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Abstract 

Acyclic database schemes have attracted a lot of 
interest because of the nice properties enjoyed by 
such schemes. Recently some new acyclicity condi- 
tions that are strictly stronger than the normal 
a-acyclicity have been introduced by Fagin. Because 
of increased requirements, the database schemes in 
the new classes have some further useful properties 
that are not shared by a-acyclic schemes. Therefore 
the new classes have practical relevance. 

A database designer may work in terms of at- 
tribute sets and data dependencies, and not only in 
terms of database schemes. Thus it is important to 
have a characterization for the acyclic schemes of 
various degree in terms of data dependencies. For 
a-acyclic schemes such a characterization exists, 
but for the new classes the question has been open. 
In this paper we provide characterizations for B-, 
Y- and Berge-acyclic database schemes. The charac- 
terizations can be stated in a simple form: thus 
they should be useful for the database designer. 

1. Introduction 

In the relational data model a database schema for 

a set of attributes U consists of a set of relation 

schemes R={R~,..., \I, where each Ri, 16i<k, is 

a subset of U. Several desirable properties, such 

as dependency preservation, normal forms and loss- 

less joins have been defined for database schemes 

[BBG781. Recently a new important-property called 

acyclicity has gained much attention [BFMY83]. It 

has been shown that databases that conform to 

acyclic schemes enjoy some very desirable 
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properties. Thus it is for instance possible in 

this class of databases to perform joins over sev- 

eral relations in such a way that the number of 

tuples in the intermediate results is never de- 

creasing. That is, we will never have the ineffic- 

ient situation where an intermediate result con- 

tains a large number of tuples whereas the final 

result only contains a few tuples. It has even 

been conjectured that acyclic schemes are the only 

natural ones, and that a cyclic database scheme is 

a sign of a design error [FMU82, SciBl]. 

Very recently it has also been shown that 

there are several degrees of acyclicity for data- 

base schemes [Fag83a, Fag83b1, where the previous- 

ly studied concept of acyclicity is the most gen- 

eral one. The strengthening of the degree of acyc- 

licity also strengthens the related desirable 

properties. 

Although the different degrees of acyclicity 

and their related properties are quite well known, 

the same cannot be said about the relationship be- 

tween acyclicity and data dependencies. If an 

acyclic (of the most general type) database scheme 

has the lossless join property, then it is known 

that the corresponding join dependency is logi- 

cally equivalent to a set of multivalued depend- 

encies belonging to a class called conflict-free 

[BFMYB~]. Furthermore, the use of a conflict-free 

set of multivalued dependencies in the standard 

decomposition process [Lie821 results in a unique 

database scheme that is acyclic, has the lossless 

join property, preserves the dependencies and in 

which each individual schema is in fourth normal 

form. This is a very important result since it 

gives a method for designing acyclic database 
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schemes. But for stronger forms of acyclicity noth- 

ing is known about the corresponding classes of 

multivalued dependencies, except that they of 

course have to be subsets of the conflict-free 

class. 

The problem is solved in this paper for each 

degree of acyclicity. We will characterize the 

classes of multivalued dependencies and show the 

equivalence between each type of acyclic join de- 

pendencies and sets of multivalued dependencies. It 

also follows that the decomposition process results 

in a stronger form of acyclic database scheme if a 

more restricted set of multivalued dependencies is 

used. 

Basic notations, definitions and previous re- 

sults are presented in Section 2 and the new re- 

sults are found in Section 3. The last section con- 

tains the conclusions. 

2. Preliminaries 

For the definitions of the relational model, multi- 

valued dependencies (MVDs), join dependencies (JDs), 

hypergraphs etc we refer to [U1182a, BFMY831. The 

following notations will be used. A database scheme 
k 

is a set R={R~,...,RJ such that U Ri=U. The 
i=l 

join dependency of the scheme is denoted by *R and 

the set of multivalued dependencies for U by M. The 

= in M are denoted by LHS(M) and they are de- 

fined as the.set {XlX++YEM}. A hypergraph t( is a 

pair (N,E), where N is the set of nodes and E is 

the set of (hyper)edges. The hypergraph of R is the 

pair (U,R), which will be denoted by R if no confu- 

sion arises. Similarly, the hypergraph of LHS(M) is 

the pair (X,LHS(M)), where X is the set of attri- 

butes appearing in LHS(M). For other notations and 

definitions see the references mentioned above. 

A hypergraph Hgenerates a set M of hs in 

the following way. The dependency X-HY is in M if 

and only if X and Y are disjoint sets of nodes and 

Y is the union of some connected components of the 

hypergraph /f-X. We have 
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Proposition 1 [FMU82]. The set of MVDs implied by a 

join dependency *R is exactly the set of MVDs gen- 

erated by the hypergraph R. q 

We will now look into the acyclicity of data- 

base schemes, which is defined as the acyclicity of 

the hypergraphs of the schemes. There are four de- 

grees of acyclicity. They are, in increasing 

strength, a-acyclicity, B-acyclicity, y-acyclicity 

and Berge-acyclicity [Fag83al. We will also con- 

sider cyclic hypergraphs. A hypergraph is e-cyclic 

if and only if it is not e-acyclic, for 8 = a, 8, 

y, Berge. Finally, we say that a JD *R is e-acyclic 

precisely when the hypergraph R is e-acyclic. 

Definition 1 [BFMY83]. A reduced hypergraph is 

a-acyclic if and only if all its blocks are triv- 

ial. A hypergraph is a-acyclic precisely when its 

reduction is a-acyclic. 

As an example of an a-acyclic hypergraph, 

Figure 1 shows the hypergraph of the database 

scheme R = {ABC, AFE, CDE, ACE). 

Figure 1. An a-acyclic hypergraph. 

An a-acyclic hypergraph can have an a-cyclic 

subgraph. In Figure 1 the subgraph with nodes 

{A,B,c,D,E,FI and edges {ABC, CDE, AFE) is 

a-cyclic. 

Given a database scheme R, the next defini- 

tion gives its join tree. 

Definition 2 IBFMY831. A join tree for a database 

scheme R is a tree with set R of nodes, such that 

(3 each edge (Ri,Rj) is labelled by the set of 

attributes RifIR., and 
3 

(ii) for every pair Ri, Rj (Ri#Rj) and for every A 

in RinR., 
J 

each label of an edge along the 

unique path between Ri and Rj contains A. 

This path is called an A-labelled path. 

Note that not every database scheme has a 

join tree, and that there might be several join 

trees for one database scheme. Using the database 

scheme {ABC, AFE, CDE, ACE} we can construct the 

join tree shown in Figure 2. 



Figure 2. A join tree for (ABC, AFE, CDE, ACE}. 

A join tree corresponds to a set of multi- 

valued dependencies in the following way. 

Definition 3 [BFMY831. An MVD corresponding to an 

edge (R i' Rj) of a join tree T for a database scheme 

R is R~I-IR~ -N-ROAR., where N is the union of the 
J 

nodes in one of the two subtrees that are obtained 

by deleting the edge (Ri,Rj) from T. The set of 

MVDs corresponding to a join tree is the union of 

the MVDs corresponding to the edges of the tree. 

For instance, a set of MVDs corresponding to 

the join tree in Figure 2 is {AE-F, AC+%, CE+D}. 

We next define some notions describing the 

effect of a dependency set on attribute sets. 

Definition 4. Let M be a set of MVDs. 

(a) A set X in L%(M) separates the sets P and Q 

whenever there exist sets P' and Q' such that 

P'llQ'=a, PzP', QEQ', X-nP', and X+Q'. We 

say that M separates P and Q precisely when 

some X in LHS(M) separates P and Q. 

(b) A dependency X++Y in M splits a set V if 

VnY#@ and (U-XY)fIV#@. The set M splits V 

precisely when some X-WY in M splits V. 

We will need the following property of 

splittings. 

Proposition 2 [BFMY831. A set V is split by a set M 

of MVDs if 

M+. d 

and only if V is split by its closure 

It is easy to see that we have 

Corollary. A set M of MVDs separates P and Q if and 

only if M' separates P and Q. 0 

Definition 5 [BFMY831. A set M of MVDs is conflict- 

free if 

(i) no key in M is split by M, and 

(ii) for all keys X and Y in M, 

DEP(X)DDEP(Y) zDEP(WIY). 

For example, the set {AE+F, AC+@, CE-HD) is 

conflict-free since the keys are not split, and 

since condition (ii) of the definition is trivially 

satisfied because the dependency bases for the keys 

have no common elements. 

Our next two results from [BFWY~~I relate the 

concepts defined above. 

Proposition 3 [BFMY83]. A hypergraph R has a join 

tree if and only if R is a-acyclic. q 

Proposition 4 [BFMY831. The set of MVDs correspond- 

ing to the join tree of an a-acyclic hypergraph R 

is conflict-free and equivalent to *R. q 

In the example that we have elaborated we saw 

that the database scheme {ABC, AFE, CDE, ACE) has 

an a-acyclic hypergraph (Figure 1) and a join tree 

(Figure 2). It is easy to verify that *{ABC,AFE,CDE, 

ACE) and {Al?++F, AC-B, CE-D} are equivalent. The 

algorithm for inferring MVDs from a JD is essen- 

tially the same that was used for generating MVDs 

from a hypergraph, and an algorithm for the other 

direction can be found in [U1182a]. 

The rest of this section will be used to de- 

fine stronger degrees of acyclicity. We begin with 

8-acyclicity. 

Definition 6 [Fag83a]. A* B-cycle in a hyper- - 
graph R is a sequence (S1,xl,...,Sm,xm,Sm+l) such 

that 

(i) xl,...,xm are distinct nodes of R; 

(ii) S S are distinct edges of R, and 1'"" m 

stil=sl; 
(iii) ma3, that is, there are at least three edges 

involved; and 

(iv) x. is in S 1 i and S i+l (' di4m), and in no 

other S.. 
J 

A hypergraph is B-acyclic if and only if it has no 

weak 8-cycle. 

The a-acyclic hypergraph of Figure 1 is 

p-cyclic since the sequence (E,A,m,E,E,C,A&) 

is a weak B-cycle (the edges are underlined). We see 

that A is only in ABC and AFE, E is only in AFE and 
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CDE, and C is only in CDE and ABC. 

For y-acyclicity we make the following defini- 

tion. 

Definition 7 [Fag83a]. A y-cycle in a hypergraph R 

is a sequence (S~,X~,..,,S~,X~,S~+~) such that 

W x1,..., xm are distinct nodes of R; 

(ii) S 1' . . ..Sm are distinct edges of R, 

and S m+l=sl; 
(iii) mb3; 

(iv) x. is in S i and S. (1Qibm); and 

(v) i'f ldi4m, then ii'is in no Sj except 

Si and Si+l. 

A hypergraph is y-acyclic if and only if it has no 

y-cycle. 

Figure 3 shows a 'y-cyclic hypergraph. Note 

that this hypergraph is 8-acyclic. 

A 

B B D 

C E 

Figure 3. A y-cyclic hypergraph. 

The y-cycle in the hypergraph is given by the se- 

quence (g,C,e,E,@,A,ABC). Now C is only in - 
ABC and ACE and E is only in ACE and ADE. Since A 

is in all three edges the Y-cycle is not a weak 

B-cycle. + 

Finally we give the definition for Berge- 

acyclicity. 

Definition 8 [Fag83a]. A Berge-cycle in a hyper 

graph R is a sequence (S~,X~,...,S~,X~,S~+~) 

such that 

(9 x1,..., xm are distinct nodes of R; 

(ii) S 1' . . ..S. are distinct edges of R, 

and S til=sl i 
(iii) m>2, that is, there are at least 2 edges 

involved; and 

(iv> x. is in S 
1 

i and S i+l (lsii6m). 

A hypergraph is Berge-acyclic if and only if it 

has no Berge-cycle. 

An example 'of a Berge-cyclic hypergraph is 

shown in Figure 4. This hypergraph is y-acyclic. 

/ 
A B C D 

Figure 4. A Berge-cyclic hypergraph. 

The Berge-cycle consists of the sequence (E,B, 

e,C,ABC). The sequence is not a y-cycle since - 
only two edges are involved. Th% following proposi- 

tion also holds. 

Proposition 5 [Fag83a]. If some pair of edges of a 

hypergraph has two or rmre nodes in co-n, the hy- 

pergraph is Berge-cyclic. q 

We have seen in the examples that there are 

hypergraphs that are a-acyclic but p-cyclic, 

8-acyclic but y-cyclic, and y-acyclic but Berge- 

cyclic. The general idea is that !going from a-acyc- 

licity to 8-, y- and Berge-acyclicity strengthens 

the requirements. This can also be seen from the 

definitions. The following result holds. 

Proposition 6 [Fag83a]. Berge-acyclicity *y-acyc- 

licity r, 8-acyclicity * a-acyclicity. None of the 

reverse implications holds. q 

3. Characterizations 

We start with a technical lemma 

proving the characterization of 

that is useful for 

fi-acyclicity. 

Lemma. Let R be an a-acyclic hypergraph and M the 

set of MlDs corresponding to the join tree of R. If 

the hypergraph LHS(M) has a weak 8-cycle (Sl,xl,..., 

SmyXm~Sm+l >, then none of the paths in the join tree 

of R can contain three edges whose distinct labels 

belong to $,...,S,). 

Proof. Recall that by the construdtion of M, each 

element of LHS(M) (in particular, each Si) is the 

label of an edge in the join tree of R. Suppose to 

the contrary that an edge labelled with Sk belongs 

to the path that connects the edges labelled with 

Si and Sj (see Figure 5; the ancestor relation of 
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the nodes is irrelevant for our purposes). 

'i 'k S. 
J 

- . . . - . . . - 

Figure 5. A path in the join tree. 

We will use induction on Ij-il to show that the 

situation is not possible. 

Bad. [j-ii = 1. Without loss of generality, sup- 

pose that j = i+l. By the definition of a weak B- 

cycle, xi is in S. and Si+l and in no other S . 1 k 
The definition of a join tree implies that every 

edge on the path from the Si-edge to the S.-edge 

(= Si+l-edge) is labelled with xi. In particular, 

xi E s k : a contradiction. 

ZflductiOn 6tep. Suppose that the claim holds for 

any sh and Sh, with 1s Ih'-hi <p; we will show 

that it.holds for Si and S. = S. 
J l+p+l' 

By the induction hypothesis, the path from 

the S. 
l+P 

-edge to the Sj-edge cannot contain the Sk- 

edge (since j-(i+p) = ldp). This leaves the possi- 

bilities shown in Figure 6. 

In either case, the Sk-edge belongs to the 

path from the Si-edge to the S. -edge. This con- 
l+P. 

tradicts the induction hypothesis, since (i+p)-i = 

P* q 

'i 'k S. 
3 .'i+p 

(a) o-o- . . -o-o- . . -o-4- . . --o--o 

'i 'k S. 
J 

(b) e . . v . . w *. S. 

L l+P 

Figure 6. Refinements of the path in Figure 5. 

A set of MVDs equivalent to the B-cyclic join 

dependency *fABC, AFE, CDE, ACE) (see Figure 1) is 

{AE-HF, AC++B, CE-c*D}. A closer look at the keys of 

this set reveals a weak g-cycle given by the se- 

quence @,A&C,~,E@). It turns out that this 

is the source of the P-cyclicity of the JD. We have 

the following general result. 

Theorem 1. A set of multivalued dependencies M' is 

equivalent to a g-acyclic join dependency *R if and 

only if M' has a cover M with the following prop- 

erties: 

(a) M is conflict-free, and 

(b) LHS(M) is B-acyclic. 

Proof. On@ id. Suppose that M' 5 *R where R is B- 

acyclic; we must show that M' has a cover M sat- 

isfying (a) and (b). By Proposition 6, R is also 

a-acyclic, and thus R has a join tree (by Proposi- 

tion 3). Let M be the set of MVDs that corresponds 

to the join tree of R. By Proposition 4, M is con- 

flict-free and M 2 *R. Therefore M is a cover of 

M' , and it remains to show that (b) holds for ?f. 

Suppose not. Then there exists a weak g-cycle 

(S1'X1'...'Sm,xm,Sm+l ) of LHS(M) such that 

W xl,...,xm are distinct nodes of the hyper- 

graph LHS(M); 

(ii) S S are distinct edges of LHS(M), and 1'"" m 
S m+lGsli 

(iii) mZ3; and 

(iv) xi is in S. and Si+l (lsi bm), and in no 1 
other S.. 

J 

By the construction of M, each Si is the label of 

an edge (Ri,Rl) of the join tree of R so that Si = 

RinR;. The join tree must have a unique path that 

connects any two distinct edges. Let (Ri D,Ri l,.., 

R. R 1,ni i ni+l) be the path that connects'the idges 

labelled'with Si,and Si+l; here nisi, Ri C llRi 1 = 

Si, R. 
l,ni 

flRi n.+l=Si+l, and (Ri j,Ri j+l)'is an' 

edge of the join tree for Obj ani. 
, 

We claim that (R1 o,xl,...,Rm o,xm,Rm+l o) is 

a weak g-cycle of R (tie xi:s are ;he same ai in 

the weak B-cycle of LHS(M)). Since we assumed that 

R is B-acyclic, this yields a contradiction and 

proves the only if -part of the claim. We will deal 

with the four conditions one at a time. 
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(i) ,We must show that xl,...,xm are distinct nodes 

of R. This follows immediately from the facts 

that x ,,...,x, are distinct nodes of LHS(M) 

and ULHS(M) C_ UR. 

. . (ii) Since Rl,O,...,Rm,O are nodes of the Join 

tree, they are edges of R, and Rm+l O=Rl 0 

by the construction (recall that Sm~l=Sl~. 

The fact that the Ri O-sets are distinct 

follows easily from p:operties (iii) and (iv) 

proved below: because xi is in Ri 0 and 
3 

R i+l 0 and in no other R. R. 
J,O' 1,O 

is distinct 

from'all the other R 
j,O 

-sets, with the poss- 

ible exception of Ri+l o. But xi+1 is in 

R. 
1+1,0 

and not in Ri o '( since m53); there- 

fore Ri o is also diitinct from R i+l,O' 
Since t&s holds for each i (l<i<m), all 

the Ri 0-sets are distinct. 
, 

(iii) m>3. Obvious by the construction. 

(iv) We claim that xi is in R i 0 and Ri+l 0 
(lbibm), and in no othe; Rj o. To ice that 

Xi ' Ri o'Ri+l 0, 
sinsi+; = 

simply recal; that xiE 

(Ri'O'Ri 1) n 'Ri+l onRi+l 1) 5 
R i ,OnRi+l 0' iuppoie then tha; xiER: 

some j # i,i+l. Because xiER 
350' 

for 

i ,OS property 
(ii) of Definition 2 implies that xi belongs 

to the label of every edge on the path from 

R i o to R. 
JY 

o. Since xi6!S., the edge label- 
J 

lei with Sj does not belong to this path. 

Thus we must have one of the situations 

shown in Figure 7. 

R. 1,O Ri,l Rj,O Rj,l Rj,nj R. 

(a) - . . m . . - 
1 ‘“J *+l 

'i S. S. 
J J+l 

R. 
1,1 , 

Ri o R. 
J,O Rjtl 

R. 
J ,Tij "j,IIj+l 

(b) o----o- . . - . . - 

'i S. S 
J j+l 

Figure 7. Two possible paths from Ri o 
, 

to R. 
J,Ilj+l' 

In either case, we see that the edge labelled 

with Sj belongs to the path that connects 

edges Si and S. 
J+l' 

contradicting the Lemma. 

Therefore xi cannot be in R. 
JY 

o, concluding 
the proof of the only if -part. 

16. Suppose that M'-T M, where M satisfies (a) and 

(b). We must show that there exists a P-acyclic 

join dependency *R such that M'f *R. 

Since M is conflict-free by property (a), we 

can apply Lien's decomposition algorithm [Lie821 to 

M to produce an a-acyclic database scheme R such 

that M% *R, and thus also M'5 MS *R. If R is P- 

acyclic, we are done. Suppose therefore that R is 

B-cyclic, i.e. there exists a weak B-cycle (Rl,xl, 

. . ,Rm,xm,Rm+l) in R. Because R is a-acyclic, it has 

a join tree (by Proposition 3). For each lbism, 

let Si be the label of the first edge on the unique 

path from Ri to R i+l, and define S,+pSl. We will 

show that (S1,xl,...,Sm,xm,Sm+l) is a weak P-cycle 

of LHS(M), This contradicts property (b) of M and 

proves the claim. 

(i) We must show that xl,...,xm are distinct 

nodes of the hypergraph LHS(M). It is clear 

that they are distinct; we must only show 

that for lbism, xiEX for some XELHS(M). 

Consider Ri and Ri+l, In the decomposi- 

tion tree produced by Lien's algorithm both 

Ri and Ri+l are leaves. Let Z be their lowest 

common ancestor in the decomposition tree, 

and let X++Yl 1 Y2 1 . . . i Yk be the dependen- 

cies used for decomposing Z. Since only de- 

pendencies of M are used in the decomposition, 

XELHS(M). During the decomposition step Z is 

replaced by X(YltlZ), .,., X(YknZ). Suppose 

that Ri 5 X(YpflZ) and Ri+l c_ X(YqIIZ). Then 

RinRi+f(x(ypnz)) n (x(yqnz)) = xu((ypnz) 1 n 
(Y,flZ))-X, because Yp and Yq are distinct 

members of DEP(X) and thus their intersection 

is empty. 

Because M is conflict-free, no keys are 

split in the decomposition process [Lie821. 

It follows that since RiflRi+lCX, either 

RiflRi+l" 0 or RiDRi+lEX. The intersection 

cannot be empty, since it contains xi; thus 

xiE RiDRi+l =XELHS(M). 
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(ii) S S must be distinct edges of LHS(M). 1’“” m 
Each Si is the label of some edge (Ri,Ri) in 

.the join tree. Exactly as in (i) above, we 

see that Si=RillRiELHS(M). The fact that 

the Si-sets are distinct follows immediately 

from properties (iii) and (iv) below. 

(iii) ma3. Obvious by the construction. 

(iv) Finally, we must show that xi is in Si and 

S i+l' and in no other S.. We know that 
3 

x~ER~~IR;+~- By the definition of a join 

tree, xi belongs to the label of every edge 

on the path from Ri to R. 1+1 in the join tree. 

In particular, xiESi (the label of the 

first edge on the path). 

Like in the proof of condition (iv) 

for the only if -part, we see that Si+l must 

in fact be the label of the last edge on the 

path from Ri to Ri+l. Otherwise the path 

from Ri to Ri+2 (or R2 if i=m) would con- 

tain the edges labelled with Si, Si+l, and 

S ii2 ' contradicting the Lemma. Therefore we 

have also x~ES~+~. 

Because xi 6!Rj when j #i,i+l (by the 

definition of the weak B-cycle in R), we 

also have x i gRjDT for any TE R when 

j #i,i+l. In particular, xieSj when 

j #i,i+l. 0 

y-cycles in join dependencies are not direct- 

ly generated by cycles in the keys of the set of 

equivalent MVDs. The keys however play an import- 

ant role in this context also, as can be seen from 

the following theorem. 

Theorem 2. A set of multivalued dependencies M' is 

equivalent to a y-acyclic join dependency *R if 

and only if M' has a cover M with the following 

properties: 

(a) M is conflict-free, and 

(b) for any two distinct keys X and Y in LHS(M) 

whose intersection is non-empty, WYELHS(M) 

and XDY separates X-Y and Y-X. 

To illustrate the intuitive idea behind the 

conditions we will give an example before proving 

the theorem. The JD equivalent to {ABM, AB*D, 

AE*F, AB-1 is shown as a bypergraph in Figure 

8(a). The set of MVDs does not satisfy condition 

(b) of the theorem, since the intersection of AB 

and AE is non-empty and no key A belongs to the set. 

The hypergraph of Figure 8(a) is Y-cyclic. By 

adding the dependency A-HBCD to the set of MVDs 

we get a set that satisfies the conditions of The- 

orem 2. Note in particular that A-HBCD separates B 

and E. The equivalent JD is now *{ABC, ABD, AEF, 

ABG), which is y-acyclic. The hypergraph is shown 

in Figure 8(b). One can note that adding'the de- 

pendency A-HBCD to the set of MVDs will make the 

set ARB unnecessary in the equivalent JD. Thus the 

y-cycle will be removed. 

(a) 

(b) 

Figure 8. Hypergraphs for MC, ABD, AEF, AEG, 

AEB) and &VJ, ABD, AEF, AEG}. 

Proof of Theorem 2. Ott&~ id. Suppose that M’z*R 

where R is y-acyclic; we must show that M' has a 

cover M satisfying (a) and (b). Like in the proof 

of Theorem 1, let M be the set of MVDs that corre- 

sponds to the join tree of R. Then (a) is immediate. 

To see that (b) holds, we will first show that 

XDYELHS(M) whenever XGY #a for distinct X and Y 

in LHS(M). Suppose to the contrary that 0 #XGY e 

LHS(M) for some X and Y in LHS(M). In particular, 

XtlY#X; therefore XDY #0 and X-Y#@. 
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Consider the join tree of R, and the path 

(R,$+.., Rl) that connects the edges labelled 

with X and Y; i.e RQnRl=X and swl"s =Y. BY 
Definition 2, the path from RC to Rk is an XllY- 

labelled path. Let (Riml,Ri) be the last edge 

(going from RC to Bk) whose label contains an at- 

tribute of X-Y. Such an edge (with i<k) must be- 

long to the path, since Rlel"Rk=Y does not con- 

tain attributes of X-Y. Let A be an attribute of 

WY and B an attribute of (X-Y)D(Ri-lCRi). 

Consider then the edge (Ri,Ri+l). We know 

that WY ERiCRi+l. The containment must be strict: 

otherwise XCY would be the label of an edge in the 

join tree, contrary to the assumption that WY g 

LHS(M). Therefore (Ri"Ri+l)- (WY) #(b; let C be an 

arbitrary attribute of (RinRi+l) - (XllY). 

Combining the properties of the attributes 

defined above, we see that AER,,, AERi, and 

A'Ri+li BE%, BERi, and B @Ri+l; and C@RQ, 

CERi, and CERi+l. It is now straightforward to 

verify that (RQ,B,Ri,C,Ri+l,A,RC,) satisfies all 

the conditions of Definition 7. Thus it is a y- 

cycle and R is y-cyclic; a contradiction. There- 

fore XllY ELHS(M). 

It remains to show that XflY separates X-Y 

and Y-X. If XcY or YCX, this holds trivially. 

Suppose then that X-Y#@ and Y-X#d. The preced- 

ing discussion shows that the path that connects 

the edges labelled with X and Y must contain an 

edge labelled with XCY. Then M contains the de- 

pendency XflY+#-XllY, where N is the set of attri- 

butes in one of the components obtained from the 

join tree by deleting the XflY-edge. Since X-Y 

and Y-X belong to different components, this de- 

pendency separates X-Y and Y-X, completing the 

proof of the only if -part. 

Id. Suppose that M' IM, where M satisfies (a) and 

(b). We must show that there exists a y-acyclic 

join dependency *R such that M' Z*R. 

We begin by showing that (a) and (b) imply 

that LHS(M) is g-acyclic. Suppose not; then LHS(M) 

has a weak P-cycle (S1,~l,...,Sm,~m,Sm+l ). By the 

definition, f~~,x~+~)~S~+l for lbibm. Consider 

an arbitrary S. with 16j bm. Because S DS 
J j j+l~O, 

condition (b) implies that S.llS. 
J J+l 

separates 

S.-S 
J j+l 

and S. J +1+j. Because x. 
J-l 

E S.-S. 
3 J*l 

and 

"j+l ES 
j+l J 

-S. (where x~+~=x~), S.llS. 
3 J+l separates 

"j-1 and x. J+l' Thus all the nodes (xl,...,x. J-l' 
"j+ls *..,xm 1 cannot belong to the same member of 

DEP(SjCSj+l>. It follows that there must exist two 

consecutive nodes 5-l and xl+l that are separated 

by s.ns. 
3 J+l' 

Because Exhxl+l)cSh, SjCSj+l splits 

Sh. This contradicts property (a), and therefore 

LHS(M) must be S-acyclic. 

We can again apply Lien's decomposition algo- 

rithm to M to produce a database scheme R. By The- 

orem 1, R is S-acyclic. If R is y-acyclic, we are 

done. Suppose therefore that R is y-cyclic; we will 

complete the proof by deriving a contradiction of 

property (b). 

Let (Rl,~l,...,Rn,~n,Rn+l) be the shortest y- 

cycle in R. It is easily seen that n must equal 3. 

For suppose that nb4. We know that xnE Ri for 

some l<i<n, otherwise the cycle would be a weak 

S-cycle. Since n34, either n-i+12 3 or ia3, or 

else'we would have n <n+l= (n-i+l)+i<2+2 =4. But 

then either (Rl,xl, . . ..Ri.xn,R1) or (Ri,xi,...,Rn, 

xn,Ri) is a y-cycle, contradicting the minimality 

of n. Therefore the shortest y-cycle of R must be 

of the form (Rl,x1,R2,x2,R3,x3,Rl), where the in- 

tersections of the sets are shown in Figure 9. 

Figure 9. The shortest y-cycle. 

Consider the set of MVDs M" generated by R. 

Let w be an arbitrary element of M"'. If xl%P 

and x2gP, then xl and x2 are connected by R2-P; 

therefore Q cannot separate x1 and x2. If xlEP or 

x2EP, Q cannot separate x1 and x2 by the defini- 

tion of separation. Since PWQ was arbitrary, it 

follows that M" does not separate x1 and x2. By the 

16 



+ 
Corollary of Proposition 2, Mu does not separate 

and x +- 
x1 2 either. By Proposition 1, M" =*REM; 

therefore M does not separate xl and x2. 

On the other hand, both RlflR2 and R2flR3 be- 

long to LHS(M) (this can be seen as in the proof 

of Theorem 1). Their intersection is non-empty, 

since it contains x 3. Condition (b) then implies 

that (RlnR2) rl (R2fIR3) separates RlGR2-R2flR3 and 

R211R3-RlnR2. In particular, q-q n (R2nR3) see- 
arates x 1 and x 2. This contradicts the above obser- 

vation that M does not separate x1 and x2. The 

counter assumption is therefore false and R is 

Y-acyclic. 0 
* 

For Berge-acyclic join dependencies Proposi- 

tion 5 gives a good hint: no key in the equivalent 

set of MVDs should be of a size greater than 1. 

This is stated in condition (a) of Theorem 3. Since 

key-splitting is prohibited by this condition, the 

assumption of conflict-freedom can be relaxed into 

condition (b) of the theorem. . 

Theorem 3. A set of multivalued dependencies M' is 

equivalent to a Berge-acyclic join dependency *R if 

and only if M' has a cover M with the following 

properties: 

(a) 1x1 Cl for any X in LHS(M); and 

(b) if A-nY and B-HY for some distinct A and B in 

LHS(M), then 0-Y. 

Proof. 0vZey id. Suppose that M' g *R where R is 

Berge-acyclic; we must show that M' has a cover M 

satisfying (a) and (b). Let again M be the set of 

MVDs that corresponds to the join tree of R. 

Suppose that 1x1 >l for some X in LHS(M). 

Since X=RlflR2 for some Rl,R2 in R, we have 

IRlflR21 >l. Proposition 5 then implies that R is 

Berge-cyclic, contradicting our assumption. Thus 

(a) holds. Condition (b) follows easily: we know 

that M is conflict-free,(by Proposition 4), and (b) 

is just a consequence of the condition 

DEP(X) flDEP(Y)_cDEP(WY) under restriction (a). 

16. Suppose that M' EM, where M satisfies (a) and 

(b). We must show that there exists a Berge-acyclic 

join dependency *R such that M' B *R. 

It is easily seen that conditions (a) and (b) 

of the theorem imply conditions (a) and (b) of 

Theorem 2. Let R be the scheme produced by applying 

Lien's decomposition algorithm to M. By the proof 

of Theorem 2, R is y-acyclic. 

Suppose then that R is Berge-cyclic, and let 

(~l'xl'...~~m'xm'~m+l ) be the shortest Berge-cycle 

in R. If mb3, each xi can only belong to Si and 

S i+l' and to no other Sj (otherwise we could delete 

from the cycle the part between S. and Si and ob- 
J 

tain a shorter Berge-cycle). But then (Sl,xl,..., 

sm'xm'sm+l) would be a weak P-cycle, contradicting 

the fact that R must be y-acyclic (and thus 8- 

acyclic). 

Therefore m=2, and the shortest Berge-cycle 

is of-the form (Sl,xl, 2, 2, 1 S x S ). But now {x1,x2) 5 

slns2. Like in the proof of Theorem 1, we see that 

SlnS2ELHS(M). This contradicts condition (a) and 

proves the claim. q 

4. Conclusions 

We have characterized acyclic join dependencies of 

various degree in terms of equivalent sets of 

multivalued dependencies. The characterizations 

emphasize the role of the left sides of the depend- 

encies. This is not surprising considering the im- 

portance of left sides in the decomposition process 

([Lie821, tGrR831). 

The characterizations can be stated in a rela- 

tively simple form. Thus they should be helpful to 

a database designer aiming at an acyclic scheme of 

a certain degree. For instance, stronger forms of 

acyclicity can be obtained by splitting some attri- 

butes which have been recognized as critical by the 

characterizations, or by adding some MVDs like in 

the example in connection with Theorem 2. These 

questions, however, require further studies. One 

can note that similar methods have been proposed 

for obtaining a-acyclicity [U1182b, BeR831 and in- 

dependence [Sci831. 
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