variable z appears in position (S, j) in the head. The newly
created graph is called extended dependency graph. A set Σ
of tgd’s is said to be richly acyclic if the extended depen-
dency graph of Σ does not have any cycles containing an
existential edge.

Let STAND be the class of mappings defined by MΣ, where
Σ consists of source-to-target tgd’s, a weakly acyclic set of
target tgd’s, and target egd’s. We can now integrate data
exchange and representation systems according to the fol-
lowing theorem.

Theorem 6. [13, 17] (TBL,Repowa,UCQ,STAND) is a
homomorphic data exchange system.

Second order dependencies. The class of st-tgd’s was
generalized by Fagin et al. in [16] to Second Order tgd’s
(SO-tgd’s) which are source-to-target tgd’s extended with
existentially quantified function symbols, terms using these
function symbols, and atomic facts over terms. Equalities
between terms are allowed in the body. The function sym-
bols act as Skolemized existential quantifiers. Examples of
SO-tgd’s can be found in Example 1. We refer to the Ap-
pendix and to [16] for a formal definition of SO-tgd’s. Note
that SO-tgd’s are source-to-target, by their definition. The
SO-tgd’s emerged as the natural closure of st-tgd’s under
composition of mappings, a topic we return to in the next
section. It was shown in [16] that the chase can be general-
ized to compute (in polynomial time) a tableau ChaseΣ(T ),
such that

Repowa
(ChaseΣ(T )) ≈ SolMΣ(Rep(T )),

when Σ consists of SO-tgd’s. Let normSO be the class of
mappings defined by sets of SO-tgd’s, a weakly acyclic set
of target tgd’s and target egd’s. Then the previous theorem
can be strengthened as follows.

Theorem 7. [16, 17] (TBL,Repowa,UCQ,normSO) is a
homomorphic data exchange system.

Later Arenas et al. showed in [5] that if one is only concerned
with UCQ-equivalence, then every set of SO-tgd’s can be

written in a simplified form, called plain SO-tgd’s, while
preserving UCQ-equivalence. Plain SO-tgd’s are SO-tgd’s
where equalities over terms are disallowed. Let simSO be
the class of mappings defined by MΣ, where Σ is a set of
plain SO-tgd’s, a weakly acyclic set of t-tgd’s, and t-egd’s.
We can thus replace the class normSO with the smaller class
simSO, since the result of Arenas et al. tells us that for
any mapping MΣ, where Σ is a set of SO-tgd’s there is a
mapping MΣ′ , where Σ′ is a set of plain SO-tgd’s, such that
SolMΣ(I) ≈ SolMΣ′

(I), for all instances I. This gives us the
following “canonical” open world data exchange system.

Theorem 8. [16, 17, 5] (TBL,Repowa,UCQ, simSO) is
a homomorphic data exchange system.

This leaves open the question of the usefulness of the full
power of SO-tgd’s. Consider the following example.

Example 1. Let the source schema have two relations
Emp (employees) and OutWorker (outsourced workers). Let
the target schema have relations EmpMgr (employees with
their managers), SelfMgr (employees that are self managers)
and Consult (consultants). Consider also the source to tar-
get dependencies:

Σ = {OutWorker(x)→ Consult(x),

Emp(e)→ EmpMgr(e, f(e)),

Emp(y), y = f(y)→ SelfMgr(y)}.

Note that Σ is a set of SO-tgd’s. Technically, Σ should be
read as ∃f ∶ ⋀Σ, where ⋀Σ is the conjunction of the sen-
tences in Σ, and all first order variables and quantification
inside Σ are local to each sentence, see [16]. Intuitively, the
dependencies specify that all outsourced workers are consul-
tants, each employee has at least one manager and each em-
ployee who is his own manager is a self-manager. Let us
consider instance I = {Emp(joe),OutWorker(ann)}. Then
ChaseΣ(I) = {EmpMgr(joe, Z),Consult(ann)}. Now the
UCQ-equivalent set of plain SO-tgd’s is

Σ′
= {OutWorker(y)→ Consult(y),

Emp(x)→ EmpMgr(x, f(x))},

and ChaseΣ′(I) = ChaseΣ(I). In any case, the assumption
that only employees can be self-managers, that is ”ann” can’t
be her own self-manager, is lost. More formally, let Q be
the query {x ∶ Consult(x) ∧ ¬SelfMgr(x)} Then the set of
certain answers is certQ,MΣ(I) = ∅, even if one may expect
that certQ,MΣ(I) = {ann}.

We will show that if we allow conditional tables instead of
tableaux as representation mechanism, and suitably extend
the chase, the result of applying the extended chase gives
the conditional table

t ϕ(t)
EmpMgr(joe, Z) ⊺

SelfMgr(joe) Z = joe
Consult(ann) ⊺

Materializing the target as this conditional table with closed
world interpretation will correctly give us {ann} as the cer-
tain answer for Q.



Constructible solutions. Before admitting conditional
tables into data exchange, we need to determine an appro-
priate closed world assumption and know how to apply it
to mappings. This was recently solved for source-to-target
tgd’s by Libkin [26], who proposed the closed world solu-
tions for data exchange. The approach of Libkin is based
on the intuition that any (existential) facts in the target in-
stance should follow logically from the source instance and
the dependencies, and that no two nulls in the target should
be gratuitously equated. Libkin’s solution was subsequently
generalized to also include target tgd’s and egd’s [23, 22].
It was however observed in [21] that these generalizations
suffered from some anomalies, and a new closed world se-
mantics, called constructible solutions was proposed. This
is the closed world semantics we adopt here.

The constructible solutions semantics can intuitively be de-
scribed as follows. Let I be a ground instance and Σ a set
of tgd’s. Consider a chase step on I with a tgd ξ = α(x̄, ȳ)→
∃z̄ β(x̄, z̄) and trigger (ξ, h). Instead of adding the tuple
β(h(x̄), Z̄′

), where Z̄′ is a sequence of new fresh variables,
we create a branch for each sequence c̄ of constants and add
the ground tuple β(h(x̄), c̄) to I. Continuing in this fashion
we will have a chase tree, instead of a chase sequence. (There
is a caveat that each trigger (ξ, h) is fired only once in each
branch.) Notably, all nodes in the tree will be ground in-
stances. The leaves (or limits of branches) of the chase tree
form the set of constructible solutions for I and Σ, denoted
Σ(I). A formal definition of Σ(I) can be found in [21]. If
Σ = Σtgd∪Σegd we define Σ(I) = Σtgd(I)∩Sat(Σegd), where
Sat(Σ) denotes the set of all instances I, such that I ⊧ Σ.

We still need to extend the constructible solutions to the ex-
tended class st-SO dependencies [3], that is SO-tgd’s where
equalities over functional terms also can occur in the head of
the tgd’s. Let Σ be a set of st-SO dependencies, and F the
set of function symbols therein. Let F ♭ be an interpretation
of F in the universe Cons.

Given an instance I, we first create a subtree for each in-
terpretation F ♭. In each subtree F ♭ we construct Σ(I). In
doing this, when applying a homomorphism h we of course
use the rule h(f(t̄)) = f ♭(h(t̄)). Note that even if we are not
instantiating existential variables we still get a three due to
the fact that the chase is non-deterministic. At each point,
we get a subtree for each choice of trigger (ξ, h).

Definition 6. Let Σ be a set of st-SO tgd’s, target tgd’s
and egd’s. The closed world mapping defined by Σ is

M cwa
Σ = {(I, J) ∶ J ∈ Σ(I)}.

Consequently we have SolMcwa
Σ

(I) = {J ∶ J ∈ Σ(I)}.

We also define the certain and possible CWA-answers.

Definition 7.

certQ,Mcwa
Σ

(I) = ⋂{Q(J) ∶ J ∈ SolMcwa
Σ

(I)}

possQ,Mcwa
Σ

(I) = ⋃{Q(J) ∶ J ∈ SolMcwa
Σ

(I)}

We can now formulate the requirements for a closed world
data exchange system.

Definition 8. Let T be a class of tables, Rep a function
that assigns a set of possible worlds to each T ∈ T . Let
Q be a class of queries and M a class of mappings. Then
a quadruple (T ,Rep,Q,M ) is a strong data exchange
system, if for each T ∈ T , MΣ ∈ M , and Q ∈ Q, there
exists a table U ∈ T , such that

Rep(U) = {Q(J) ∶ J ∈ SolMcwa
Σ

(I), I ∈ Rep(T )}.

To be able to obtain strong data exchange systems, we will
extend the chase from tableaux to conditional tables. This
conditional chase requires that we generalize the notion of
a trigger. Recall that for tableau T and a tgd ξ = α→β, a
trigger is a pair (ξ, h), where h is a homomorphism such that
h(α) ⊆ T . For a conditional table (T,ϕ) we are looking for a
subset T ′ of T , and mappings h1 and h2, such that h1(α) =
h2(T

′
). The most general such pair is called an mgu (most

general unifier). A trigger is then a triple (ξ, (h1, h2), T
′
).

Applying a trigger will generate new tuples h1(β) each with
a local condition determined by h2 and the local conditions
from T ′. For example, if T = {R(a, Y );Z = 1,R(b, c);⊺} and
ξ = R(x,x) → S(x), then (ξ, ({x/a},{Y /a},{R(a, Y )} is a
trigger. Applying this trigger results in the addition of the
tuple S(a) with local condition Z = 1 ∧ Y = a. For details,
see [21].

In order to account for egd’s as well, we need to extend
the notion of conditional tables by allowing a set of global
conditions [18]. A global condition is syntactically like a
local condition, but it is used to restrict the set of possible
worlds, rather that restricting the set of tuples within a pos-
sible world as the local conditions do. For a conditional table
(T,ϕ) we denote the global condition with ϕ(T ). We can
now extend the open world and closed world interpretations
of conditional tables as follows:

Repowa
(T,ϕ) = {I ∶ I ⊇ v(T,ϕ) for v such that v(ϕ(T )) = ⊺}

Repcwa
(T,ϕ) = {I ∶ I = v(T,ϕ) for v such that v(ϕ(T )) = ⊺}

The global condition is needed in order to enforce equalities
in the representation function. For example, let (T,ϕ) =

{R(a,X, c);⊺, R(a, b, d);⊺}, and ξ = R(x, y, z),R(x, y′, z′)→
y = y′. Then ξ can be enforced in the chase by adding the
global condition ϕ(T ) = {X = b}. If we instead have had
(T,ϕ) = {R(a, b, c);⊺, R(X,Y, d);⊺}, we would have added
ϕ(T ) = {X ≠ a ∨ Y = b} instead.

We now have the ingredients for a strong data exchange sys-
tems. Let ordSO be the class of mappings M cwa

Σ , where Σ
consists of SO-tgd’s, a richly acyclic set of target dependen-
cies, and target egd’s. Let GCOND be the class of global
conditional tables, and FO the class of first order queries.
We then have

Theorem 9. (GCOND,Repcwa,FO,ordSO) is a strong
data exchange system.

We note that Arenas et al. [4] showed that for any ”positive”
conditional table (T,ϕ), where the global condition is ⊺ and
all local conditions are conjunctions of equalities, and set Σ
of st-SO dependencies, one can find a positive conditional
table (U,ψ), such that

Repowa
(U,ψ) = ⋃{SolΣ(I) ∶ I ∈ Repowa

(T,ϕ)}.



This would yield a strong data exchange system, when cou-
pled with target UCQ’s, except that the same power can be
achieved using naive tables. To see this, note that for any
UCQ Q, we have

certQ(Repowa
(U,ψ)) = Qnaive

(U).

The proof of Theorem 9, omitted here due to space restric-
tions, is based on the fact that the chase procedure can
be generalized to the conditional chase, denoted Chasecond,
with the property

Repcwa
(ChasecondΣ (T,ϕ)) =⋃{Σ(I) ∶ I ∈ Repcwa

(T,ϕ)},

for all global conditional tables (T,ϕ) and finite sets Σ from
ordSO.

The rich acyclicity condition in the ordSO definition ensures
that the new conditional chase terminates. Here we illus-
trate the conditional chase process by an example. Consider
the source-to-target SO dependency ∃f ∃g ∃k ∶ ⋀Σ, where

Σ = {R(x, y),R(y, z), z = f(x, y) → S(x, y, g(x, y)),

R(y, y), x = f(y, y) → x = k(y)}

Let (T,ϕ) be the following conditional table:

t ϕ
R(a,X) ⊺

R(b, c) ⊺

R(d, d) Y = b

The conditional chase process for the given st-SO depen-
dency, consists of conditionally chasing each implication from
Σ separately. First we chase the conditional table with the
implication R(x, y),R(y, z), z = f(x, y) → S(x, y, g(x, y)).
To achieve this we first apply the conditional chase steps de-
scribed in [21] with the dependency obtained by eliminating
the equalities from the body of the implication, that is the
dependency

R(x, y),R(y, z) → S(x, y, g(x, y)).

These three mgu’s match tuples of the conditional table
with the body of the dependency: ({x/a, y/b, z/c},{X/b}),
({x/a, y/d, z/d},{X/d}), and ({x/d, y/d, z/d},{}).

The first mgu will generate conditional tuple S(a, b, g(a, b))
with local condition X = b. To the local condition of this
tuple we add the image of the eliminated equality z = f(x, y)
under the mapping {x/a, y/b, z/c}, namely c = f(a, b). By
applying the triggers corresponding to these three mgu’s we
obtain the following conditional table (T1, ϕ1):

t ϕ1(t)
R(a,X) ⊺

R(b, c) ⊺

R(d, d) Y = b
S(a, b, g(a, b)) X = b ∧ (c = f(a, b))
S(a, d, g(a, d)) Y = b ∧X = d ∧ (d = f(a, d))
S(d, d, g(d, d)) Y = b ∧ (d = f(d, d))

Next, we move to the second implication

ξ = R(y, y), x = f(y, y) → x = k(y)

in Σ. Note that ξ is equality generating, and will therefore
affect the global condition only. The sole trigger for ξ is

(ξ, ({x/a, y/d},{X/d}),{R(a,X),R(d, d)}).

The equality in the head of ξ will create a condition that
needs to be satisfied whenever the body is satisfied. In our
case the body is satisfied when the local condition Y = b and
the condition X = d from the mgu of the trigger, as well as
the equality x = f(y, y) from the body of ξ is satisfied. This
will create the following global condition that needs to be
added to the resulting conditional table: (Y = b)∧(X = d)∧
(a = f(d, d)) → a = k(d). The resulting target conditional
table, with terms, can be represented as (T2, ϕ2):

ϕ2(T ) ∶ (Y = b) ∧ (X = d) ∧ (a = f(d, d))→ a = k(d)

t ϕ2(t)
R(a,X) ⊺

R(b, c) ⊺

R(d, d) Y = b
S(a, b, g(a, b)) X = b ∧ (c = f(a, b))
S(a, d, g(a, d)) Y = b ∧X = d ∧ (d = f(a, d))
S(d, d, g(d, d)) Y = b ∧ (d = f(d, d))

Finally, we eliminate all Skolem functions by replacing each
distinct Skolemized term with a new fresh variable2 yielding
the following conditional table (T2, ϕ2):

ϕ3(T ) ∶ (Y = b) ∧ (X = d) ∧ (a = Z1)→ a = Z2

t ϕ3(t)
R(a,X) ⊺

R(b, c) ⊺

R(d, d) Y = b
S(a, b,Z3) X = b ∧ (c = Z4)

S(a, d,Z5) Y = b ∧X = d ∧ (d = Z6)

S(d, d,Z7) Y = b ∧ (d = Z1)

4. COMPOSABLE SYSTEMS
Data exchange is naturally not limited only to one mapping
and source-target pair. If the target schema is a source
schema for a second mapping, it is of interest to be able
to compose the two mappings into a third one that goes
directly from the source of the first mapping to the target of
the second mapping. Such a composition is defined formally
as follows.

Definition 9. Let M12 ⊆ Inst(R1)×Inst(R2) and M23 ⊆

Inst(R2) × Inst(R3) be mappings, where R1, R2, and R3

are pairwise disjoint schemas. Then M12 and M23 are said
to be composable and their composition is

M12 ○M23 = {(I, J) ∈ Inst(R1) × Inst(R3) ∶

(I,K) ∈M12 and (K,J) ∈M23,

for some K ∈ Inst(R2)}.

As emphasized by several authors [16, 29, 7, 3], it is desir-
able that a class of mappings should be closed under com-
position, as in the following definition.

2If the table contains nested Skolem terms, we need to take
into account their possible interdependence similarly to [3].
For example, if t1 = f(a, b) and t2 = f(a, g(d)), then in case
g(d) = b, necessarily t1 = t2. If we now replace t1 with x, t2
with y, and g(d) with z, we need to add z = b→ x = y to the
global condition.



Definition 10. Let M be a class of mappings. We say
that M is closed under composition, if for any two com-
posable mappings M12,M23 ∈ M , there exists a mapping
M13 ∈ M such that M13 =M12 ○M23.

Recently there has been significant advances is finding classes
of mappings that are closed under composition. The largest
hitherto known such class is standSO [3], which is the class
of mappings MΣ, where Σ consists of an st-SO dependency,
a weakly acyclic set of target tgd’s, and target egd’s.

In the next two subsections we shall see how to obtain homo-
morphic and strong data exchange systems that compose.

4.1 Composable homomorphic systems
As mentioned in connection with Theorems 7 and 8, using
full SO-tgd’s in a homomorphic data exchange system is an
“over-kill,” since Arenas et al. showed in [5] that for any
such mapping M there is a mapping M ′ in the smaller class
plainSO such that SolM(I) ≈ SolM ′(I), for all instances I.
By plainSO we mean the class of mappings MΣ where Σ is a
set of plain SO-tgd’s (no equalities between function terms).
This motivates the following definitions.

Definition 11. A class of mappings M is said to be
weakly closed under composition if for any two com-
posable mappings M12,M23 ∈ M , there exists a mapping
M13 ∈ M , such that

SolM13(I) ≈ SolM23(SolMΣ12
(I)),

for all instances I.

Definition 12. A quadruple (T ,Rep,Q,M ) is said to
be a composable homomorphic exchange system if
(T ,Rep,Q,M ) is a homomorphic data exchange system
and M is weakly closed under composition.

The aforementioned result in [5] thus says that plainSO is a
weakly composable class. It gives us

Theorem 10. [5] (TBL,Repowa,UCQ,plainSO) is a
composable homomorphic data exchange system.

Example 2. Consider the following example from [16].

Σ12 = {Emp(e)→ ∃mMgr1(e,m)}

Σ23 = {Mgr1(e,m)→Mgr(e,m),

Mgr1(e, e)→ SelfMgr(e)}

σ13 = {Emp(e)→Mgr(e, f(e)),

Emp(e), e = f(e)→ SelfMgr(e))}

Σ13 = {Emp(e)→Mgr(e, f(e))}

Note that σ13 is an SO-tgd, while the tgd in Σ13 is plain SO.
On input Σ12 ∪ Σ23 the result returned by the composition
algorithm in [16] is σ13, while the transformation algorithm
in [5] returns Σ13. Note that Mσ13 =MΣ12 ○MΣ23 , and that3

MΣ13 ≈MΣ12 ○MΣ23 .

3When writing M ≈M ′, we mean that SolM(I) ≈ SolM ′(I),
for all instance I.

4.2 Composable strong systems
In the previous section we considered the case when data
exchange and query answering was modulo ≈. If we now
want to admit queries in FO, we need to move to a closed
world environment in order to avoid the pitfalls of Lemmas
1 and 2. We therefore need to interpret the dependencies
Σ as M cwa

Σ = {(I, J) ∶ J ∈ Σ(I)}, as in Definition 6. We
then have to be careful when composing Σ12 with Σ23. The
composition mapping we wish to obtain is M cwa

Σ12
○M cwa

Σ23
,

which is different from MΣ12 ○MΣ23 . An example of this
will follow.

Definition 13. A class M of mappings that are speci-
fied by a set of embedded dependencies from a class D, is
said to be strongly closed under composition if for all
composable Σ12 and Σ23 in D, there exists a Σ13 ∈ D, such
that

M cwa
Σ13

=M cwa
Σ12

○M cwa
Σ23

.

We can now state the criteria for strong composable data
exchange systems.

Definition 14. A system (T ,Rep,Q,M ) is said to be
a composable strong data exchange system, if it is a
strong data exchange system and M is strongly closed under
composition.

It follows from [21] that if Σ is a set of source-to-target tgd’s,
M cwa

Σ coincides with the CWA notion introduced by Libkin
in [26]. Later Libkin and Sirangelo [28] showed that the class
of mappings specified by SO-tgd’s (source-to-target only) is
strongly closed under composition. It would be very im-
portant to generalize this strong closure property to larger
classes, such as the sets of dependencies used in the defini-
tion of the mapping class standSO, namely sets consisting
of source-to-target SO-tgd’s, a weakly acyclic set of target
tdg’s, and target egd’s. Unfortunately, as shall see below,
this class is not strongly closed under composition, even
though it is closed under composition. We are thus forced to
add some mild restrictions to the class standSO dependen-
cies, yielding the class of ordSO defined in Section 3. The
following theorem assures us that the mild restriction works.

Theorem 11. The class ordSO is strongly closed under
composition.

Next we describe, based on an example, how the strong com-
position is constructed in the proof of Theorem 11. Consider
the following sets of dependencies:

Σ12 = {S(x)→ R(f(x), x)}

Σ2 = {R(x, y)→ T (x), T (x)→ ∃y R(x, y)}

Σ23 = {R(x, y)→ V (x, y, g(x, y))}

Σ3 = {V (x, y, x)→ ∃z V (y, z, y)}

We now construct dependency sets Σ13 and Σ3, such that
M cwa

Σ13∪Σ3
=M cwa

Σ12∪Σ2
○M cwa

Σ13∪Σ3
. First we Skolemize all tgd’s

in Σ2 obtaining the set:

Σsk
2 = {R(x, y)→ T (x); T (x)→ R(x, k(x))}.

Next, similarly to the composition algorithm for standard
SO-dependencies [16], we introduce two new Skolem func-
tions, fR[.] and gR[.], for each relation name R in Σsk2 . The



σ′13 = ∃fR ∃gR ∃fT ∃gT ∃f ∃g ∃h ∶

(∀x S(x)→ fR[f(x), x] = gR[f(x), x]) ∧

(∀x S(x), fR[f(x), x] = gR[f(x), x]→ fR[f(x), h(f(x), x)] = gR[f(x), h(f(x), x)]) ∧

(∀x S(x), fR[f(x), h(f(x), x)] = gR[f(x), h(f(x), x)]→ fR[f(x), h(f(x), h(f(x), x))] = gR[f(x), h(f(x), h(f(x), x))]) ∧

. . . . . .

(∀x S(x), fR[f(x), x] = gR[f(x), x]→ V (f(x), x, g(f(x), x))) ∧

(∀x S(x), fR[f(x), h(f(x), x)] = gR[f(x), h(f(x), x)]→ V (f(x), h(f(x), x), g(f(x), h(f(x), x)))) ∧

(∀x S(x), fR[f(x), h(f(x), h(f(x), x))] = gR[f(x), h(f(x), h(f(x), x))]→

V (f(x), h(f(x), h(f(x), x)), g(f(x), h(f(x), h(f(x), x))))) ∧

. . . . . .

. . . . . .

Figure 1: Infinite st-SO dependency

intended meaning of these functions is that an equality of
the form fR[a, b] = gR[a, b] holds if and only if R(a, b) holds.

From the set Σ12, we know that R(f(a), a) holds whenever
S(a) holds. Based on this, and the first tgd in Σsk

2 , we add
to Σ13 the following tgd:

S(x), (fR[f(x), x] = gR[f(x), x])

→ (fT [f(x)] = gT [f(x)]).

Similarly, from the second tgd in Σsk
2 we construct the fol-

lowing tuple generating dependency:

S(x), (fR[f(x), x] = gR[f(x), x]) →

(fR[f(x), h(f(x))] = gR[f(x), h(f(x))]).

Note that in the standard SO mapping composition algo-
rithm [3] this last tgd is not added. Intuitively, this is be-
cause in the standard algorithm the second tgd in Σsk

2 is al-
ways satisfied, as T (a) holds iff R(a, b) holds for some value
b. As the strong composition is based on the constructible
solution semantics, it follows that the dependency will be
applied as long as there are new values x for which the tgd
was not applied before (even if it is satisfied). This reminis-
cent of the oblivious chase [9].
Finally, from the first dependency in Σsk2 and the new Skolem
functions fT [.] and gT [.] we get:

S(x), (fR[f(x), h(f(x))] = gR[f(x), h(f(x))]) →

(fT [f(x)] = gT [f(x)]).

From this point on, no new dependency needs to be added as
T (f(x)) was already ”applied.” We end up with σ13, which
we show below with all quantification explicitly included.
With Σ3 remaining unmodified, it can be verified that

M cwa
σ13∪Σ3

=M cwa
σ12∪Σ2

○M cwa
Σ23∪Σ3

.

σ13 = ∃fR ∃ gR ∃fT ∃gT ∃f ∃g ∃h ∶

(∀x S(x)→ fR[f(x), x] = gR[f(x), x]) ∧

(∀x S(x), fR[f(x), x] = gR[f(x), x]→

fT [f(x)] = gT [f(x)]) ∧

(∀x S(x), fT [f(x)] = gT [f(x)]→

fR[f(x), h(f(x))] = gR[f(x), h(f(x))]) ∧

(∀x S(x), fR[f(x), h(f(x))] = gR[f(x), h(f(x))]→

fT [f(x)] = gT [f(x)]) ∧

(∀x S(x), fR[f(x), x] = gR[f(x), x]→

h(f(x), x, g(f(x), x))) ∧

(∀x S(x), fR[f(x), h(f(x))] = gR[f(x), h(f(x))]→

V (f(x), h(f(x)), g(f(x), h(f(x))))).

Note that by loosening the rich acyclicity restriction on the
target dependency set to weak acyclicity, the previous com-
position algorithm may not terminate. If, for example, we
change the set Σ2 to the following weakly, but not richly,
acyclic set of dependencies

Σ2 = {∀x, y R(x, y)→ ∃z R(x, y)},

then our composition algorithm doesn’t terminate and the
result is the infinite SO-tgd σ′13 shown in Figure 1. On
the other hand, in this case the standard SO composition
algorithm [3] returns the following st-SO dependency.

σ′′13 = ∃fR ∃gR ∃f ∃g ∶

(∀x S(x)→ fR[f(x), x] = gR[f(x), x]) ∧

(∀x S(x), fR[f(x), x] = gR[f(x), x]→

V (f(x), x, g(f(x), x)))

Based on the above, we can now deliver the promised strong
composable data exchange system.

Theorem 12. (GCOND,Repcwa,FO,ordSO) is a strong
composable data exchange system.



5. SEMI-LAV COMPOSABILITY
As mentioned in the beginning of Section 4, there has re-
cently been significant advances is finding classes of map-
pings that are closed under composition. Some of these
classes are:

● tgdFULL. The class of mappings MΣ, where Σ is a set
of full source-to-target tgd’s [16].

● tLAV. The class of mappings MΣ, where Σ is a set of
of source-to-target true-LAV tgd’s [7].

● tgdSO. The class of mappings MΣ, where Σ is a set of
source-to-target SO-tgd’s [16].

● standSO. The class of mappings MΣ, where Σ is a st-
SO dependency, a weakly acyclic set of target tgd’s,
and target egd’s [3].

We have tgdFULL ∩ tLAV ≠ ∅, and (tgdFULL ∪ tLAV) ⊂

tgdSO ⊂ standSO. It turned out [16] that the first order
classes can be separated from the second order one’s by the
following decision problem.

Definition 15. The schema mapping membership prob-
lem Memb(Σ) is: Given (I, J), is (I, J) ∈MΣ?

It is well know that the membership problem for the map-
pings in the first two classes is in LOGSPACE. Fagin et al.
showed in [16] that for mappings in tgdSO the membership
problem is NP-complete. It follows that the same complex-
ity result applies for the mappings in standSO.

Notably absent from the list of classes that are closed un-
der composition is the class of mappings MΣ, where Σ is
a set of tgd’s. As shown in [16], closing the class of tgd’s
under composition takes us to SO-tgd’s. Since the SO-tgd’s
have a hard membership problem, it would be of interest
to find ways of composing first order tgd’s without ending
up with with a second order result. In order to achieve this
we restrict the notion of composability. First we need the
concept of semi-LAV sets of tgd’s. In [20] it was shown that
the class of semi-LAV tgd’s have nice tractable properties
when it comes to data repair and correspondence checking.

The reader is asked to recall the notion of a dependency
graph of a set of tgd’s from Section 3. Let Σ be a set of
tgd’s over a schema R. Let (R, i) be a vertex in the depen-
dency graph of Σ. Then rank(R, i) is the maximum number
of existential edges along any path in the graph ending in
(R, i). For all relational symbols R ∈ R that occur in Σ, we
say that a position (R, i) is unsafe if rank(R, i) > 0. Any
relational symbol R that contains an unsafe position is said
to be unsafe. A set Σ of weakly acyclic dependencies is said
to be semi-LAV if all unsafe relational symbols occur in the
body of LAV-dependencies only.

Definition 16. Let MΣ12 and MΣ23 be two composable
mappings that may contain target dependencies, such that
the following hold.

1. Σ12 ∪Σ23 is a semi-LAV set.

2. All variables occurring in an unsafe position (relative
to Σ12 ∪Σ23) in the body of a dependency in Σ23 occur
only once.

Then MΣ12 and MΣ23 are semi-LAV composable. The
mapping MΣ12○MΣ23 is called the semi-LAV composition
of MΣ12 and MΣ23 .

Consider for example mappings MΣ12 and MΣ23 as speci-
fied in Figure 2. Clearly Σ12∪Σ23 is a semi-LAV set of tgd’s
with only one unsafe position (Contracts,3). As the variable
contract in the last dependency occurs only in that unsafe
position in the body, it makes Σ12∪Σ23 also semi-LAV com-
posable. Note that this properly extends the true-LAV tgd’s
of [7], by also allowing repeated variables in the body of the
dependencies, as long as they don’t occur in any unsafe posi-
tion. We now have the following rather nice state of affairs.

Theorem 13. TGD, the class of mappings specified by
source-to-target tuple generating dependencies, is closed un-
der semi-LAV composition.

Next we describe the algorithm for semi-LAV composition.
Due to space constraints the full proof of Theorem 13 is not
included.

The input to the algorithm will be a pair (Σ12,Σ23) of tgd’s,
such that MΣ12 and MΣ23 are semi-LAV composable. Such
a pair will be called compatible.

We shall use the fact that a tgd α→β can be equivalently
expressed by {α→β1, α→β2}, where β1 contains the subset
of atoms from β that are over safe predicates, and β2 the
atoms with existential variables. We can thus assume that
Σ12 can be split as Σ∀

12 ∪Σ∃
12, where the first set contains all

the full tgd’s, and the second set contains the rest.

Somewhat similarly we split Σ23 as Σ∀
23 ∪ Σ∃

23, where Σ∀
23

contains all the tgd’s that has only safe predicates in the
body, and Σ∃

23 contains the rest. Clearly Σ∃
23 will contain

only LAV-tgd’s.

In the algorithm, we freely switch between viewing a con-
junction of atoms as a tableau, and vice versa. We are now
ready to describe the algorithm:

Algorithm Semi-LAV Composition
Input: A compatible pair (Σ12,Σ23) of tgd’s.
Output: Σ13, such that MΣ13 =MΣ12 ○MΣ23 .

1. Let Σ∀
13, such that MΣ∀

13
=MΣ∀

12
○MΣ∀

23
.

2. Let S = set of rel. symbols in heads of Σ23

3. Let Σ∃
13 = ∅;

4. For all α(x̄)→ ∃ȳ β(x̄, ȳ) ∈ Σ∃
12 do

5. For all endomorphisms h on x̄ do
6. Let γ(h(x̄), z̄) = ChaseΣ∃

12
∪Σ∃

23
(α(h(x̄)))∣S

7. Add tgd α(h(x̄))→ ∃z̄ γ(h(x̄), z̄) to Σ∃
13;

8. End For
9. End For

10. Return Σ13 = Σ∀
13 ∪Σ∃

13

The output Σ13 is a set of st-tgds. The algorithm proceeds
by first computing the composition of Σ∀

12 with Σ∀
23. Since

the former is a set of full tgd’s, the algorithm of Fagin et
al. in [16] can be used. For computing the composition of
the two mappings specified by the remaining tgd’s, we use
the algorithm of Arocena et al. [7], with the difference that



Σ12 = {Manage(emp,mgr)→ ∃contract Employee(emp),Contracts(emp,mgr, contract)}

Σ23 = {Employee(emp1),Employee(emp2)→ Coworker(emp1, emp2);

Contracts(emp, emp, contract)→ SelfMgrContract(emp, contract)}

Figure 2: Semi-LAV dependencies

we run it for all partitionings of the sets of variables in the
bodies of Σ∃

12, as expressed by the set of endomorphisms h
on line 5. There is a bit of redundancy here (for the sake of
conciseness) since there are fewer partitions on a finite set of
variables than there are endomorphisms on it. On line 6, the
sequence z̄ represents the variables (null values) generated
by the chase. We also use the notation T ∣S for the subset of
the atoms from T that are over relation symbols from S.

5.1 Semi-LAV in homomorphic systems
If we want to consider homomorphic systems that are closed
under composition under the stricter criteria of semi-LAV
composability, we should naturally look at the notion of
weak composition (UCQ-equivalent composition) from Def-
inition 11. Using weak composition allows us to loosen the
requirements for composability by omitting Clause 2 in Def-
inition 16. We shall call a pair of mappings MΣ12 and MΣ23

fulfilling only Clause 1 in Definition 16 relaxed semi-LAV
composable. It turns out that the class TGD of mappings is
weakly closed under relaxed semi-LAV composition.

Theorem 14. The class TGD is weakly closed under re-
laxed semi-LAV composition.

The proof, omitted here due to space restriction, is based on
an algorithm similar to Algorithm Semi-LAV Composition.
As a direct consequence of Theorem 14 we have

Theorem 15. (TBL,Repowa,UCQ,TGD) is a composable
homomorphic data exchange system, with respect to relaxed
semi-LAV composition.

So far we have only discussed composition of mappings spec-
ified by source to target tgd’s. The natural question then
arises: can we achieve weak closure under semi-LAV compo-
sition for mappings that also contain target dependencies?
In [14] it is shown that this is not possible, even when con-
sidering full tgd’s. The following example is sufficient for
the current context.

Example 3. Consider sets

Σ12 = {R(x, y)→ S(x, y)}

Σ2 = {S(x, y), S(y, z)→ S(x, z)}

Σ23 = {S(x,x)→ T (x)}.

Clearly Σ12 ∪ Σ2 ∪ Σ23 is a semi-LAV set. It can be eas-
ily shown that there is no finite set Σ of tgd’s, such that
MΣ ≈ MΣ12∪Σ2 ○MΣ23 .

On the other hand, Fagin et al. showed in [14] that for any
set Σ12∪Σ2, where Σ12 is a set of source-to-target tgd’s and
Σ2 is a set of target dependencies with bounded core chase

and bounded fact-block size, there exists a set Σ′
12, where

Σ′
12 is a finite set of source-to-target dependencies, such that

SolMΣ12∪Σ2
(I) ≈ SolMΣ′

12
(I),

for all instances I. The bounded core chase property means
that there exists a constant c, depending only on the set of
dependencies, such that the core chase [10] on any instance
terminates in maximum c steps. Bounded fact-block size
means that there exists a constant f depending only on the
set of dependencies, such that number of tuples connected
by common variables in the in the result of the core chase
of any instance is bounded by f (for the exact definition of
these notions see [14]).

The following lemma follows directly from the property of
semi-LAV dependencies that the result of chasing any ground
instance with a semi-LAV set of dependencies will result in
an instance that has bounded fact-block size [20].

Lemma 3. Let Σ be a semi-LAV set of tgd’s. Then Σ has
the bounded core chase property and bounded fact-block size.

Let cf TGD be the class of mappings specified by sets of
source-to-target tgd’s and target tgd’s with bounded core
chase property and bounded fact-block size. Then the pre-
vious lemma and Theorem 4.14 from [14] entail that cf TGD
is weakly closed under semi-LAV composition. We thus have

Theorem 16. (TBL,Repowa,UCQ, cf TGD) is a com-
posable homomorphic data exchange system, with respect
to relaxed semi-LAV composition.

5.2 Semi-LAV in strong systems
We now turn our attention to semi-LAV composition in
strong systems. This means that we have to consider the no-
tion of CWA strong composability from Definition 13. First
let us see an example why the semi-LAV composability needs
to be narrowed in order to obtain strong closure under com-
position.

Example 4. Consider the sets

Σ12 = {R(x, y)→ ∃z S(x, y, z)}

Σ23 = {S(x,x, z)→ T (x, z),

S(x, y, z)→M(x, y, z)}

Clearly MΣ12 and MΣ23 are semi-LAV composable. The
semi-LAV Composition algorithm will return

Σ13 = {R(x,x)→ ∃z T (x, z),M(x,x, z),

R(x, y)→ ∃z M(x, y, z)}



Now MΣ13 =MΣ12 ○MΣ23 . Consider instance I1 = {R(a, a)}
and instance I3 = {T (a, c),M(a, a, c),M(a, a, d)}. We have
I3 ∈ Σ13(I1), but all instances I2 such that I2 ∈ Σ12(I1)
have exactly one tuple, meaning that all instances in Σ23(I2)
have at most two tuples. Therefore I3 ∉ Σ23(I2), for any
I2 ∈ Σ12(I1). In other words, M cwa

13 ≠M cwa
12 ○M cwa

23 . It is also
easy to see that no other finite set of source-to-target tgd’s
can cover the previous case.

Motivated by the previous example we narrow the notion of
semi-LAV composability.

Definition 17. Let MΣ12 and MΣ23 be semi-LAV com-
posable mappings. They are said to be restricted semi-
LAV composable if no unsafe predicate in the body of Σ23

contains a repeated variable.

The restricted semi-LAV composition does not allow re-
peated variables occurring in atoms over unsafe predicates
in the body. For example, the mappings M12, M23 from
Example 4 are not restricted semi-LAV composable because
the unsafe predicate S appears in the body of a dependency
containing the repeated variable x.

Theorem 17. The class TGD is strongly closed under re-
stricted semi-LAV composition.

This gives us

Theorem 18. (COND,Repcwa,FO,TGD) is a strong
composable data exchange system, with respect to re-
stricted semi-LAV composition.

The algorithm for computing the strong composition of two
restricted semi-LAV composable mappings differs from the
Semi-LAV Composition algorithm in that it chases the tgd’s
that contains unsafe predicate (called unsafe tgd’s) only with
the identity endomorphism on the sequence of variables, and
not all endomorphisms. This us due to the fact that the
restricted semi-LAV composable sets do not contain any re-
peated variables in in body of unsafe tgd’s. Using similar
notation as in the previous algorithm we get the following
algorithm that computes the strong composition of two re-
stricted semi-LAV composable mappings.

Algorithm Strong Restricted Semi-LAV Composition
Input: A compatible pair (Σ12,Σ23) of tgd’s.
Output: Σ13, such that MΣ13 =MΣ12 ○MΣ23 .
1. Let Σ∀

13, such that MΣ∀
13

=MΣ∀
12
○MΣ∀

23
.

2. Let S = set of rel. symbols in heads of Σ23

3. Let Σ∃
13 = ∅;

4. For all α(x̄)→ ∃ȳ β(x̄, ȳ) ∈ Σ∃
12 do

5. Let γ(x̄, z̄) = ChaseΣ∃
12
∪Σ∃

23
(α(x̄))∣S

6. Add tgd α(x̄)→ ∃z̄ γ(x̄, z̄) to Σ∃
13;

7. End For
8. Return Σ13 = Σ∀

13 ∪Σ∃
13

The following example gives the intuition behind the algo-
rithm.

Example 5. Consider sets

Σ12 = {R(x,x)→ ∃z S(x, z, z), T (x),

R(x, y)→ T (x), T (y)}

Σ23 = {S(x, y, z)→M(x, z); T (x), T (y)→M(x, y)}.

Clearly MΣ12 and MΣ23 are restricted semi-LAV compos-
able. The algorithm will return

Σ13 = {R(x,x),R(y, z)→M(x, y),

R(x,x),R(y, z)→M(x, z),

R(x, y),R(z, z)→M(x, z),

R(x, y),R(z, z)→M(y, z),

R(x, y),R(z, v)→M(x, z),

R(x, y),R(z, v)→M(x, v),

R(x, y),R(z, v)→M(y, z),

R(x, y),R(z, v)→M(y, v),

R(x,x)→ ∃z M(x, z)}

It can easily be verified that M cwa
13 =M cwa

12 ○M cwa
23 .

6. CONCLUSION
We have undertaken a systematic study of the application
of representation systems to data exchange, revealing two
major classes of representation systems for data exchange,
namely homomorphic data exchange systems and strong
data exchange systems. We have also integrated composi-
tion of mappings into the framework, and obtained a number
of results concerning composable homomorphic and compos-
able strong data exchange systems. We introduced the no-
tion of semi-LAV composability, and showed that the class
of first order tgd’s is closed under this stricter notion. We
showed how to integrate semi-LAV composability into ho-
momorphic and strong composable data exchange systems.
We believe that broadening the approach taken in this paper
to include further operations on mappings, such as inversion
[12] and recovery [6], will be a fruitful and challenging area
of research. A step in this direction has already been taken
by Karvounarakis and Tannen [25].
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APPENDIX

For the ease of reading here are the definitions for the classes
of dependencies reviewed in this paper. Consider S to be the
source schema and T be the target schema.

● TGD

Source-to-target tgd’s.

● tgdFULL (Section 5)

Full source-to-target tgd’s.

● tLAV (Section 5)

True-LAV source-to-target tgd’s.

● STAND (Section 3)

Source-to-target tgd’s, weakly acyclic target tgd’s and
target egd’s.

● cf TGD (Section 5.1)

Source-to-target tgd’s and target tgd’s and there exists
a positive integer c such that the core chase terminates
in maximum c steps for any instance on the set of tgd’s
(core chase property [14]).

● SO-tgd’s [16]

∃f1 . . .∃fm((∀x̄1(α1 → β1)) ∧ . . . ∧ (∀x̄n(αn → βn)))

where:

– fi is a function symbol, i ∈ {1, . . . ,m}.

– αi conjunction of: atoms R(ȳ), or equalities t1 = t2.
Where, R ∈ S, ȳ is a vector of variables from x̄i,
and t1, t2 are terms based on variables from x̄i and
functions f1, . . . , fm, 1 ≤ i ≤ n.

– βi conjunction of: atoms S(t̄), where S ∈ T and t̄
are terms based on x̄i and {f1, . . . , fm}.

– each variable in x̄i occurs in some relational atomic
formula in αi.

● st-SO tgd’s [3]

SO-tgd’s where equalities over functional terms also can
occur in the head of the tgd.

● plainSO-tgd’s [5]

SO-tgd’s without equalities over functional terms.

● tgdSO (Section 3)

SO-tgd’s [16].

● normSO (Section 3)

SO-tgd’s, weakly acyclic target tgd’s and target egd’s.

● simSO (Section 3)

plainSO-tgd’s, weakly acyclic target tgd’s and target
egd’s.

● standSO [3]

st-SO tgd’s, weakly acyclic target tgd’s and target egd’s.

● ordSO (Section 3)

st-SO tgd’s, richly acyclic target tgd’s and target egd’s.


