
Cheat Sheet: Use Case (UC) Guidelines

Guideline Description
1 Global Entry Point for

UC Model
Create a global summary use case which serves as an entry point
to the use case model. Organize the use case model as a
hierarchical story that can either be unfolded to get more detail
or folded up to hide detail and show more context.

2 Avoid Duplication Avoid duplication and redundant information by factoring out
common behavior into sub use cases using «includes».

3 Group Similar
Extensions

Combine as many extensions as possible without sacrificing
completeness. Strive for a layer of abstraction that will integrate
similar alternative flows.

4 Consistency Use consistent actor, object and action names throughout the
use cases.

5 Separation of
Concerns

Use references whenever possible. Define details about actors,
domain objects, business rules, user messages, data descriptions,
non-functional requirements (ex. performance) outside the use
cases.

6 Change History Track and document the evolution of the use cases through
versioning, annotations or tool support.

7 Goal Orientation Ensure that the use case (with the exception of the Global Entry
Point) addresses one well-defined goal of the primary actor. The
use case is named with an active verb phrase representing that
goal.

8 Two Endings Every use case has two possible endings: Success and Failure.
Ensure that Failures of «includes» use cases are properly handled
through an extension in the base use case.

9 Main Success Scenario The normal flow of the use case is a simple scenario that leads to
the fulfillment of the use case goal. It does not include failures or
alternative interactions.

10 Scenario Length The main success scenario (or any other scenario) consists of
three to nine steps.

11 Detectable by System All actions (performed by actor) and conditions are detectable by
the system.

12 Validation Failures Validation steps performed by the system should be complete by
capturing both positive and negative outcomes.

13 Explicitly State Actor
or System

Each use case step clearly shows who is performing the step (e.g.,
the primary actor, a secondary actor or the system).

14 Leave UI Out Each use case step is written in a UI- and technology-
independent manner.

15 Writing style Use simple language. Write from a bird’s eye view using present
tense and active voice. Avoid negations, adverbs, adjectives, and
synonyms.

16 Keep away
implementation
details

Do not mention design or implementation details in the use case
(ex. function calls or database queries).

17 Diagram complex
flows and nontrivial
cases

If the flow is complicated, prepare a system sequence or activity
diagram to make it easier to follow the text.

18 Validate Conditions Have the system validate conditions. Do not use ‘if’ statements.

