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Glossary
Cell membrane (also called plasma membrane or plasmalemma) is biological membrane that

surrounds the cytoplasm of living cells, physically separating the intracellular components

from the extracellular environment.

Clade A group of all the taxa that have been derived from a common ancestor plus the common

ancestor itself.

Eukaryote A eukaryote is any organism whose cells contain a nucleus and other organelles

enclosed within membranes.

Homoeostasis (or Homeostasis) is the property of a system in which variables are regulated

so that internal conditions remain stable and relatively constant.

Homologous The existence of shared ancestry between a pair of structures, or genes, in

different species.

Hydrophilic Interacting effectively with water.

Hydrophobic Not interacting effectively with water; in general, poorly soluble or insoluble in

water.

Lipids A group of naturally occurring molecules that include fats, waxes, sterols, fat-soluble

vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides,

phospholipids, and others.

Motif A shot, functional region within protein sequence, usually recognized by sequence or

structure pattern

Nonpolar A molecule or structure that lacks any net electric charge or asymmetric distribution

of positive and negative charges. Nonpolar molecules generally are insoluble in water.
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Polar A molecule or structure with a net electric charge or asymmetric distribution of positive

and negative charges. Polar molecules are usually soluble in water.

Protein sequence The primary structure that is the unique sequence of amino acids that

characterizes a given protein

Proteome The complete set of proteins expressed by an organism

R R is a programming language and environment for statistical computing and graphics.

Secondary structure The local three-dimensional structure of sheets, helices, or other forms

adopted by a polynucleotide or polypeptide chain, due to electrostatic attraction between

neighbouring residues.
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Acronyms
AAC Amino Acid Composition

BLAST Basic Local Alignment Search Tool

HMM Hidden Markov Model

IMP Integral Membrane Proteins

IUBMB International Union of Biochemistry and Molecular Biology

MAFFT Multiple Alignment using Fast Fourier Transform

MCC Matthews Correlation Coefficient

MSA Multiple Sequence Alignment

PAAC Pair Amino Aside composition

PDB Protein Data Bank

PseAAC Pseudo-Amino Acid Composition

PSSM Position-Specific Scoring matrix

SDP Specificity-Determining Positions

T-COFFEE Tree based Consistency Objective Function for Alignment Evaluation

TCDB Transporter Classification Database

TCID Transport Classification Identification

TCS Transitive Consistency Score

TMS Transmembrane Segments
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Abstract
The publication of numerous genome projects has produced an abundance of proteins sequences,

many of which remain uncharacterized; transmembrane proteins are among the least characterized

proteins, owing to their hydrophobic surfaces and their lack of conformational stability.

Consequently, there is an urgent need for computational approaches that use the available

experimental data to distinguish and characterize transmembrane proteins. Yet, this area

of research is still in its early stages, and the researchers are far from finding a definite

solution. Here, we propose to characterize and predict the transport of substrates which

is a major function of transmembrane proteins. In addition, we evaluate the efforts made

in predicting transmembrane proteins and finding the substrate specificity of transporters.

Furthermore, we conduct a preliminary study that detects the transported substrates and

employs different methods including homological informations that shows promising results.

We desire to further improve our method and evaluate it on large scale. Overall, we intend to

implement a proteome-wide system that differentiates transporters and predicts their substrates.
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Chapter I

Introduction
This chapter starts with basic biological background that are needed to understand our work.

Then, Section 2 expresses motivation for working with transmembrane proteins. Followed by

Section 3 that outlines the problem that we aspire to work with in the course of my PhD.

Finally, Section 4 gives an overview of the rest of the report.

1 Biological background

Cell membranes are the only cellular structure found in all cells of all organisms on Earth, due

to their biological significance. Membranes maintain the integrity of the cell by separating the

critical chemicals and structures needed to maintain the cell from the surrounding environment.

They also serve as gatekeepers, regulating the flow of molecules, energy and information in and

out the cell. Furthermore, eukaryotic cells have internal membranes that enclose their organelles

and control the exchange of essential cell components [1].

Cell membranes have two main components: lipids and proteins (see Figure 1) . Each

component has clearly defined function: lipids form the universally conserved bilayer structure

that determines membrane flexibility, basic barrier properties and how membrane proteins bind

to the bilayer. At the same time, membrane proteins enable the membrane to carry out its

distinctive activities with a vast diversity of cell membrane functions.

Lipids consists of two layers of phospholipid molecules whose fatty tails form the hydrophobic

interior of the bilayer, and their hydrophilic polar heads line both the inside and the outside of

the cell surface. Membrane proteins are embedded within the phospholipid bilayer; they come

in different forms depending on cell type and subcellular location .

Some membrane proteins bind only to the membrane surface; others span the entire bilayer
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Figure 1: The structure of the cell membrane

and are exposed to water-soluble domains on both sides of the membrane (see Figure 2). The

proteins buried within the bilayer are integral membrane proteins (IMPs) (also called ”intrinsic

proteins”). They have one or more transmembrane segments (TMSs) embedded in the bilayer

in addition to extra-membranous hydrophilic segments extending into water-soluble domains

on each side of the bilayer. The embedded segments are easily distinguishable because they

contain residues with hydrophobic properties that interact with the nonpolar (hydrophobic)

tails inside the membrane phospholipids. The IMPs are called ”transmembrane proteins”

.

Protein structures are described in four distinct levels of hierarchical organization: primary,

secondary, tertiary and quaternary structures. These levels denote, respectively, the amino

acid sequence of the protein, the local regular sub-structures (e.g. α-helices, β-strands),

the three-dimensional structure of a single polypeptide, and the aggregation of two or more

individual polypeptide chains that make up the protein complex. In this proposal, we look into

the primary and secondary structures of the protein.

Membrane proteins take three general structural forms: α, β, and αβ-type proteins.Proteins of

the α-type have TMSs formed by the connection of helices with extra-membranous loops. Such
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Figure 2: Schematic representation of transmembrane proteins

proteins do not have detectable β-strand structures embedded in the membrane, nor do they

have extra-membranous β-strand structures. However, the majority of proteins with α-helices

TMSs have extra-membranous domains that contain both α-helix and β-sheet structures.

They are thus considered αβ-type proteins. The β-type membrane proteins are made of

transmembrane β-strands that stretch across the bilayer and align in an anti-parallel fashion

into large, self-enclosed β-pleated sheets with extra-membranous loops connecting adjacent

β-strands. The extra-membranous loops mainly lack secondary structure (random coils), but

some longer loops may contain very small α-helical regions [2].

Unlike α-helices membrane proteins that are found abundantly in all cellular membranes

[3], β-barrel membrane proteins are only experimentally found in the outer membranes of

Gram-negative bacteria. Some weak similarities at only the sequence level indicate the that

β-barrel membrane proteins may present in the outer membrane of the mitochondria and

chloroplasts [4].
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1.1 Transmembrane protein classes

Categorization of membrane proteins based on their function were applied long before high-resolution

structure methods become available. This makes sense because only when the functionality of

such proteins is perceived can one attempt to find their underlying structure. Membrane

proteins control almost all membrane functions except for the basic barrier property of the

bilayer. Membrane proteins can be classified into four different functional groups [2]:

• Transporters are the membrane proteins responsible for selective permeability. They are

very selective allowing certain substrates to enter or leave the cell. Channels and carriers

are two major groups of transports.

• Receptors are the membrane proteins responsible for the binding of an extracellular

signaling molecules and generating different intracellular signals on the opposite side of

the plasma membrane.

• Enzymes are the membrane proteins responsible for various chemical reactions held in

the interior surface of the plasma membrane.

• Structural proteins are the membrane proteins responsible for cell adhesion, and they

carry cell surface identity marker.

It is important to mention that the functional classification of a membrane protein may not be

unique. For example, some receptors form ion channels by opening or closing a channel after

interaction with its ligand, and many enzymes transport substrates.
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2 Motivation

Transmembrane proteins are substantial traffic gates that organize a variety of vital cellular

functions including cell signaling, trafficking, metabolism and energy production. It is estimated

that in an average organism one in every three proteins found in a cell is transmembrane proteins

[2] [5]. For example, about 30% of the human genome is made up of transmembrane proteins.

Any defected or mis-regulated membrane proteins can disturb the body’s homoeostasis, giving

rise to disease [6]. Therefore, the study of cell membranes is critical in understanding the

causes of many diseases and finding ways to treat them. For this reason, transmembrane

proteins are very attractive targets for the pharmaceutical industry; over half of today’s drugs

have some effect on them [7]. While the sequences of membrane proteins are known, due to

the result of a number of recent genome projects, their structure and function is still not very

well characterized and understood, owing to the immense effort needed to characterize them.

Generally (in all proteins), experimentally finding the functions of proteins is not easy task,

because the function may be related specifically to the native environment in which a particular

organism lives; such an environment is hard to simulate in a lab. Particularly, membrane

proteins have a hydrophobic surface, which makes extracting them from the cell membrane

possible only through detergents. Also, their flexibility and instability create challenges at

many levels, including crystallization, expression, and structure solution [8]. An example

of how transmembrane proteins are less represented than other types of soluble proteins is

in PDB (see Section 3.3). As of September 2017, less than 3% of the PDB represents the

membrane proteins, with 2997 (2.1 %) α-helical structures and 899 (.6 %) β-barrel structures.

Therefore, the characterization of membrane proteins and their function remains a challenge in

the advancement of both structural and functional biology. Thus, It is then highly recommended

to make use of the transmembrane protein sequences along with the available experimental data

in computational tools to predict the transmembrane and their function. Such tools can serve

as a guide to decrease the search space for experimentalists while fining the function of novel

proteins. Current state-of-the-art methods remain far from a solution, but initial attempts have

been made, which need further improvements.
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3 Problem definition

While the amino acid sequences of many membrane proteins are available, their specific functions

remain unknown. There is a consistent need for computational methods that predict the

function of membrane proteins and their possible substrates. These computational methods

may give a hint about the structure, function, and mechanistic features of the queried protein

sequence that can be subjected to experimental verification [9].

The concepts related to transmembrane transport proteins are poorly defined. In particular,

there is no single coherent problem to predicting a transport protein that all methods agree to

achieve. Rather, there are different perspectives on different levels of the prediction.

Even gold standard databases are not computationally consistent. For example, TCDB [10] that

offers the gold standard classification for transmembrane transporter on bases of Transporter

Classification (TC) scheme, where membrane transporters classified into around 800 transporter

families (for details see Chapter II. 3.2) are not consistent with Swiss-Prot [11] annotation.

Proteins with the same annotations are mapped to various TCDB families (details are discussed

in the preliminary study —Chapter IV)

Generally, there are two perspectives on predicting transporters: (1) based on TC family

and (2) based on the substrate that the transporter transports across the membrane. The

predicting based on TC family attributes a given protein to a functional family based on

sequence similarity, and it does not give an accurate prediction of the transporter function. As

proteins with high sequence similarity may have completely different functions, similarly, highly

diverse proteins could share the same function. On the other hand, predicting the function of

a given transporter and getting to the level of substrate specificity of a transporter is difficult,

as it is dependent on a very small number of sites in the protein sequence, and those sites are

not previously known.

Furthermore, on the level of prediction classes, there is no universally defined set of gold

standard dataset. Researchers are using their own subset of substrate classes or a subset of

the TC. This makes the actual problem addressed by each predictor diverse and a meaningful

comparison of their performance is impossible.

6



During my PhD, I aspire to build a coherent proteome-wide system that can computationally

detect a major function of transmembrane proteins —the transport of substrates. To accomplish

this, the following research sub-questions need to be explored:

Q1: Given a protein sequence X, is this a transporter protein?

Q2: Given that protein Y is a transporter, what type of substrates does it transport across

the membrane?

The issues along with the research questions will be discussed in detail in Chapter V

4 Overview

The rest of this report is organized as follows: Chapter II gives background information about

different bioinformatics techniques that are used when detecting transporter proteins and their

transported substrates, and goes through main transmembrane protein databases. Chapter III

reviews different methods to predict transmembrane proteins topology and detect transporter

proteins. Chapter IV address what we have done in transporter substrate prediction (addressing

Q2). Chapter V details the limitation of the-state-of-art methods and what we aspire to

accomplish during our research. Finally, Chapter VI concludes the report.
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Chapter II

Background
This Chapter demonstrates important bioinformatics methods that are heavily used when

addressing our research question (see Chapter I.3). Section 1 present different multiple sequence

alignment (MSA) algorithms. The MSA allows us to infer homology and evolutionary relationships

between different protein sequences. After that, Section 2 outlines protein composition methods

that are used extensively in bioinformatics in general and substrate specificity detection methods

in particular. Finally, Section 3 lists important protein databases.

1 Multiple sequence alignment

Multiple sequence alignments (MSAs) are fundamental tools for protein structure, function

prediction, phylogenetic analysis, and other bioinformatics and molecular evolutionary applications.A

multiple sequence alignment is a collection of more than two protein sequences that are partially

or completely aligned into a rectangular array. The goal of MSA is to align the sequences in such

a way that the residues in a given column are homologous in an evolutionary sense (driven from

the same residue of the shared ancestry), homologous in a structural sense (occupying same

positions in the three-dimensional structure), or have a common function. In closely-related

sequences (40% amino acid identity or more) those three principles are essentially the same.

On the other hand, if the protein sequences show some divergence over evolutionary time those

principles may result in considerably different alignment and the problem of MSA becomes

extremely hard to solve [12] [13]. MSA development is active an area of research; over the past

decade, dozens of algorithms have been introduced. The most popular MSA algorithms will be

reviewed here.

The exact methods use dynamic programing to find the global optimal alignment with time
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complexity O(LN), where L is the average sequence length and N is the number of aligned

sequences. Since time grows exponentially as N gets bigger, those methods are not feasible to

use unless N is very small [14].

ClustalW [15], one of the most popular MSA heuristic algorithms, uses a progressive method.

Firstly, the algorithm performs a pairwise alignment of all the sequences in the alignment

in a matrix that shows the similarity of each pair of sequences. The similarity scores are

usually converted into distance scores. Secondly, the algorithm uses the distance score matrix

to construct a rough phylogenetic tree called a guide tree. Finally, ClustalW progressively

aligns the sequences by following the branching order of the guide tree. Progressive methods

are very efficient where hundreds of sequences can be aligned rapidly. However, when an error

is introduced in the early stages in the alignment it cannot be corrected and this may increase

the likelihood of misalignment due to incorrect conservation signals [13] [16].

Clustal Omega [17], the latest algorithm from the Clustal family, is highly efficient and more

accurate than ClustalW. Clustal Omega is capable of aligning more than 190,000 sequences on a

single processor in a matter of few hours [22]. Like ClustalW, the Clustal Omega algorithm first

performs a pairwise alignment. Then, in order to reduce the number of distance calculations

that are required to build the guide tree, Clustal Omega uses a modified version of mBed

[18], which involves embedding the sequences in a space where the similarities within a set

of sequences can be approximated without the need to compute all pair-wise distances. The

sequences then can be clustered extremely quickly to produce the guide tree. Finally, progressive

alignments are computed using HHalign package [19] which aligns with two hidden Markov

models profiles.

Iterative methods overcome the inherited limitation of the progressive method, where the error

once introduced cannot be removed. MAFFT [20] is an iterative method that uses two-cycle

heuristics. Initially it aligns the sequences using progressive methods and then refines the

alignment by calculating and optimizing sum-of-pairs score. MAFFT also identifies homologous

regions by the fast Fourier transform where the amino acid sequence is converted to a sequence

that has volume and polarity values of each amino acid residue.
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The idea behind consistency-based methods is that for sequences x, y and z, if residue xi aligns

with residue yj and yj aligns with zk, then xi aligns with zk. The consistency of each pair of

residues with residue pairs from all of the other alignments is examined and weighted in such

a way that reflects the degree to which those residues align consistently with other residues.

T-COFFEE [21], a consistency-based method, is considered one of the most accurate available

programs based on benchmarking studies. T-COFFEE takes into account both global and

local pairwise alignments. Local similarity is used to reveal when two proteins share part of

the sequence e.g. a domain or motif.

All of the above mentioned algorithms are general-purpose algorithms that can be used to

align any related protein sequences. In other words, they use general scoring schemes that are

tailored for sequences of soluble proteins. Since in transmembrane proteins the regions that are

inserted into the cell membrane have a profoundly different hydrophobicity pattern compared

with soluble proteins, those algorithms may not produce the optimal alignment [22].

Few packages have been published to tackle the problem of aligning transmembrane proteins,

such as PROLIN-TM [22], TM-COFFEE [23] and STAM [24]. Most of these algorithms use

homology extension. In homology extension methods, database searches are used to replace

each sequence with the profile of closely related homologues. Consequently, each sequence

position becomes a column in the multiple alignments that reveals the pattern of acceptable

mutations. TM-COFFEE is the most accurate method based on benchmarking studies done

by Notredame et al. [23]. The TM-COFFEE algorithm can be summarized as follows: for each

sequence in need of alignmnet, perform a homology search using BLAST [25] and keep the hits

with level of identity between 50% and 90% and a coverage of more than 70%. Then, turn the

BLAST output into a profile where all columns corresponding to unaligned positions (i.e. gaps)

to the query are removed and the query positions unmatched by BLAST are filled with gaps.

Finally, Produce a T-COFFEE library by aligning every pair of profiles. TM-COFFEE shows a

10% improvement to the MSAProbs [26], the next best method that uses homology extension.

Although homology extension methods gives much more accurate alignment, performing an

alignment takes several orders of magnitude longer than the standalone applications [12].
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The assessment of MSA has been the subject of research in recent years. Particularly, efforts

have been devoted to answering two main questions: how to get the alignment associated with

the optimal score, and how to evaluate the goodness of an alignment. A reliable way to make

this evaluation is to compare the alignment result with known 3D structures as established by

x-ray crystallography. Since it has been proven that even proteins with low sequence identity

(less than 40%) can share a similar 3D structure, comparison of the 3D structures makes it

possible to align distantly related proteins with low sequence similarity on the basis of their

structural equivalence [27] [28].

Several benchmark datasets have been created as reference sets in which alignments are created

from proteins having known structures. This way, one can evaluate the result of the proposed

MSA algorithm on the basis of studied proteins that are experimentally and structurally

homologous. Many studies devoted to comparing different MSA algorithms on tests against

benchmark databases are currently available [12] [29] [30]. They can serve as a guide to

researchers to choose the appropriate algorithm for a given data. The general conclusion is that

there is a tradeoff between the computational cost and the accuracy; the accuracy can greatly

vary if the sequences under study are highly divergent. In addition, there is no available MSA

program that outperformed the others in all test cases [30]. Table 1 summarizes the advantages

and disadvantages and gives general recommendations based on the recommendation of the

comparative benchmarking studies.
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Aligner Advantages Cautions Recommendations

ClustalW -Uses less memory

than other programs

-Very fast

-Less accurate than

other methods

-Use when there is

small number of very

long sequences (more

than 20,000 amino

acids)

-Use when aligning

closely related

sequences

Clustal Omega -Fast

-Accuracy is higher

than ClustalW but

lower than MAFFT

The performance

can greatly vary on

different datasets

-Memory-greedy and

slower than ClustalW

-Use if sequences have

large N/C terminal

extensions

MAFFT -Good trade-off

of accuracy and

computational cost

-Higher accuracy than

Clustal Omega

-Requires more

memory to run

-Use with sequences

with large N/C

terminal extensions

-Use for large number

of sequences (more

than 500 sequences)

T-COFFEE -Very accurate

-Incorporate

heterogeneous types of

information

-High memory usage

and execution time

-Use with 2100

sequences of typical

protein length

TM-COFFEE -The most accurate

program for

transmembrane

protein alignment

-High computation

time and memory

usage on more than

100 sequences

-Use with 2100

sequences of typical

protein length

Table 1: MSA programs comparison
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2 Protein composition

Protein sequences have variety of information that can be used to develop a sequence based

prediction method. Such information includes the amino acid compositions, the property of the

amino acids such as their hydrophobicity values, hydrophilicity values, and side-chain masses.

The idea of classifying proteins using amino acid composition was first introduced in 1983

by Nishikawa et al. [31], who found that there is a significant correlation between a protein

amino acid composition and its location, such as inside the cell or outside the cell, and its

functional property, such as whether the protein is an enzyme or not. Since then, amino acid

composition and its different variations have been used to classify proteins according to many

different properties, such as protein structure [32] [33] [34], subcellular localization [35], whether

a transmembrane protein acts as a channel/pore, electrochemical potential-driven transporters,

or primary active transporters [36].

In this section, formal definitions of different variations of amino acid compositions will be

presented.

2.1 Amino Acid Composition (AAC)

The Amino Acid Composition is the normalized occurrence frequency of each amino acid. The

fractions of all 20 natural amino acids are calculated as:

ci =
Fi
L

i = (1, 2, 3, ...20) (1)

where Fi is the frequency of the ith amino acid and L is the length of the sequence. Each

protein AAC is represented as a vector of size 20:

AAC(P ) = [c1, c2, c3, ..., c20] (2)

where ci is the composition of ith amino acid.
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2.2 Pair Amino Acid Composition (PAAC)

The PAAC has an advantage over AAC since it encapsulates information about the fraction

of the amino acids as well as their order. It is used to quantify the preference of amino acid

residue pairs in a sequence. The PAAC is calculated as

di,j =
Fi,j
L− 1

i, j = (1, 2, 3, ...20) (3)

where Fi,j is the frequency of the ith and jth amino acids as a pair (dipeptide) and L is the

length of the sequence. Like AAC, PAAC is represented as a vector of size 400 as follows:

PAAC(P ) = [d1,1, d1,2, d1,3, ..., d20,20] (4)

where di,j is the dipeptide composition of the ith and jth amino acid.

2.3 Pseudo-Amino Acid Composition (PseAAC)

PseAAC was proposed in 2001 by Chou [37] where he showed a remarkable improvement in

the prediction quality when compared to the conventional AAC. PseAAC is a combination of

the 20 components of the conventional amino acid composition and a set of sequence order

correlation factors that incorporates some biochemical properties. Given a protein sequence of

length L:

R1R2R3R4...RL (5)

A set of descriptors called sequence order-correlated factors are defined as:

θ1 =
1

L− 1

L−1∑
i=1

Θ(Ri, Ri+1)

θ2 =
1

L− 2

L−2∑
i=1

Θ(Ri, Ri+2)

θ3 =
1

L− 3

L−3∑
i=1

Θ(Ri, Ri+3)

.

.

.

θλ =
1

L− λ

L−λ∑
i=1

Θ(Ri, Ri+λ)

(6)
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The parameter λ is chosen such that (λ < L). A correlation function is given by:

Θ(Ri, Rj) =
1

3

{
[H1(Rj) −H1(Ri)]

2 + [H2(Rj) −H2(Ri)]
2

+[M(Rj) −M(Ri)]
2
} (7)

where H1(R) is the hydrophobicity value, H2(R) is hydrophilicity value, and M(R) is side chain

mass of the amino acid Ri. Those quantities were converted from the original hydrophobicity

value, original hydrophilicity and original side chain mass by standard conversion as follows:

H1(Ri) =

H◦1 (Ri) −
1

20

20∑
k=1

H◦1 (Rk)√√√√√√
20∑
y=1

[
H◦1 (Ry) −

1

20

20∑
k=1

H◦1 (Rk)

]2
20

(8)

where H◦1 (Ri) is the original hydrophobicity value for the amino acid Ri that was taken from

Tanford [38] ; H◦2 (Ri) and M◦(Ri) are converted to H2(Ri) and M(Ri) in the same way. The

original hydrophilicity value H◦2 (Ri) for the amino acid Ri was taken from Hopp and Woods [39].

The mass M◦(Ri) of the Ri amino acid side chain can be obtained from any biochemistry text

book. PseAAC is represented as vector of size (20 + λ) as follows:

PseAAC(P ) = [s1, ..., s20, s21, ..., s20+λ] (9)

where si is the pseudo-amino acid composition such that:

si =



fi∑20
r=1 fr + ω

∑λ
j=1 θj

1 ≤ i ≤ 20

ωθi−20∑20
r=1 fr + ω

∑λ
j=1 θj

20 < i ≤ 20 + λ

(10)

where fi is the normalized occurrence frequency of the of the ith amino acid in the protein

sequence, θj is the jth sequence order-correlated factor calculated from Equation 6, and ω is a
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weight factor for the sequence order effect. The weight factor ω puts weight on the additional

PseAAC components with respect to the conventional AAC components. The user can select

any value from 0.05 to 0.7 for the weight factor. The default value given by Chou [37] is .05.

3 Databases

3.1 UniProt

UniProtKB (UniProt Knowledgebase) [11] is the worldwide primary database of protein sequence

and functional information, and it consists of two sections, UniProtKB/Swiss-Prot and UniProtKB/

TrEMBL. UniProtKB/Swiss-Prot contains well-annotated non-redundant proteins that have

been manually inspected. The protein sequences in UniProtKB/Swiss-Prot are accompanied

by peer-reviewed references, secondary structure elements, cross- references to other biological

databases and information about their function. UniProtKB /TrEMBL contains protein sequences

that are unrevised and automatically annotated. As of September 2017, UniProtKB/Swiss-Prot

contains 555,426 sequence entries and UniProtKB/TrEMBL contains 89,396,316 sequence entries

3.2 Transporter Classification Database

The TCDB [10] uses the classification system approved by the International Union of Biochemistry

and Molecular Biology (IUBMB) for membrane transport proteins, known as the transporter

classification (TC) system. The TCDB is a curated database of accurate and experimentally

characterized information from over 10,000 published references. As of September 2017, it

contains more than 10,000 unique protein sequences that are classified into more than 800

transporter families. Each entry in the database has a Transport Classification Identifier

(TCID) that consists of five components: V.W.X.Y.Z. where V is a number from 1-9 that

corresponds to the transporter class (e.g. channels, carrier, pumps (active transport), W is a

letter that refers to a transporter subclass, X is a number that refers to the transporter family,

Y is also a number that corresponds to transporter subfamily and Z refers to the substrate or

range of substrates transported Figure 3 exemplifies a TCDB entry.
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Figure 3: TCDB entry example

TCID consists of five components: V.W.X.Y.Z V is a number from 1-9 that corresponds to the transporter

class (e.g. channels, carrier, pumps (active transport), W is a letter that refers to a transporter subclass, X is

a number that refers to the transporter family, Y is also a number that corresponds to transporter subfamily

and Z refers to the substrate or range of substrates.

3.3 Protein Data Bank

The Protein Data Bank (PDB) is single worldwide repository of information about the three-dimensional

structural data of large biological molecules, such as proteins and nucleic acid. The data is

typically obtained by high-resolution structure methods such as x-ray crystallography, NMR

spectroscopy. As of September 2017, PDB contains 137,572 3-dimensional protein structures.
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Chapter III

Literature review
This Chapter overviews what have been done to detect transmembrane proteins. Section 1

introduces different topology prediction methods used in detecting transmembrane proteins.

Then, Section 2 reveals two ways to classify transporter proteins and focuses substrates specificity

detection methods.

1 Transmembrane topology prediction

Transmembrane topology prediction methods predict the number of TMSs and their position

in the primary protein sequence. As mentioned in Section 1, transmembrane proteins are the

IMPs that span the lipid bilayer and have exposed portions on both sides of the membrane. It

is expected that the portions that span the membrane contain nonpolar, hydrophobic amino

acids while the portions that are in either side of the membrane consist mostly of hydrophilic,

polar amino acids. The TMS can have either α-helical or β-barrel structure, The prediction

methods can be classified into α-helices prediction methods and β-barrels prediction methods.

Earlier prediction methods depended solely on simple measurements like the hydrophobicity of

the amino acids cite [40]. Major improvement were made after “positive- inside rule” [41] that

was introduced by von Heijne in 1984, which came from the observation that positively-charged

amino acids such as arginine and lysine tend to appear in the in the cytoplasmic side of the

bilayer. Current methods combine hydrophobicity analysis and positive-inside rule together

with machine-learning techniques and evolutionary information.

For example, MEMSATSVM [42], introduced in 2009, uses four support vector machines

(SVMs) to predict transmembrane-helices, inside and outside loops, reentrant helices and

signal peptides. In addition, it includes evolutionary information of many homologous protein
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sequences in form of sequence profile. This method outputs predicted topologies ranked by

overall likelihood, signal peptide, re-entrant helix. The reported accuracy is 89% for the correct

topology and location of TM helices and 95% for correct number of TM helices. However, recent

studies on experimental data [43] [44] sets reported that MEMSATSVM did not perform as

well when evaluated using different datasets.

State-of-the-art methods use consensus algorithms that combine the outputs from different

predictors. The highest reported prediction accuracy was achieved by TOPCONS2 [44], which

is an improvement of its predecessor TOPCONS [45]. The TOPCONS2 method can more

successfully distinguish between globular and membrane proteins. In addition, it is highly

efficient, making it ideal to work with proteome-wide analysis . The TOPCONS2 method

combine the outputs from different predictors that can also predict signal peptides -namely

Philius [46], PolyPhobius [47] and SPOCTOPUS [48], OCTOPUS [49] and SCAMPI [50] into a

topology profile where each residue is represented by four values: signal peptide (S), a membrane

region (M) or the membrane-inside (I) and outside (O). Then, the hidden Markov model is used

to process the resulting profile and predict the final topology that has the highest scoring state

path.

In regard to β-barrel membrane proteins prediction, a variety of methods were introduced, such

as methods that combine statistical propensities [51], k-nearest neighbor methods [52], neural

networks [53] [54], hidden Markov models [55] [56] [57] [58], SVMs [59], amino acid compositions

[60] [61]. Approaches based on hidden Markov model were found to have statistically significant

performance when compared to other types of machine learning techniques [62]. Major players

for detecting β-barrel outer membrane proteins are HHomp [63],BOCTOPUS [57], and PRED-TMBB2

[58] with reported Matthews correlation coefficient (MCC) when applied to the same dataset

of (.98, .93, .92), respectively. The BOCTOPUS and HHomp techniques are much slower than

PRED-TMBB2 [58]. Table 2 summarizes the prominent membrane topology predictors.
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Predictor Class Features Performance* Notes

HMMTOP

[64]

α-helix -Subject to false positive

predictions

-Highly efficient

-Does not detect signal peptide

-Does not use evolutionary

information

-Requires a license to use the

server and download

topology

prediction

accuracy of

70%

Highly

accurate

in predicting

the number

of TMS on

accuracy of

77.1

TMHMM

[65]

α-helix -Most selective method

for avoiding false positive

predictions -Does not perform

very well detecting the number

of TMS

-Does not detect signal peptide

-Does not use evolutionary

information

-Highly efficient

-freely available as web server

-Requires a license for download

topology

prediction

accuracy of

77%

Highly

efficient in

Genome scale

filtering of

non α-helices

membrane

proteins [66]

MEMSAT–

SVM [42]

α-helix -Uses evolutionary information

-Detects signal peptide

-The performance can vary

depending on the used dataset

-Freely available as web server

and source code

topology

prediction

accuracy of

89%

TOPCONS2

[44]

α-helix -Uses evolutionary information

-Detects signal peptide

-Includes consensus from five

different algorithm.

-Highest recorded accuracy

-Freely available as web server

and source code

topology

prediction

accuracy of

80%

Highly reliable

on detecting

the number,

position

and signal

peptide in

transmembrane

proteins
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HHomp [63] β-

barrel

-Uses evolutionary information

-Extremely accurate but slow

True positives

detection rate

of 63.5%

BOCTOPUS

[57]

β-

barrel

-Uses evolutionary information

-Extremely accurate but slow

topology

prediction

accuracy of

83%

-Use with 2100

sequences of

typical protein

length

PRED-

TMBB2 [58]

β-

barrel

-Uses evolutionary information

for but also performs

well without evolutionary

information when detecting

β-barrel membrane proteins

-Extremely efficient with

performance comparable to

other predictors that use

evolutionary information

topology

prediction

accuracy of

76% MCC .92

Highly

efficient in

Genome scale

filtering of

non β-barrel

membrane

proteins

Table 2: Transmembrane topology prediction methods

* Performance here is the same as the reported performance by each method. Different datasets were used in

the evaluation; so, proper comparison is not valid.
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2 Transport proteins characterization methods

Membrane transport proteins move the hydrophilic substrates across the hydrophilic membrane

between cell compartments or between different cells. Knowledge of the substrate specificities

of a transporter is a necessity to fully perceive its role and it is important information for the

annotation of transport proteins. Generally, a transporter protein can be classified on the basis

of transporter family or according to the substrate it transports [67].

2.1 TC-family classification

The classification into families commonly follows the TCDB system (see Chapter II. 3.2).

Many of the earlier bioinformatics efforts classified transporter proteins to their corresponding

putative families by using MSAs and phylogeny [68] [9]. The rationale behind using those

techniques is that proteins with high sequence similarity are typically homologous and thus

belong to the same family. This may give a hint about the structure, function, and mechanistic

features of the queried protein sequence that can be subjected to experimental verification [9].

More advanced methods that incorporate machine-learning methods were also used to predict

TCDB family. For example, TransportTP [10] classifies a transporter to TCDB families in two

phases: the first phase uses traditional homology methods to predict the queried transporter

based on sequence similarity to the classified proteins in TCDB. The second phase employs

machine-learning methods to refine the initial prediction by collecting different features such as

TMSs and the top-k nearest neighbors in TCDB, homologs in Pfam and Gene Ontology, and

non-transporter homologs from Swiss-Prot. The main limitation of classifying a transporter

based on TCDB family, however, is that homologous sequences do not always share significant

sequence similarity. Likewise, proteins with high sequence similarity do not always share the

same function [69]. Therefore, it is often irrational to predict the transported substrate based on

these methods, because two proteins that transport the same substrate may belong to different

families; likewise, transporters belonging to the same family may transport different substrates.
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2.2 Substrate specificity classification

The studies that classify a transporter protein according to the substrate it transports are quite

limited. The highest reported accuracy was reported by Schaadt et al. [70] in 2010, where

researchers used an amino acid composition (AAC), pair amino acid composition (PAAC), and

pseudo-amino acid composition methods (PseAAC) (see Chapter II.2) in addition to amino

acid conservation with homologues sequences, called MSA-AAC, to detect different substrate

specificity.

The MSA-AAC method uses a full multiple sequence alignment (MSA) of each protein in the

dataset built by ClustalW [15] For this, homologous sequences was searched in the nonredundant

database using BLAST. Then, Sequences with an identity below 25% were removed. The

occurrence of every amino acid in all sequences of the alignment was normalized by the numbers

of included amino acids and the resulted vector of size 20 was considerd.

The investigations were done on Arabidopsis Thaliana transmembrane proteins, and they

considered four different substrates classes: amino acid, oligopeptides, phosphate and hexose

with a total of 61 transporters in the positive data set. This method relies on the Euclidean

distance between the query protein sequence composition and the mean composition of protein

sequences of each substrate class to compute a score for each query sequence against each

substrate class. Their approach has a high accuracy around 90%, compared to 60% for

randomized data. Although the performance is promising, their data set contains limited

transporters of only one organism.

In 2011, Chen et al. [71] utilized AAC, PAAC, and biochemical properties using the

AAindex database [72] along with some evolutionary information in form of position-specific

scoring matrices (PSSMs) to classify a transporter to four substrate classes: electron, protein/mRNA,

ion and others. Their dataset is not tailored to a specific organism and contains a total of 651

transporters. A neural network was employed to construct the classifier. The method produced

an accuracy of about 80%,

In 2012, Schaadt et al. [73] found that separating TMSs and non-TMSs when calculating

amino acid compositions yields to an improved accuracy of 80% in comparison to 76% when the
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composition is computed for the whole sequence. This method also used Arabidopsis Thaliana

transmembrane proteins considered the same four substrates classes: amino acid, oligopeptides,

phosphate and hexose, with a total of 61 transporters.

In 2013, Barghash et al. [74] applied three different approaches: BLAST [25], which

generates alignments that optimize a measure of local similarity, HMMER [75] which searches

sequence databases for sequence homologs using probabilistic methods and MEME [76] which

discovers motifs in protein sequences using expectation maximization. These methods, under

different thresholds, were used to evaluate whether annotations about the transporter substrate

could be transferred from one organism to the other. Four substrates classes were considered:

metal ions, phosphate, sugar, and amino acid transporters from Escherichia Coli (72 transporters),

Saccharomyces Cerevisiae (79 transporters), and Arabidopsis Thaliana (95 transports). They

found that in the use of these methods, sequences tend to match sequences from their TC

families rather than sequences in the same substrate family. Their reported performance was

low for substrate-level classification with an F-measure around 40-75%.

In 2014, Mishra et al. [77] developed a web server, TrSSP, for predicting the substrate

specificity of transporters. Protein sequence features such as AAC, PAAC, physico-chemical

composition, biochemical composition AAindex database and position-specific scoring matrices

(PSSM) were used to predict the substrate specificity of seven transporter classes: amino

acid, anion, cation, electron, protein/mRNA, sugar, and other transporters. Biochemical

composition was computed using a set of 49 selected physical, chemical, energetic, and conformational

properties to define the biochemical composition of each protein sequence. The 49 values

were selected from the AAIndex database [78] and were successfully applied in many areas in

bioinformatics, such as protein folding, transporter classification [71]. The normalized values

for 49 Amino acid properties were used. The normalized values along with a brief description of

each value is available from: https://www.iitm.ac.in/bioinfo/fold_rate/ Then,

for each protein, a vector size of 49 that represents the biochemical composition was computed

as follows:

AAindexi =

∑n
j=1AAindexij

n
(11)

where AAindexi is the value of the ith biochemical property (a total of 49 properties) and n is
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the sequence length.

The PSSM is constructed with PSI-BLAST [23] which uses BLAST to build a PSSM from

the multiple alignments of the highest scoring hits in an initial BLAST search with default

threshold e − value = 1e − 3. Then, this PSSM is used again to search the database for new

matches; the newly detected sequences are incorporated to update and refine the PSSM profile

in every iteration. PSI-BLAST returns a PSSM that has 20 rows (one for each amino acid)

and n columns (a column for each position in the queried amino acid sequence). The value in

each cell represents the probability occurrence of amino acid i in position j. Then, because the

number of columns in the PSSM is depends on the length of the queried sequence (n) we need

to fix the size for all sequences. To do so, the number of column is reduced to 20 by summing

all the rows in the PSSM that correspond to the same amino acid in the primary sequence.

Finally, the values are divided by the length of the sequence and normalized to a range of 0− 1

using the following general formula:

V ′ =
V −min

max−min
(12)

where V ′ is the normalized value, V is the value of PSSM after the sum and division, min is

the minimum value in PSSM and max is the maximum value. result is a vector of size of 400,

which represents the PSSM for each sequence.

Finally, an SVM was applied for classification. Their method found that the best performance

was achieved by combining biochemical composition and PSSM with an overall Mathews

correlation coefficient (MCC) of 0.41.

A summary of the proposed solutions can be found in Table 3
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Solution Organism Size Substrates Features Classifier Performance*

Schaadt

et

al. [70]

Specific

(Arabidopsis

thaliana)

61 amino acid,

oligopeptides,

phosphate

and hexose

AAC,

PAAC,

PseAAC,

MSA-AAC

Euclidean

distance

Accuracy of

90%

Chen et

al. [71]

General 651 electron,

protein/

mRNA, ion

and others

AAC,

PAAC,

AAindex,

PSSM

Neural

network

Accuracy of

about 80%

Schaadt

et

al. [73]

Specific

(Arabidopsis

thaliana)

61 amino acid,

oligopeptides,

phosphate

and hexose

AAC with

separating

TM-

segments

Euclidean

distance

Accuracy of

80%

Barghash

et

al. [74]

Specific

(Escherichia

coli,

Saccharomyces

cerevisiae,

Arabidopsis

thaliana)

246 amino acids,

metal ions,

phosphates

and sugars

BLAST,

HMMER,

MEME

N/A F-measure

around

40-75%

Mishra

et

al. [77]

General 780 amino

acid, anion,

cation,

electron,

protein/

mRNA,

sugar and

others

AAC,

PAAC,

PseAAC,

AAindex,

PSSM

SVM Overall MCC

of 0.41 and

accuracy of

78%

Table 3: Substrate specificity solutions

* Performance here is the same as the reported performance by each method; different methods use different

datasets with various prediction classes. So, proper evaluation is difficult
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Chapter IV

Preliminary study
Here we investigate the different techniques used in classifying transmembrane proteins based

on their transported substrate. We used Mishra et al. [77] paper as our main reference in terms

of data and performance, since their work is the latest published work that focuses on substrate

specificity that also claim to outperform other classifiers. In addition, we have developed and

assisted new techniques.

1 Materials and methods

1.1 Datasets

We used the main dataset and testing dataset from Mishra et al. [77]. (available at: http:

//bioinfo.noble.org/TrSSP). Their data (Table 4) was collected from the Swiss-Prot

(release 2013-03) database, and manually curated. Seven total substrate classes were considered:

amino acid, anion, cation, electron, protein/mRNA, sugar, and others. Others refer to transporters

that does not belong to any of the other six classes. A total of 760 transporters for the main

dataset and 120 for the testing dataset were used.
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Transporter class Main dataset Testing dataset

Amino acid 70 15

Anion 60 12

Electron 60 10

Cation 260 36

Protein/mRNA 70 15

Sugar 60 12

Other 200 20

Total transporters 780 120

Table 4: The numbers of samples in the main dataset and testing dataset for seven transporter
classes

Further, we map all of the transporters to TCDB families. To perform the mapping, a local

TCDB database was created. Then, homology search using BLAST was performed on each

sequence in the dataset. A transporter is mapped to its corresponding TCDB family if there

is an exact match or the normalized e − value is below 1e − 8. This threshold was suggested

by Barghash et al. [74] as an acceptable threshold on BLAST when dealing with a TC system.

1.2 Protein sequence encoding

we implemented AAC, PAAC, PseAAC, AAindex, PSSM, in same way Mishra et

al. [77] described in their work (see Chapter III. 2 ). Further, we also used Schaadt et

al. [70] method (MSA-AAC) on substrate specificity prediction. We made few modifications to

MSA-AAC method, we call our method filtered-MSA-AAC. First, instead of non-redundant

database, we created a local database by combining all sequences from Swiss-Prot that have

transmembrane keyword. The size of this database is only 40 MB in comparison to 18 GB

for the non-redundant database. Second, instead of retrieving a 1,000 sequences we limited

the number of the retrieved sequences to 120 to fit our computational power in the alignment

phase. Next, we aligned the sequence using TM-COFFEE (Version-11.00.8cbe486) instead of

ClustalW. with the following command:

t_coffee mysequences.fasta -mode psicoffee -protein_db uniref50-TM

-template_file PSITM
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Where mysequences.fasta contains the sequences of 120 homologous retrieved from BLAST.

Third, we applied transitive consistency score (TCS) [79] to the alignment. The TCS is a

scoring scheme that uses a consistency transformation to assign a reliability index to every pair

of aligned residues, to each individual residue in the alignment, to each column, and to the

overall alignment. The reliably index ranges from 0 to 9, where 0 is extremely uncertain and 9

is very reliable, sample of TCS output is presented in Figure 4. When applying TCS score to

the alignment, we were able to filter around 50% of sequences length.

Figure 4: Sample of TCS scoring output

Columns with a reliability index of below 3 were removed using the following command:

t_coffee -infile myMSA.aln -evaluate -output tcs_column_filter3_fasta

where myMSA.aln is the MSA file, tcs column filter3 fasta is the filtered file in FASTA format.

Finally using the filtered file we computed the AAC.

Further, we implemented filtered-MSA-PAAC by using the filtered MSA file and calculating

the average occurrence of every amino acid residue pairs in all sequences of the alignment, we

got a vector of size 400 as a result.

We also implemented filtered-MSA-PseAAC using the filtered MSA file and calculating the

average occurrence of every amino acid residue in all sequences of the alignment (total of 20)

in addition to the average sequence order correlation factors (λ = 30) among all sequences in

the alignment, we got a vector of size 50 as a result.

Lastly, we incorporated a new feature, we call it Filtered-HMM-Profile. the HMM-profile

29



are used to model MSA, where it effectively represent the common patterns in the alignment.

using HMMER package [80] (Version HMMER 3.1b2), we first build HMMs database (see

Figure 5). To do this, MSA was built and then filtered for each sequence in the dataset. This

filtered MSA was used to build HMM profile using hmmbuild for each sequence in the dataset.

All of the HMM profiles were combined into HMMs database. Then, to predict the query

Figure 5: Filtered-HMM-Profile database building process

Each sequence S in the training dataset went through the execution pipeline. First, we perform homology search

using BLAST for S against the local Swiss-Prot database. Then, we used the retrieved sequences to build MSA

using TM-COFFEE, after that we filter the MSA using TCS. The filtered MSA is then used to build HMM

using HMMER’s hmmbuild. Finally, all HMMs are combined into HMMs database.

protein class on Filtered-HMM-Profile, hmmscan is used to scan query protein sequences

against HMMs database. We predict the query protein class to be the same as the highest

scoring hit (see Figure 6)
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Figure 6: Filtered-HMM-Profile class prediction process

To predict query protein sequence (QP) class, we first search BLAST for homologous sequences to QP against

the local Swiss-Prot database . Then, we used the retrieved sequences to build MSA using TM-COFFEE, after

that we filter the MSA using TCS. Then from The filtered MSA we retrieve the filtered QP. Finally we scan

the filtered QP against out HMMs database using HMMER’s hmmscan. Finally, we predict the QP class as the

same class as the highest scoring hit class

1.3 Classification

For the rest of the features, we use Support Vector Machine (SVM) with RBF kernel as

implemented by R e1071 library version 1.6-8. Since we have seven different classes, we used

multi-class SMV that is implemented by e1071 using a one-against-one approach, in which

(7 × 6)/2 = 21 binary classifiers are trained; the predicted class is found through a voting

scheme where all the binary classifiers are applied, the class that gets highest number of votes

is predicted by the combined classifier.
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1.4 Performance measurement

Four statistical measures were considered to measure the performance. Sensitivity, which

calculates the proportion of positives that are correctly identified.

Sensitivity =
TP

TP + FN
(13)

Specificity that measures the the proportion of negatives that are correctly identified.

Specificity =
TN

TN + FP
(14)

Accuracy that proportion of correct predictions made divided by the total number of predictions.

Accuracy =
TP + TN

TP + FN + TN + FP
(15)

Matthews correlation coefficient (MCC) is less influenced by imbalanced test because it takes

into account true and false positives and negatives, MCC values range from 1 to −1 where

1 indicates a perfect prediction, 0 represent no better than random and −1 implies total

disagreement between prediction and observation. higher MCC value means the predictor

has high accuracies on positive and negative classes, and also less misclassification on the two

classes. MCC is argued to be the best singular assessment metric specially when the data is

imbalanced [81] [82] [83].

MCC =
(TP × TN − FP × FN)√

(TP + FP ) × (TP + FN) × (TN + FP ) × (TN + FN)
(16)

The calculation of the MCC in the multiclass case was reported originally in [84]. This measure

is called RK statistics, and is calculated by K ×K confusion matrix C as follows:

MCC =

∑
k

∑
l

∑
mCkkClm − CklCmk√∑

k(
∑

l Ckl)(
∑

k′|k′ 6=k
∑

l′ Ck′l′)
√∑

k(
∑

l Clk)(
∑

k′|k′ 6=k
∑

l′ Cl′k′)
(17)
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2 Experiments

In this section. we present the main experiments that we conducted. To evaluate the performance

of different models, five-fold cross-validation was applied. Where the dataset is randomly

partitioned into five equal sized subsamples. A single subsample is kept as the validation data

and the remaining four subsamples are used to train the model. This model is then tested using

the retained subsample. The cross-validation process is repeated four times where each of the

subsamples is used once as the validation data. The performance of each model is averaged to

produce a single estimation.

2.1 Protein compostions

Here, we examine the use of amino acid features without any incorporation of homology

information. first AAC five-fold cross-validation is as follows:

Class Specificity Sensitivity Accuracy MCC

Amino acid 95.22 37.00 83.28 0.34

Anion 98.76 4.61 84.20 0.02

Cation 59.79 74.83 56.35 0.17

Electron 99.45 20.16 86.81 0.36

Protein 97.90 27.13 84.32 0.32

Sugar 98.05 36.59 86.53 0.34

Other 75.90 43.37 58.30 0.09

Overall 45.38 0.22

Table 5: AAC cross-validation performance
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Class Specificity Sensitivity Accuracy MCC

Amino acid 96.92 42.86 84.77 0.42

Anion 98.61 14.51 84.95 0.19

Cation 59.47 69.24 54.78 0.14

Electron 99.45 11.18 85.98 0.22

Protein 97.33 25.33 83.39 0.26

Sugar 99.03 37.55 88.58 0.48

Other 73.34 43.53 56.72 0.06

Overall 45.89 0.25

Table 7: PAAC cross-validation performance

Class Specificity Sensitivity Accuracy MCC

Amino acid 96.92 48.21 86.55 0.47

Anion 97.23 10.88 83.48 0.08

Cation 58.07 79.70 57.93 0.24

Electron 99.03 8.87 85.46 0.13

Protein 99.44 21.50 86.32 0.36

Sugar 97.65 31.74 86.47 0.34

Other 79.43 42.61 61.27 0.13

Overall 47.69 0.27

Table 9: PseAAC cross-validation performance
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Class Specificity Sensitivity Accuracy MCC

amino acid 99.16 3.25 78.63 0.00

anion 100.00 0.00 82.04 0.00

cation 36.33 80.43 41.66 0.36

electron 99.73 8.89 82.90 -0.04

protein 99.02 4.12 78.57 0.20

sugar 100.00 0.00 82.00 -0.15

other 72.16 27.14 46.89 0.06

Overall 33.46 0.01

Table 11: AAindex cross-validation performance



2.2 Protein compostions with homology information

the cross-validation performance when homology information in form of MSA without any

filtering is incorporated is presented here.

Class Specificity Sensitivity Accuracy MCC

Amino acid 97.46 74.78 93.11 0.70

Anion 97.23 23.25 88.06 0.24

Cation 82.76 73.28 75.28 0.50

Electron 97.51 54.36 91.35 0.54

Protein 95.65 52.11 88.40 0.38

Sugar 81.57 62.16 72.70 0.72

Other 98.88 65.23 94.40 0.47

Overall 61.28 0.49

Table 13: MSA-AAC cross-validation performance
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Class Specificity Sensitivity Accuracy MCC

Amino acid 97.46 74.78 93.11 0.70

Anion 97.23 23.25 88.06 0.24

Cation 82.76 73.28 75.28 0.50

Electron 97.51 54.36 91.35 0.54

Protein 95.65 52.11 88.40 0.38

Sugar 81.57 62.16 72.70 0.72

Other 98.88 65.23 94.40 0.47

Overall 63.92 0.51

Table 15: MSA-PAAC cross-validation performance

Class Specificity Sensitivity Accuracy MCC

Amino acid 98.03 72.23 93.52 0.71

Anion 98.47 33.43 90.35 0.42

Cation 78.15 76.04 73.07 0.47

Electron 97.23 37.36 89.52 0.40

Protein 97.88 43.92 89.83 0.49

Sugar 98.75 70.00 94.64 0.73

Other 79.37 56.34 69.93 0.31

Overall 61.79 0.50

Table 17: MSA-PseAAC cross-validation performance



2.3 Protein compostions with filtered homology information

Protein compositions with Homology information in form of MSA and TCS filtering is presented

here.

Class Specificity Sensitivity Accuracy MCC

Amino acid 97.04 76.99 93.02 0.70

Anion 96.80 39.79 89.48 0.39

Cation 82.64 77.28 77.21 0.54

Electron 97.38 48.24 91.03 0.50

Protein 97.33 50.89 90.33 0.52

Sugar 97.65 79.62 94.62 0.74

Other 85.36 58.00 75.14 0.41

Overall 66.92 0.56

Table 19: filtered-MSA-AAC cross-validation performance
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Class Specificity Sensitivity Accuracy MCC

Amino acid 97.57 71.76 93.53 0.71

Anion 98.89 32.36 91.55 0.44

Cation 81.34 79.33 77.60 0.55

Electron 98.18 48.92 92.44 0.54

Protein 96.90 54.43 90.65 0.53

Sugar 98.88 72.44 95.24 0.76

Other 84.13 67.96 77.05 0.47

Overall 67.05 0.60

Table 21: filtered-MSA-PAAC cross-validation performance

Class Specificity Sensitivity Accuracy MCC

Amino acid 97.60 79.06 94.16 0.74

Anion 98.19 34.26 90.34 0.42

Cation 81.72 77.24 76.31 0.52

Electron 97.22 31.86 89.29 0.33

Protein 97.61 41.68 89.68 0.45

Sugar 98.72 66.35 94.82 0.72

Other 80.64 64.59 73.06 0.40

Overall 63.71 0.51

Table 23: filtered-MSA-PseAAC cross-validation performance



2.4 Homology information in form of PSSM

The cross validation performance when homology information is incorporated in form of PSSM.

Here, we do not use any form of protein compositions.

Class Specificity Sensitivity Accuracy MCC

Amino acid 95.78 61.66 88.39 0.53

Anion 99.03 20.68 88.64 0.33

Cation 71.74 75.52 67.07 0.36

Electron 98.06 21.00 87.38 0.25

Protein 97.47 38.42 87.55 0.40

Sugar 98.33 51.61 91.26 0.57

Other 78.71 52.74 66.16 0.25

Overall 55.38 0.39

Table 25: PSSM cross-validation performance

40



2.5 Filtered-HMM-Profile

The cross validation performance when HHMs are incorporated

Class Specificity Sensitivity Accuracy MCC

Amino acid 99.15 70.75 95.23 0.77

Anion 99.03 38.49 92.37 0.51

Cation 79.26 81.45 77.44 0.56

Electron 98.34 49.06 92.50 0.56

Protein 97.33 59.76 91.78 0.51

Sugar 99.18 75.27 96.38 0.59

Other 84.89 67.74 77.60 0.79

Overall 68.84 0.64

Table 27: filtered-HMM-Profilecross-validation performance
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3 Discussion

When mapping the transporters to TCDB families, we found that 537 sequences (68.84%)

have exact matches, 125 (16%) sequences have matches below the specified threshold, and

the remaining sequences have no matches. Furthermore, not all transporters that transport

the same substrate belong to the same TCDB family, as presented in Tables 30-33. This

demonstrates that proteins with the same function may not have high sequence similarity. For

example, amino acid transporters belong to 13 different families and cation transporters include

members from 47 different families. Likewise, the same TCDB family can be found in more

than one substrate class. For example, some transporters from amino acid, anion, cation and

others share the same TCDB superfamily 1.A.2. Moreover, amino acid and others share the

same subfamily 1.A.2.14. This confirms that the transporters substrates specificity are sparse

in TCDB families, and using sequence similarity alone to detect the transporter function may

give misleading results. Other features are thus needed to differentiate proteins with distinct

functions.

TCDB Super-family TCDB subfamily

1.I.1 1.I.1.1 (8)

2.A.64 2.A.64.1 (2)

3.A.1
3.A.1.113 (1)

3.A.1.125 (2)

3.A.5
3.A.5.1 (3)

3.A.5.8 (4)

3.A.8 3.A.8.1 (9)

3.A.9 3.A.9.1 (2)

3.A.16 3.A.16.1 (1)

3.A.18 3.A.18.1 (1)

3.A.20 3.A.20.1 (2)

3.A.22 3.A.22.1 (1)

9.A.14 9.A.14.1 (1)

9.A.18 9.A.18.1 (1)

9.A.62 9.A.62.1 (1)

Table 28: Protein mapping to TCDB families
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TCDB Super-family TCDB subfamily

2.A.1

2.A.1.3 (1)

2.A.1.14 (1)

2.A.1.44 (1)

2.A.1.48 (2)

2.A.3

2.A.3.2 (2)

2.A.3.3 (1)

2.A.3.8 (7)

2.A.3.10 (11)

2.A.7
2.A.7.17 (1)

2.A.76 (1)

2.A.17

2.A.17.1 (2)

2.A.17.2 (1)

2.A.17.3 (1)

2.A.17.4 (3)

2.A.18

2.A.18.2 (4)

2.A.18.5 (1)

2.A.18.6 (5)

2.A.18.7 (2)

2.A.18.8 (1)

2.A.22 2.A.22.6.2 (3)

2.A.23

2.A.23.2 (3)

2.A.23.3 (2)

2.A.23.4 (1)

2.A.26 2.A.26.1 (1)

2.A.29

2.A.29.9 (1)

2.A.29.14 (1)

2.A.29.19 (1)

2.A.42 2.A.42.2 (1)

2.A.76 2.A.76.1 (1)

3.A.1
3.A.1.3 (1)

3.A.1.5 (3)

8.A.9
8.A.9.1 (1)

8.A.9.2 (1)

Table 29: Amino acid mapping to TCDB families

TCDB Super-family TCDB subfamily

1.A.17 1.A.17.1 (2)

1.A.46 1.A.46.1 (1)

1.B.8 1.B.8.1 (3)

2.A.1

2.A.1.15 (1)

2.A.1.19 (1)

2.A.1.8 (1)

2.A.1.9 (1)

2.A.16
2.A.16.3 (1)

2.A.16.5 (1)

2.A.17 2.A.17.3 (5)

2.A.21 2.A.21.5(1)

2.A.29

2.A.29.13(1)

2.A.29.2 (1)

2.A.29.4 (2)

2.A.31 2.A.31.1 (2)

2.A.40 2.A.40.4 (1)

2.A.47
2.A.47.1 (1)

2.A.47.2 (2)

2.A.49
2.A.49.3 (2)

2.A.49.5 (1)

2.A.53
2.A.53.1 (2)

2.A.53.2 (3)

2.A.59 2.A.59.1 (1)

2.A.60 2.A.60.1 (3)

2.A.66 2.A.66.1 (1)

3.A.1

3.A.1.9 (1)

3.A.1.202 (1)

3.A.1.208 (1)

3.A.4 3.A.4.1(1)

Table 30: Anion Dataset mapping to TCDB families
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TCDB Super-family TCDB subfamily

3.D.1 3.D.1.1 (9)

3.D.3 3.D.3.5 (1)

3.D.4
3.D.4.3 (3)

3.D.4.5 (3)

5.A.3
5.A.3.1 (2)

5.A.3.4 (1)

5.B.1
5.B.1.1 (1)

5.B.1.4 (1)

Table 31: Cation mapping to TCDB families

TCDB Super-family TCDB subfamily

2.A.1

2.A.1.1 (21)

2.A.1.4 (1)

2.A.1.5 (1)

2.A.1.7 (1)

2.A.1.20 (1)

2.A.2 2.A.2.4.(4)

2.A.7

2.A.7.9 (1)

2.A.7.10 (2)

2.A.7.12 (1)

2.A.7.13 (2)

2.A.7.15 (2)

2.A.16 2.A.16.2 (1)

2.A.21 2.A.21.3 (4)

2.A.56 2.A.56.1 (1)

2.A.123 2.A.123.1 (1)

3.A.1

3.A.1.1 (3)

3.A.1.2 (2)

3.A.1.108 (1)

3.A.1.139 (1)

4.A.1 4.A.1.1 (1)

4.A.7 4.A.7.1 (3)

9.A.58 9.A.58.1 (1)

Sugar Dataset mapping to TCDB families

TCDB Super-family TCDB subfamily

2.A.108
2.A.108.1 (1)

2.A.108.2 (1)

3.A.1

3.A.1.14 (1)

3.A.1.18 (2)

3.A.1.201 (1)

3.A.1.205 (2)

3.A.1.208 (4)

3.A.1.21 (2)

3.A.1.210 (1)

3.A.1.23 (5)

3.A.2
3.A.2.1 (13)

3.A.2.2 (11)

3.A.3
3.A.3.3 (1)

3.A.3.5 (3)

8.A.10 8.A.10.2 (1)

8.A.14 8.A.14.1 (3)

8.A.16 8.A.16.2 (1)

8.A.22 8.A.22.1 (5)

8.A.28 8.A.28.1 (1)

9.A.8 9.A.8.1 (1)

9.A.9 9.A.9.1 (1)

9.A.40 9.A.40.3 (1)

9.B.37 9.B.37.3 (1)

Cont. Cation mapping to TCDB families
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TCDB Super-family TCDB subfamily

1.A.1

1.A.1.2 (11)

1.A.1.3 (4)

1.A.1.4 (6)

1.A.1.5 (2)

1.A.1.6 (1)

1.A.1.7 (1)

1.A.1.8 (2)

1.A.1.9 (3)

1.A.1.10 (5)

1.A.1.11 (12)

1.A.1.13 (1)

1.A.1.15 (3)

1.A.1.16 (2)

1.A.1.18 (2)

1.A.1.19 (3)

1.A.1.20 (3)

1.A.2 1.A.2.1 (8)

1.A.4 1.A.4.4 (1)

1.A.5
1.A.5.2 (1)

1.A.5.3 (1)

1.A.6
1.A.6.1 (10)

1.A.6.2 (2)

1.A.11 1.A.11.4 (1)

1.A.23 1.A.23.4 (1)

1.A.26 1.A.26.2 (1)

1.A.35

1.A.35.1 (1)

1.A.35.2 (2)

1.A.35.4 (1)

1.A.51 1.A.51.1 (1)

1.A.52 1.A.52.1 (1)

1.A.56
1.A.56.1 (6)

1.A.56.2 (1)

1.A.77 1.A.77.1 (1)

1.A.87 1.A.87.3 (1)

2.A.1

2.A.1.16 (1)

2.A.1.19 (3)

2.A.1.2 (1)

2.A.4
2.A.4.4 (2)

2.A.4.7 (1)

2.A.5
2.A.5.4 (2)

2.A.5.5 (1)

2.A.6 2.A.6.1 (1)

2.A.7
2.A.7.1 (1)

2.A.7.25 (1)

2.A.19

2.A.19.1 (1)

2.A.19.2 (3)

2.A.19.4 (1)

2.A.22 2.A.22.2 (1)

2.A.29 2.A.29.5 (1)

2.A.33 2.A.33.1 (6)

2.A.34 2.A.34.1 (2)

2.A.35 2.A.35.1 (1)

2.A.36
2.A.36.1 (2)

2.A.36.7 (1)

2.A.37
2.A.37.4 (3)

2.A.37.5 (1)

2.A.38
2.A.38.2 (1)

2.A.38.3 (3)

2.A.55

2.A.55.1 (2)

2.A.55.2 (4)

2.A.55.3 (1)

2.A.58 2.A.58.1 (1)

2.A.63 2.A.63.1 (5)

2.A.72 2.A.72.3 (2)

2.A.92 2.A.92.1 (1)

2.A.96 2.A.96.1 (1)

Table 34: Cation mapping to TCDB families
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TCDB Super-family TCDB subfamily

1.A.8

1.A.8.1 (1)

1.A.8.3 (1)

1.A.8.8 (6)

1.A.8.10 (1)

1.A.8.11 (1)

1.A.8.12 (1)

1.A.23
1.A.23.2 (1)

1.A.23.8 (1)

1.A.24
1.A.24.1 (3)

1.A.24.2 (1)

1.A.25 1.A.25.1 (4)

1.A.107 1.A.107.1 (2)

1.B.8
1.B.8.1 (1)

1.B.8.2 (1)

1.B.42 1.B.42.1 (3)

2.A.1

2.A.1.1 (1)

2.A.1.2 (11)

2.A.1.3 (1)

2.A.1.4 (1)

2.A.1.13 (2)

2.A.1.14 (3)

2.A.1.19 (3)

2.A.1.22 (1)

2.A.1.49 (1)

2.A.3
2.A.3.1 (2)

2.A.3.4 (3)

2.A.6 2.A.6.2 (1)

2.A.7

2.A.7.1 (2)

2.A.7.19 (1)

2.A.7.20 (1)

2.A.15 2.A.15.2 (1)

2.A.21 2.A.21.6 (1)

2.A.22 2.A.22.3 (1)

2.A.29

2.A.29.1 (2)

2.A.29.8 (1)

2.A.29.10 (1)

2.A.29.17 (1)

2.A.29.20 (1)

2.A.29.21 (1)

2.A.29.28 (1)

2.A.39

2.A.39.2 (2)

2.A.39.3 (1)

2.A.39.4 (1)

2.A.40

2.A.40.1 (1)

2.A.40.4 (1)

2.A.40.6 (1)

2.A.41 2.A.41.2 (1)

2.A.57
2.A.57.1 (1)

2.A.57.3 (1)

2.A.66 2.A.66.1 (4)

2.A.69 2.A.69.1 (3)

2.A.82 2.A.82.1 (3)

2.A.86 2.A.86.1 (1)

2.A.88 2.A.88.5 (1)

2.A.125 2.A.125.1 (1)

2.C.1 2.C.1.1 (1)

3.A.1

3.A.1.13 (1)

3.A.1.25 (3)

3.A.1.106 (1)

3.A.1.121 (1)

3.A.1.201 (4)

3.A.1.203 (5)

3.A.1.204 (6)

3.A.1.205 (1)

3.A.1.208 (3)

3.A.1.211 (5)

Table 35: Others mapping to TCDB families
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For predicting the transported substrates, a summary of the experiments in Section 2 is

presented in Table 36, ordered from the highest to lowest overall performance.

Feature MCC*

filtered-HMM-Profile 0.64

filtered-MSA-PAAC 0.60

filtered-MSA-AAC 0.56

MSA-PAAC 0.51

filtered-MSA-PseAAC 0.51

MSA-PseAAC 0.50

MSA-AAC 0.49

PSSM 0.39

PseAAC 0.27

PAAC 0.25

AAC 0.22

AAindex 0.01

Table 36: Overall cross-validation performance of different features
* MCC is calculated by using confusion matrix as in

equation 17. Best cross-validation performance was achieved

by filtered-HMM-Profile, filtered-MSA-PAAC also achieved high

performance.

It is clear that there is a significant improvement when the evolutionary data is incorporated.

For example, AAC without evolutionary data achieved an overall MCC of .22, and with the

incorporation of evolutionary data MSA-AAC achieved MCC of .49. In addition, filtering the

unreliable positions in the multiple sequence alignment further improved the overall performance.

For example filtered-MSA-AAC overall MCC to .56.

This proves that the use homologous sequences in combination with filtering unreliable columns

using TCS enhances the performance. The TM-COFFEE program, used for MSA, is tailored for

sequences of membrane proteins, unlike other MSA algorithms that use general scoring schemes

for soluble proteins. Specific conservation patterns were exposed by TM-COFFEE, resulting
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in improvements with the alignment by aligning TMS with TMS. In addition, identifying

unreliable positions in the multiple sequence alignment and eliminating them made the remaining

alignment quite informative. To our knowledge, we are the first to combine MSA with PAAC.

Also, we are the first to use filtered MSA with the protein compositions and HMMs.

Because HMM-profile effectively models the filtered MSA, filtered-HMM-profile achieved the

best performance. Also, filtered-MSA-PAAC and filtered-MSA-AAC got comparable performance.

Mishra et al.s [77] TrSSP method, is the latest published work in transporter substrate prediction

which also claims to outperform other classifiers. Table 37 compares our results with those of

Mishra et al. [77]

Class Specificity Sensitivity Accuracy MCC

TrSSP X* TrSSP X TrSSP X TrSSP X

Amino acid 82.42 97.14 93.33 66.67 83.33 91.75 0.49 0.67

Anion 69.05 95.37 75.00 58.33 69.44 89.90 0.23 0.53

Cation 74.31 89.29 75.00 97.22 74.44 89.90 0.41 0.80

Electron 91.78 99.09 80.00 70.00 91.11 95.70 0.50 0.76

Protein 82.42 98.10 93.33 66.67 83.33 92.71 0.49 0.70

Sugar 76.79 97.22 91.67 75.00 77.78 93.68 0.38 0.71

Others 73.13 92.00 60.00 55.00 71.67 83.96 0.23 0.47

Overall 78.88 74.17 0.41 0.68

Table 37: Detailed substrate specificity performance
in Overall performance, We calculated accuracy as proportion of correct predictions

divided by the total number of predictions, and MCC is calculated by usingh confusion

matrix as in equation 17. while Mishra et al. calculated the overall accuracy and MCC

as the average across the seven raws.

* X= filtered-HMM-Profiles

All substrate classes scored higher in accuracy and specificity. However, true positive rate

(sensitivity) was higher in only one (cation) of the seven classes, while for the other six it was

less than their results.Still, we were able to obtain an overall MCC rate of .68 in comparison
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to .41 in Mishra et al.’s results. This finding indicates that our method is highly accurate on

positive and negative classes with less misclassification of the two classes.

We can conclude from this project that using amino acid compositions alone does not yield

strong prediction performance. The strengthened performance came from the incorporating

evolutionary information while using specialized methods for transmembrane proteins. This

finding suggest that the evolutionary information is key to classifying transmembrane proteins.

Furthermore, certain positions in the alignment can have greater significance, so it is important

to identify them. Using TCS score allowed us to eliminate some noise, but it only filtered about

50% of the sequences; further filtering is surely desirable. We strongly believe that there is still

room for more experimentation and the improvement is possible.
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Chapter V

Proposal for further research
The specific functions of many transmembrane proteins are still unknown due to the huge

amount of available data and the exceptional challenges in the experimental characterization

of their structure and function. Transporters are a major class in transmembrane proteins

that move compounds across the membrane. The knowledge of the substrate specificities

of a transporter is essential for understanding its physiological function. Also, transported

substrates are important in the annotation of membrane proteins. Thus, computational approaches

are needed to classify transmembrane proteins and predict their potential substrates. We aim

to build a proteome-wide system that can determine the transporter substrate. This involves

addressing the following research questions:

Q1: Given a protein sequence X, is this a transporter protein?

Q2: Given that protein Y is a transporter, what type of substrates does it transport across

the membrane?

Here, I propose the main work items that we will wrok on in order to achieve our goal.

1 Distinguishing transporters from other types of proteins

This addresses the first research question —Given a protein sequence X, is this a transporter

protein? It is important to apply substrate specificity detection methods (see Chapter III.2.2)

after we ensure that the query protein is, in fact, a transporter. To address it, we need first

to determine whether the queried protein is a transmembrane protein. In this regard, applying

transmembrane topology prediction methods (see Chapter III. 1) to detect α-helical or β-barrel

structures in the TMSs could be helpful. We need to take account of both efficiency and

reliability in the used method since we are working at the proteome level rather than the
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single sequence level. Nevertheless, detecting transmembrane proteins are not enough, as many

receptors and enzymes have TMSs, but they are not transporters. So, computational methods

are needed to distinguish between different transmembrane proteins classes. To our knowledge,

no method was published yet to address this problem, as most use sequence similarity to detect

the classes. Sequence similarity may give false classification because two proteins that belong to

the same class do not always share significant sequence similarity [69]. We also seek to discover

whether there is any correlation between the transmembrane protein topological orientations

(N-terminus inside or outside of the membrane), the number of TMSs, and the class of the

transmembrane protein.

2 Predicting Transporters substrate specificity

This is the second research question —Given that protein Y is a transporter, what type

of substrates does it transport across the membrane? We addressed this question in our

preliminary study (see Chapter IV), where we looked into the latest contribution in that area

by Mishra et al. [77]. We used the same data with the same classes to evaluate our method. We

achieved an overall MCC of .68 in comparison to a coefficient of .41 on their method. We believe

that there is still room for more extermination and improvement. We desire to further improve

our method by incorporating new techniques, such as profile to profile comparison, finding

SDP, and modifying the AAindex algorithm. Furthermore, we saw that in substrate specificity

prediction methods (see Chapter III.2.2) the prediction occurs at the level of substrate category

or class (eg. amino acid) rather than the specific transported substrate (eg. arginine). While

detecting the class can help experimentalists decrease the search space when determining the

function of new protein sequences, the specific substrate is the optimal goal. The specific

substrates can be documented using Chemical Entities of Biological Interest (ChEBI) ontology

and we will aim to find the specific substrate once we improve the the class detection prediction.
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One important point that all substrate specificity detection methods overlook is that the

relationship between the transporter and the substrate is not one-to-one. For example, a

transporter could transport more than one type of substrate. Granted, dealing with overlapping

classes while single class methods are yet far from being established is illogical. We would look

into the overlapping classes problem once we achieve an acceptable performance on the one

class solutions.

3 Data collection and manual curation

As we discussed in Chapter I. 3, there is no gold standard database or dataset to work on in the

context of transporters. Researchers tend to define their own datasets with a diverse number of

substrate classes. For example, in Chapter III. 2.2, we saw that substrate-specific protein classes

are not standardized. Some authors [71] choose to group the substrates into four groups, with

one general class referring to all other types of substrate as others. Other authors (Schaadt et

al. in [70] and [73]) decided to include oligopeptides —few amino acids linked in a polypeptide

chain. Others (Chen et al. [71] and Mishra et al. [77]) elected to incorporate protein/mRNA,

which consists of one or more polypeptides with at least 50 amino acids. Whereas others

(Barghash et al. [74]) completely discounted the protein or oligopeptide category. Mishra et

al. [77], who have the latest contribution in the substrate prediction method, have aspired to

include the maximum possible number of classes according to their transported substrate (a

total of seven classes with one categorized others). One question that needs to be addressed is

whether having more classes is undoubtedly better, as in many cases, there is a possibility of

an overlap between the different categories.

In 2000, Milton Saier [85], who established the TCDB, developed a system for the substrate

specificity classification and cross-referenced it with the then-known TCDB families. His

established classification system is shown in Table 38. Since there is an already established

system, it is reasonable to move toward a standardized solution and start using it.
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Category and substrate type Subcategories
I.Inorganic molecules A. Nonselective

B. Water
C. Cations
D. Anions
E. Others

II.Carbon compounds A. Sugars, polyols, and their derivatives
B. Monocarboxylates
C. Di- and tricarboxylates
D. Noncarboxylates organic anions
(organophosphates, phosphonates, sulfonates,
and sulfates)
E. Others

III.Amino acids and their
derivatives

A. Amino acids and conjugates
B. Amines, amides, and polyamines
C. Peptides
D. Other related organocations
E. Others

IV.Bases and their derivatives A. (Nucleo)bases
B. Nucleosides
C. Nucleotides
D. Other nucleobase derivatives
E. Others

V.Vitamins, cofactors, and their
precursors

A. Vitamins and vitamin or cofactor
precursors
B. Enzyme and redox cofactors
C. Siderophores; siderophore-Fe complexes
D. Signaling molecules
E. Others

VI.Drugs, dyes, sterols, and
toxics

A. Multiple drugs
B. Specific drugs
C. Bile salts and conjugates
D. Sterols and conjugates

VII.Macromolecules A. Carbohydrates
B. Proteins
C. Nucleic acids
D. Lipids E. Others

VIII.Miscellaneous compounds

Table 38: Classification of transport system substrates based on biological significance
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We believe that applying the Saier’s classification system will offer useful and practical subject

for evaluation.

We need to build two datasets. The first dataset will be tailored to address the second research

question. All of the proteins in this dataset will be transporter proteins. We plan to combine all

the entries from TCDB and the entries that contain transport annotation in Swiss-Prot. The

entries from Swiss-Prot will be manually checked to make sure that they are indeed transporters,

as Swiss-Port annotations are not always consistent. Then, we manually need to categorize the

transporters by Saier [85] classification.

The second dataset will be built to address the first research question —distinguishing transporters

from other types of proteins. We need to include transmembrane proteins and non-transmembrane

proteins.

We can get transmembrane proteins from UniProt by searching:

annotation:(type:transmem) AND reviewed:yes

For non transmembrane proteins:

NOT annotation:(type:transmem) AND reviewed:yes

Then we will intersect the first dataset with the retrieved transmembrane proteins data to

categorize transmembrane proteins as transporters (the intersection), and annotate the other

classes of transmembrane proteins.

4 Evaluating different substrate classification methods

Currently, a meaningful comparison of different substrate specificity classification methods (see

Chapter III. 2.2 ) is impossible, as different methods use different subsets of substrate specificity

classes. We plan to evaluate the performance of all the methods using the same dataset. This

will be a useful resource to compare their results and move toward a standardized substrate

classes.
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5 Timeline

Here, I present a tentative timeline for this project, including the main milestones that we

aspire to achieve during the course of my PhD.

Figure 7: Tentative PhD timeline
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Chapter VI

Conclusion
Transmembrane proteins play extremely important roles in all living cells; yet they are among

the least-characterized proteins, owing to their unstable features. Transporters constitute

a major class in transmembrane proteins that move the hydrophilic substrates across the

hydrophilic membrane. Detecting the transmembrane transporter protein substrate specificity

is beneficial in many levels such as annotation and drug design. Therefore, there is a pressing

need to find computational solutions to predict the characterization of transmembrane proteins,

which then can be subject to experimental validation. The main limitation that hinders such

methods is the lack of available characterized proteins.

We to aim to built a proteome-wide system that can determine the transporter substrate. This

involves distinguishing transmembrane protein, differentiating transporters from other types

of transmembrane proteins and detecting the substrate specificity of the transporters. We

made some progress in the area of substrate specificity detection in our preliminary study

(see Chapter IV), where we confirmed that sequence similarity methods alone could give

false information regarding the transported substrates. Hence, other features are needed to

differentiate between different substrates. By filtering MSA we were able to achieve a better

overall performance compared to the latest published work of Mishra et al. [77]. We plan to

further improve our method and integrate new techniques, such as modifying the AAindex

algorithm to combine amino acid compositions, orthology detection, and motif discovery for

finding specificity-determining positions (SDPs). In addition, we plan to incorporate a larger

datasets that is includes all of the annotated transports to-date. Moreover, we aspire to move

toward standardized substrate classes, following Saiers classification system and predict the

specific transported substrate rather than the general class.
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