
Department for Computer Science
and Software Engineering

COMP 354:
INTRODUCTION TO SOFTWARE ENGINEERING

Daniel Sinnig, PhD
d_sinnig@cs.concordia.ca

28-May-14

Introduction to UML

2

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14 2

Unified Modeling Language
• Structural Diagrams – focus on static aspects of the

software system
– Class, Object, Component, Deployment

• Behavioral Diagrams – focus on dynamic aspects of
the software system
– Use-case, Interaction (Sequence, Communication), State

Chart, Activity

3

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

UML Reference
• Martin Fowler, UML distilled : a brief guide to the standard

object modeling language. 3rd edition, 2003.

4

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Class Diagrams
• Structural model

Show
– Static view of the domain / system
– Relationship between entities
– Illustrate structural features / relationships.

 Do not show
– Temporal information
– Behavior
– Runtime constraints

• In this course the class diagram notation is used for:
– (Business) Domain modeling
– Static object modeling

5

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Class Diagrams: Notation

6

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

UML Class Diagram – Class

Class name

Attributes

Operations

7

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Attributes vs. Associations
• Show only “simple” relatively primitive types as attributes.
• Connections to other concepts are to be represented as

associations, not attributes.
• Syntax: visibility name: type [multiplicity] {property}

Payment

date : Date
time : Time
amount : Money

attributes

8

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Attributes vs. Associations

Video

...
Rents1 1..*Customer

...
Better

Video

renter : Customer

Customer

rentedVideos: List of Video
Worse

9

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Valid Attribute Types
• Keep attributes simple.
• The type of an attribute should

not normally be a complex
domain concept, such as Sale or
Airport.

• Attributes in a Domain Model
should preferably be
– Pure data values: Boolean,

Date, Number, String, …
– Simple attributes: color, phone

number, zip code, universal
product code (UPC), ...

Cashier
name
currentRegister

Cashier

name

Register

number uses
1 1

Not a simple
attribute

10

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Derived Elements
• A derived element can be determined from others.

Sale
SalesLineItem

1 1..*
/quantity

Derivable from the number of instances
of Items associated with the line item.

Sale

Date
/total
time

Can be derived from SalesLineItem
and ProductSpecification
information.

11

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Operations

• Syntax: visibility return type name (parameter list) {property}

• Parameter list often omitted
• Return type is not UML 2 conform (only UML 1)
• Accessing operation typically excluded

12

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Operations Example

1 Captures
Date
isComplete : Boolean
time

endSale()
addLineItem()
makePayment()

Register

1

makeLineItem()

13

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Visibility
+ (public)
- (private)
(protected)

• Attributes are by default private
• Operations are by default public

14

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14 14

Associations

POS Sale
Records-current

1 1

An association is a relationship
between entities that indicates
some meaningful and interesting
connection.

“Direction reading arrow” has no meaning
other than to indicate direction of reading
the association name.
Optional (often excluded)

Association name

15

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Naming Associations
• Name an association based on a

TypeName-VerbPhrase-TypeName
format.

• Association names should start
with a capital letter.

• A verb phrase should be
constructed with hyphens.

• The default direction to read an
association name is left to right,
or top to bottom.

• Primarily used for problem
domain modeling

Store

POS

Sale Payment

Contains

Captures

Paid-by

1

1..*

1 1

1..*

1

16

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14 16

Multiple Associations Between Two Types
• It is not uncommon to

have multiple associations
between two types.

• In the example, not every
flight is guaranteed to land
at an airport.

Flies-to

Flies-from
* 1

* 0..1

Flight Airport

17

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Recursive or Reflexive Associations

• A concept may have an
association to itself; this is
known as a recursive
association or reflective
association.

Person

* 2
parent

Creates

child

18

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Multiplicity
• Multiplicity defines how

many instances of a type A
can be associated with one
instance of a type B, at a
particular moment in time.

• For example, a single
instance of a Store can be
associated with “many”
(zero or more) Item
instances.

Store Item
1 *

Stocks

Multiplicity

19

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Multiplicity
T

T

T

T

T

Zero or more;
“many”

One or more

One to forty

Exactly five

Exactly three, five
or eight.

*

1..*

1..40

5

3, 5, 8

20

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Navigability Arrows and Role Names
• Directed

– Source class has attribute called “role name” of type Target
class (for object design models only)

• Bidirectional
– Two directed associations.
– Typically arrowheads are not show.

SourceClass TargetClass

role name

21

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Example
public class SalesLineItem {

private int quantity;
private ProductSpecification productSpec;
…

}

productSpec

1

ProductSpecification
description : Text
price : Money
itemID : ItemID

SalesLineItem

quantity : Integer

getSubtotal():Money

* Described-by

22

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Association Classes
• Used to further qualify an association

Company Person

Employment

salary

Employs

* *

A person may have
employment with several
companies.

23

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Association Classes
• Useful when the information related to the association does not fit in

any of the target classes.

http://www.devx.com/enterprise/Article/28576/1763?supportItem=1

24

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Guidelines for Association Classes
• An attribute is related to an association.
• Instances of the association class have a life-time dependency on the

association.
• The presence of a many-to-many association between two concepts is often a

clue that a useful associative type should exist in the background somewhere.

25

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Composite Aggregation - Filled diamond

• Composite aggregation or
composition means that
the multiplicity at the
composite end may be at
most one signified with a
filled diamond).

• ProductCatalog is
composed of
ProductSpecification.

Product
Catalog

Product
Specification 1 1..*

26

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

How to identify Aggregation
• The lifetime of the part is bound within the lifetime of the

composite.
• There is a create-delete dependency of the part on the

whole.
• There is an obvious whole-part physical or logical assembly.
• Some properties of the composite propagate to the parts,

such as its location.
• Operations applied to the composite propagate to the parts,

such as destruction, movement, recording.

27

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Dependency
• Notated by a dotted line
• Most general relation between classes
• A dependency is a using relationship that states that a change … of

one thing may affect another that uses it.
 Accounting

System

Reciept

<<creates>>

Order

SecurityControl

<<modifies>>

28

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Dependency – cont’d
• Dependencies are the most abstract type of relations.
• Properties:

– Dependencies are always directed (If a given class depends on another, it
does not mean the other way around).

– The arrow points to the depended-on class/concept
– Dependencies do not have cardinality.

• If instances of two classes send messages to each other, but are

not tied to each other, then dependency is appropriated.

29

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Generalization

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount : Money
SalePays-for

11

Superclass

Subclasses

30

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Generalization

• Super (or parent) class – is the more general concept;

• Sub is-a-kind-of Super - is the more specific concept

31

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Properties, Stereotypes, Notations
• {ordered}

• <<actor>>

• <<singleton>> (1)

• abstract class (italic)

• static method, attribute (underlined)

• <<interface>>

• class implementing an interface

32

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

UML Class Diagrams

java.awt::Font
or

java.awt.Font

plain : Int = 0 { readOnly }
bold : Int = 1 { readOnly }
name : String
style : Int = 0
...

getFont(name : String) : Font
getName() : String
...

«interface»
Runnable

run()

- ellipsis “…” means there may be elements, but not shown
- a blank compartment officially means “unknown” but as a
convention will be used to mean “no members”

SubclassFoo

...

run()
...

SuperclassFoo
or

SuperClassFoo { abstract }

- classOrStaticAttribute : Int
+ publicAttribute : String
- privateAttribute
assumedPrivateAttribute
isInitializedAttribute : Bool = true
aCollection : VeggieBurger [*]
attributeMayLegallyBeNull : String [0..1]
finalConstantAttribute : Int = 5 { readOnly }
/derivedAttribute

+ classOrStaticMethod()
+ publicMethod()
assumedPublicMethod()
- privateMethod()
protectedMethod()
~ packageVisibleMethod()
«constructor» SuperclassFoo(Long)
methodWithParms(parm1 : String, parm2 : Float)
methodReturnsSomething() : VeggieBurger
methodThrowsException() {exception IOException}
abstractMethod()
abstractMethod2() { abstract } // alternate
finalMethod() { leaf } // no override in subclass
synchronizedMethod() { guarded }

3 common
compartments

1. classifier name

2. attributes

3. operations

interface
implementation
and
subclassing

Fruit

...

...

PurchaseOrder

...

...

1

association with
multiplicities

dependency

officially in UML, the top format is
used to distinguish the package
name from the class name

unofficially, the second alternative
is common

order

an interface
shown with a
keyword

33

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

UML Interaction Diagrams

• Behavioral model
Shows
– Dynamic view of system’s internal and external interactions
– Message exchange between instances
– Temporal information

• UML provides two different notations:
– UML Sequence Diagrams
– UML Communication Diagrams

• In this course the interaction diagrams are used for:
– Black box modeling (System Sequence Diagram)
– White box modeling (Sequence and Communication Diagram)

34

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Sequence Diagram Notation

“Sequence diagrams illustrate
interactions in a kind of fence format.”

35

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Sequence Diagram

 m1()

 m2 ()

d

 «metaclass»
A

«metaclass»
C

b : B

36

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

UML: Sequence Diagrams, Basic Notation
• Participants:

c : Customer,
r : Rental,
m : Movie

• Each participant has a life
line (vertical dashed line)

• Synchronous message
• Return result
• Activation bar

c : Customer m : Movier : Rental

1 : getMovie ()

2 : getPriceCode ()

m

37

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Sequence Diagrams: Participants

• Participants:
Customer class
r : Rental (object)
m : Movie (object).

• UML1 convention: if
participant is …
– Underlined then it denotes

an object (i.e. a class
instance).

– Not underlined: it denotes a
class.

Customer m : Movie r : Rental

1 : getMovie ()

2 : getPriceCode ()

m

38

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Illustrating Classes and Instances
• To show an instance of a

class, the regular class box
graphic symbol is used, but
the name is underlined.
Additionally a class name
should be preceded by a
colon.

• An instance name can be
used to uniquely identify
the instance.

«metaclass»
Sale Class

:Sale Instance

s1:Sale Named instance

39

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Creation of Instances

• An object lifeline shows
the extend of the life of an
object in the diagram.

• Note that newly created
objects are placed at their
creation height.

makePayment(…)

:Register :Sale

:Payment

makePayment(…)
create(…)

40

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Destruction of Instances

: Sale

: Paymentcreate(cashTendered)

...
the «destroy» stereotyped
message, with the large
X and short lifeline
indicates explicit object
destruction

«destroy» X

41

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Conditional Messages

calculate

: Bar

yy

xx

[color = red]opt

: Foo

42

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Mutually Exclusive Conditional Messages

message1()

:A :B :C

[x<10] calculate()

[x>15] calculate()

43

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Mutually Exclusive Conditional Messages

: B: A

calculate

doX

: C

calculate

[x < 10]alt

[else]

44

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Loops

enterItem(itemID, quantity)

: B

endSale

a UML loop
frame, with a
boolean guard
expression description, total

makeNewSale

[more items]loop

: A

45

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Iterating through a List

st = getSubtotal

lineItems[i] :
SalesLineItem

t = getTotal

[i < lineItems.size]loop

: Sale This lifeline box represents one
instance from a collection of many
SalesLineItem objects.

lineItems[i] is the expression to
select one element from the
collection of many
SalesLineItems; the ‘i” value
refers to the same “i” in the guard
in the LOOP frame

an action box may contain arbitrary language
statements (in this case, incrementing ‘i’)

it is placed over the lifeline to which it applies

i++

46

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Nesting

calculate

: Bar

xx

[color = red]opt

: Foo

loop(n)

47

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

References

interaction occurrence

note it covers a set of lifelines

note that the sd frame it relates to
has the same lifelines: B and C

doA

: A : B : C

doB

sd AuthenticateUser

ref AuthenticateUserauthenticate(id)

doX
doM1

: B : C

authenticate(id)

doM2

ref DoFoo sd DoFoo

doX

: B : C

doY

doZ

48

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Polymorphic Messages

49

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Asynchronous (active object) calls

:ClockStarter

:Clock

run

startClock

create

a stick arrow in UML implies an asynchronous call

a filled arrow is the more common synchronous call

In Java, for example, an asynchronous call may occur as
follows:

// Clock implements the Runnable interface
Thread t = new Thread(new Clock());
t.start();

the asynchronous start call always invokes the run method
on the Runnable (Clock) object

to simplify the UML diagram, the Thread object and the
start message may be avoided (they are standard
“overhead”); instead, the essential detail of the Clock
creation and the run message imply the asynchronous call

runFinalization

System :
Class

active
object

	COMP 354: �Introduction to Software Engineering��
	Unified Modeling Language
	UML Reference
	Class Diagrams
	Class Diagrams: Notation
	UML Class Diagram – Class
	Attributes vs. Associations
	Attributes vs. Associations
	Valid Attribute Types
	Derived Elements
	Operations
	Operations Example
	Visibility
	Associations
	Naming Associations
	Multiple Associations Between Two Types
	Recursive or Reflexive Associations
	Multiplicity
	Multiplicity
	Navigability Arrows and Role Names
	Example
	Association Classes
	Association Classes
	Guidelines for Association Classes
	Composite Aggregation - Filled diamond
	How to identify Aggregation
	Dependency
	Dependency – cont’d
	Generalization
	Generalization
	Properties, Stereotypes, Notations
	UML Class Diagrams
	UML Interaction Diagrams
	Sequence Diagram Notation
	Sequence Diagram
	UML: Sequence Diagrams, Basic Notation
	Sequence Diagrams: Participants
	Illustrating Classes and Instances
	Creation of Instances
	Destruction of Instances
	Conditional Messages
	Mutually Exclusive Conditional Messages
	Mutually Exclusive Conditional Messages
	Loops
	Iterating through a List
	Nesting
	References
	Polymorphic Messages
	Asynchronous (active object) calls

