# Multiple Sequence Alignment of Transmembrane Beta-Barrel Proteins 

Akhil Jobby<br>A Thesis<br>in<br>The Department<br>of<br>Computer Science and Software Engineering<br>Presented in Partial Fulfillment of the Requirements<br>for the Degree of<br>Master of Computer Science (MCompSc) at Concordia University<br>Montréal, Québec, Canada

September 2019
(C) Akhil Jobby, 2019

## Concordia University

## School of Graduate Studies

This is to certify that the thesis prepared

By: Akhil Jobby
Entitled: Multiple Sequence Alignment of Transmembrane BetaBarrel Proteins
and submitted in partial fulfillment of the requirements for the degree of

## Master of Computer Science (MCompSc)

complies with the regulations of this University and meets the accepted standards with respect to originality and quality.

Signed by the Final Examining Committee:

| Dr. Tse-Hsun Chen | Chair |
| :--- | :--- |
|  |  |
| Dr. Tristan Glatard | Examiner |


| Dr. Aiman Hanna | Examiner |
| :--- | ---: |
| $\overline{\text { Dr. Gregory Butler }}$ Supervisor |  |

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

## Abstract

## Multiple Sequence Alignment of Transmembrane Beta-Barrel Proteins

Akhil Jobby

The two main types of transmembrane proteins are transmembrane alpha helices (TMAH) and transmembrane beta-barrels (TMBB). From literature, we know that both are responsible for diverse biologically important functions. Since there is plenty of sequence and structural data available on various TMAH proteins, many techniques have been developed to analyze their sequence. On the contrary, not many TMBB proteins have been identified or studied. One of the most powerful sequence analysis techniques used for identifying and annotating the biological sequences is "Multiple Sequence Alignment" (MSA). It is often used for phylogenetic analysis, identification of conserved regions in the sequences, prediction of the topology of proteins, etc.

High-throughput sequencing methods generate huge volume of sequence data, but they remain largely unannotated. Hence an MSA method for TMBB would be important for sequence-based studies and identifying more of such proteins. In this thesis, we apply a method called homology extension to the MSA and adjust the strategy applied by TMCoffee, a state of the art MSA method tested for TMAH, to make it suitable for TMBB proteins. We focus on extensively evaluating this method and comparing it with popular MSA tools.

## Acknowledgments

I would like to sincerely express my gratitude towards my supervisor Dr. Gregory Butler for the guidance and support towards me throughout my studies and research. I thank him for his efforts in improving my thesis. I could not have imagined having a better supervisor than him.

Besides my supervisor, I would like to thank my parents and my brother from the bottom of my heart for not losing faith in me and for providing continuous support and love. A very special thanks to Emma, who stood by me during worse times and for being a pillar of motivation. Finally, I would like to thank my lab colleagues; Munira, Stephanie, Stuart, Qing and my friends Tejas, Gurpreet and others for their help during my studies and research.

## Contents

List of Figures ..... viii
List of Tables ..... ix
Glossary ..... viii
1 Introduction ..... 1
1.1 Motivation ..... 1
1.2 Biological Background ..... 2
1.3 Research Contribution ..... 4
1.4 Layout of Thesis ..... 6
2 Background ..... 7
2.1 Protein sequence ..... 7
2.2 Protein Sequence Analysis ..... 8
2.3 Sequence Alignment ..... 9
2.4 Multiple Sequence Alignment ..... 10
2.4.1 Dynamic Programming ..... 13
2.4.2 Center star method ..... 14
2.4.3 Progressive alignment ..... 14
2.4.4 Iterative method ..... 15
2.5 Substitution/Scoring Matrices ..... 15
2.5.1 BLOSUM (Block Substitution Matrix) ..... 16
2.5.2 PAM (Point Accepted Mutation) ..... 16
2.5.3 GON (GONNET) ..... 16
2.6 Alignment Tools ..... 17
2.6.1 Blast ..... 17
2.6.2 Clustal Omega ..... 18
2.6.3 MAFFT ..... 18
2.6.4 MUSCLE ..... 19
2.6.5 T-Coffee ..... 19
2.6.6 TM-Coffee ..... 27
2.7 Other Tools and Resources ..... 35
2.7.1 NorMD ..... 35
2.7.2 Blast Database ..... 36
2.7.3 Homology Extension ..... 36
2.7.4 HMMTOP ..... 36
3 TMB-Coffee ..... 37
3.1 Construction of Dataset ..... 37
3.2 Construction of Local Blast Database for TMB-Coffee ..... 39
3.3 TMB-Coffee ..... 41
3.4 Evaluation of TMB-Coffee ..... 43
3.5 Environment Used ..... 47
3.6 Results ..... 47
3.7 Discussion ..... 48
4 Conclusion ..... 54
4.1 Contributions ..... 54
4.2 Limitations ..... 55
Appendix A Supplementary Info ..... 56
A. 1 Files on Github ..... 56
A. 2 Tools Used ..... 57
A. 3 Dataset of TMBB - "datasetTMB" ..... 57
A. 4 Individual NorMD Scores ..... 64
A. 5 Paired t-test ..... 81
Bibliography ..... 84

## List of Figures

Figure 1.1 Classification of Transmembrane Proteins ..... 3
Figure 1.2 Two main types of secondary structure or proteins ..... 3
Figure 1.3 Beta Barrel Transmembrane Protein (OmpG) ..... 5
Figure 2.1 Protein Sequence in Fasta format ..... 8
Figure 2.2 Sequence Alignment ..... 9
Figure 2.3 Global and Local Alignment ..... 10
Figure 2.4 Sample Multiple Sequence Alignment ..... 10
Figure 2.5 Center Star Method ..... 14
Figure 2.6 Overview of MUSCLE program ..... 20
Figure 2.7 Overview of T-Coffee Alignment Program ..... 21
Figure 2.8 T-Coffee Library Construction ..... 23
Figure 2.9 T-Coffee Progressive Alignment Steps ..... 26
Figure 2.10 Overview of TM-Coffee ..... 30
Figure 2.11 TM-Coffee Topology Prediction ..... 31
Figure 2.12 Blast output to profile ..... 32
Figure 2.13 Evaluation of TM-Coffee ..... 33
Figure 3.1 Statistics of Uniprot entries of beta barrel proteins ..... 38
Figure 3.2 Overview of TMB-Coffee ..... 41
Figure 3.3 Steps in the Evaluation of TMB-Coffee. ..... 46
Figure 3.4 Alignment in TMBB region of sequences using TMB-Coffee ..... 52
Figure 3.5 Alignment in TMBB region of sequences using MAFFT ..... 52

## List of Tables

Table 2.1 Amino Acid Letter Code . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 2.3 Comparable BLOSUM, PAM and GON matrices which are similar [26]. 17
Table 2.4 Elements of the Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 2.5 Default parameters and filters used in Blast for TM-Coffee. . . . . . . 31
Table 3.1 Local databases and the number of sequences in them . . . . . . . . . 41
Table 3.2 Parameters and Filters used in Blast for TMB-Coffee . . . . . . . . . 42
Table 3.3 Differences and Similarities between T-Coffee, TM-Coffee and TMBCoffee.

Table 3.4 Number of sequences from datasetTMB that meets Blast criteria that we used47

Table 3.5 Average NorMD score for MSA from TMB-Coffee for Top Blast hits . 48
Table 3.6 Comparison of MSA programs - Average NorMD score for MSA of sequences from datasetTMB with 10 hits

Table 3.7 Comparison of MSA programs - Average NorMD score for MSA of
sequences from datasetTMB with 25 hits . . . . . . . . . . . . . . . . . . . 49
Table 3.8 Comparison of MSA programs - Average NorMD score for MSA of sequences from datasetTMB with 50 hits
Table 3.9 Paired t-test (Swissprot - 10 hits) ..... 51
Table A. 1 List of files on GitHub ..... 57
Table A. 2 Version of the tools used in this research ..... 57
Table A. 3 Entries in datasetTMB ..... 58
Table A. 4 Entries in datasetTMB with 3D structure in PDB ..... 63
Table A. 5 NorMD Score for MSAs from Different Programs (for Top10 using OMPdb70) ..... 67
Table A. 6 NorMD Score for MSAs from Different Programs (for Top10 using swissprot) ..... 69
Table A. 7 NorMD Score for MSAs from Different Programs (for Top10 using unirefOMBB100) ..... 71
Table A. 8 NorMD Score for MSAs from Different Programs (for Top25 using OMPdb70) ..... 74
Table A. 9 NorMD Score for MSAs from Different Programs (for Top25 using swissprot) ..... 75
Table A. 10 NorMD Score for MSAs from Different Programs (for Top25 using unirefOMBB100) ..... 77
Table A. 11 NorMD Score for MSAs from Different Programs (for Top50 using OMPdb70) ..... 79
Table A. 12 NorMD Score for MSAs from Different Programs (for Top50 using swissprot) ..... 80
Table A. 13 NorMD Score for MSAs from Different Programs (for Top50 using unirefOMBB100) ..... 81
Table A. 14 Paired t-test (OMPdb70-10 Hits) ..... 81
Table A. 15 Paired t-test (unirefOMBB100 - 10 Hits) ..... 82
Table A. 16 Paired t-test (Swissprot - 25 Hits) ..... 82
Table A. 17 Paired t-test (OMPdb70-25 Hits) ..... 82
Table A. 18 Paired t-test (unirefOMBB100-25 Hits) ..... 82
Table A. 19 Paired t-test (Swissprot - 50 Hits) ..... 83
Table A. 20 Paired t-test (OMPdb70-50Hits) ..... 83
Table A. 21 Paired t-test (unirefOMBB100 - 50 Hits) ..... 83

## Glossary

Amino Acid: A basic building block for proteins. Amino acids are made up of amino group (-NH2), an acidic carboxyl group (- COOH ), and an organic R group (or side chain). This R group or side chain distinguishes amino acids from each other. There are 20 different general amino acid molecules represented by 20 letters.

Blast (Basic Local Alignment Search Tool): A program that allows comparison of input/query sequence with a database of sequences in a fast and efficient manner. Quality of search hits that are returned by the program can also be determined.

Blastp: Blast for protein sequences.

Blastp+: A standalone Blastp.

BLOSUM (Blocks Substitution Matrix): A substitution matrix used for protein sequence alignment.

Clustal Omega: A multiple sequence alignment program.

E-value (Expect Value): The number of hits (from Blast) one can expect to see by chance while searching a database of fixed size.

HHalign: A method to find pairwise alignments. It is part of the HH suite of programs. The name comes from the fact that it performs HMM-HMM alignments.

Hidden Markov Model: A statistical model for a Markov process with hidden states.

Hits: Similar sequences returned by Blast program.

HSP (High-scoring Segment Pairs): Subsegments of a pair of sequences that are highly similar.

MAFFT (Multiple Alignment using Fast Fourier Transform): A multiple sequence alignment program.

MBed: This method embeds sequences into $n$ dimensions to create an $n$ element vector. The vector is used to determine Euclidean distance to obtain guide trees.

Membrane Protein: Proteins that are embedded in, or attached to, the cell membrane.

MSA (Multiple Sequence Alignment): Sequence alignment of three or more biological sequences, generally protein, DNA, or RNA.

MUSCLE (Multiple Sequence Comparison by Log-Expectation): A multiple sequence alignment program.

OMPDB: A database of beta-barrel outer membrane protein from gram negative bacteria.

Outer Membrane Protein: Proteins in bacteria from the outer membrane of the cell.

PAM (Point Accepted Mutation): A substitution matrix used for protein sequence alignment.

PDB (Protein Data Bank): A database of protein structures.

PDBTM (Protein Data Bank of Transmembrane Proteins): Protein structure database for transmembrane proteins.

PFam: A database of protein families.

PHAT (Predicted Hydrophobic and Transmembrane): A substitution matrix specific to transmembrane proteins.

Protein: Proteins are bio-molecules made up of a long chain of amino acids. They can be represented by letters corresponding to each amino acid.

Protein Secondary Structure: Segments of proteins representing 3-Dimensional forms such as alpha helix, beta sheet, coils and turns.

PSSM (Position Specific Substitution Matrix): A matrix used to represent patterns in sequences.

Query sequence: Input sequence to Blast program.

Residue: Amino acids in a protein can be called residues.
Substitution Matrix: In the context of amino acids, it is a matrix that describes the rate of change of residues by a model of evolution.

T-Coffee (Tree-based Consistency Objective Function for Alignment Evaluation): A multiple sequence alignment program.

TM-Coffee: A multiple sequence alignment tool for transmembrane alpha helices.
TopDB (Topology Data Bank): A database of experimentally derived topology of transmembrane proteins.

Topology: Refers to the combination and orientation of protein secondary structures.

Transmembrane Protein: Proteins embedded in the cell membrane and pass through them in single or multiple passes.

TMBB (Transmembrane Beta-Barrel Protein): Specific type of transmembrane protein that are found in the outer membrane of gram negative bacteria, mitochondria and chloroplast. The beta sheets of the protein secondary structure take on the shape of a barrel in the 3-Dimensional structure.

UPGMA (Unweighted Pair Group Method with Arithmetic Mean): A hierarchical clustering method and is often used for determining phenograms. It assumes a constant rate of evolution.

WSP (Weighted Sum of Pairs): Addition of all pairwise alignment scores but down weighting contributions from homologous sequences.

## Chapter 1

## Introduction

### 1.1 Motivation

Transmembrane beta-barrel (TMBB) proteins are one of the important classes of proteins which are involved in various function in cellular and physiological processes like substrate transport and signaling [49]. This has immense medical interest especially because, these proteins are mainly localized in the outer membrane of gram-negative bacteria.

Multiple sequence alignment (MSA) [15] has become the most robust method used to identify protein secondary structure. It is necessary to identify such protein regions that are structurally and functionally important. MSA is the prerequisite to several studies like secondary structure prediction, homology modeling, phylogenetic analysis, substrate specificity etc. MSAs can also be used to create profiles or HMMs and identify distantly related sequences. Thus, it is a very effective tool for evolutionary and molecular biology studies [45].

There are a few MSA tools that are transmembrane aware; PralineTM [47], TM-Coffee [10] and STAM [50]. However, all of them are modeled and tested on the abundantly available transmembrane alpha-helical proteins and not on transmembrane beta-barrel proteins. Since there is no method that is designed for TMBB, it is important to have such a method that can align multiple TMBB sequences. In this work, we focus on creating a procedure that will compute MSA specifically for transmembrane beta-barrel proteins. Since there is
a lack of benchmark dataset for transmembrane beta-barrel (TMBB) proteins, we construct a dataset from various sources such as research papers and protein databases.

### 1.2 Biological Background

The cell wall of gram-negative bacteria is composed of three layers; the exterior outermembrane, the middle peptidoglycan layer and inner plasma membrane (also known as a cytoplasmic membrane or inner membrane) [31]. The outer membrane is made up of phospholipids, lipoproteins, surface and integral proteins. Integral proteins that run through the cross-section of these membranes are called transmembrane proteins. They are divided into two types main types; transmembrane alpha-helical proteins and transmembrane betabarrel proteins, shown in Figure 1.1. This classification is based on the secondary structures that make up these proteins. The main secondary structure of these proteins are alpha helix and beta sheet, respectively, shown in Figure 1.2. Other types of secondary structures include turns and loops. Transmembrane beta-barrel (TMBB) proteins are not only found in the outer membrane of gram-negative bacteria, but also in the outer membrane of cell organelles such as mitochondria and chloroplasts. All of these proteins are generally classified as Outer Membrane Proteins (OMP)[7]. An example of a typical beta-barrel protein is OmpG [70] illustrated in Figure 1.3 [31].

After the translation process by which proteins are synthesized, anti-parallel betastrands form beta sheets and they fold and turn to form the tertiary structure of the beta-barrel protein. When these proteins are transported and embedded in the membrane, they are called transmembrane beta-barrel proteins. They get their name from the barrellike structure it forms with the help of the secondary structure beta sheet, illustrated in Figure 1.3. In Figure 1.3, (A) shows side view of the protein and (B) shows the top view. S1-S14 represents the 14 beta strands that join to form the barrel-like shape. L1-L7 are loops and T1-T6 are turns [70]. Beta strands in this barrel are held together by hydrogen bonds and contain hydrophilic and hydrophobic regions. Some beta-barrel proteins that occur in the plasma region of the cell have a hydrophobic core and hydrophilic exterior [56],


Figure 1.1: Classification of Transmembrane Proteins. This figure shows the two main types of transmembrane proteins. a) Transmembrane alpha helices. The image shows a proteins called bacteriorhodopsin and b) Transmembrane beta-barrel. TMBB protein shown here is called Porin. Original picture by Roman, E.A.; González Flecha, F.L; CC BY 3.0.


Figure 1.2: Two main types of secondary structure or proteins. Image shows tow main types of secondary structure of proteins. a) Alpha helix and b) Beta sheet. Several beta strands are joined together to form a beta sheet. Original picture by Thomas Shafee; CC BY 4.0.
whereas others [27], such as porins, have a reverse construction with a polar hydrophilic core and non-polar hydrophobic exterior to help them anchor into the outer membrane of the cell wall that is composed of hydrophobic phospholipids [69]. Transmembrane beta-barrel proteins are interchangeably called beta-barrel transmembrane, transmembrane beta-barrel or TMBB proteins.

TMBBs are crucial for pore formation, transport of molecules and voltage gating, and they are molecular targets for antimicrobial drugs [20]. Some of these proteins are also known to be bacterial toxins. TMBBs are extremely difficult to be determined experimentally [62]. As a result, not many TMBB structures have been reviewed and produced with high resolution. Today high throughput sequencing methods produce a large number of protein sequences that remain unreviewed or unannotated. Hence, there is a need for computational methods that can identify, analyze and annotate these proteins. Multiple sequence alignment strategy is a key precursor to this analysis of novel protein sequences.

### 1.3 Research Contribution

The contributions in this thesis are as follows:

1) Our work is to develop a multiple sequence alignment tool specific to transmembrane beta-barrel proteins. This requires the collection of a gold standard dataset of TMBBs, and the evaluation of the tool. It is crucial to construct a dataset of transmembrane beta-barrel proteins that can be used for further studies. For the purpose of this research, we collect all available TMBB protein sequences and clean them to construct a dataset of TMBB proteins. This dataset is curated from different protein databases and research papers.
2) For the first time, a TMBB specific multiple sequence alignment tool, called TMB-Coffee, is developed by adapting the T-Coffee [43] and PSI/TM-Coffee [2] programs. Our method uses a reduced database of TMBBs and constructs a library of TMBBs.
3) Evaluation of TMB-Coffee uses the dataset above. We use the NorMD [60] score to evaluate the quality of a multiple sequence alignment. We assess the reliability of the alignments produced by TMB-Coffee. We compare its performance with several general


Figure 1.3: Beta Barrel Transmembrane Protein (OmpG). Overall structure of OmpG, showing the 14 -stranded, antiparallel beta-barrel in the open (A, B) and closed (C, D) conformation viewed along the membrane ( $\mathrm{A}, \mathrm{C}$ ) and from the extracellular side ( $\mathrm{B}, \mathrm{D}$ ). The open and closed conformation of this protein may be used to allow and block substrate transport across the membrane. The betastrands S1-S14 are rainbow-coloured starting from the N terminus (blue) to the C terminus (red) on the periplasmic side, where adjacent strands are connected by short turns T1-T6. Loops L1-L7 extend outward into the extracellular space in the open conformation, but L6 folds across the barrel entrance in the closed conformation. Reproduced from [70].
purpose MSA methods. We consider how well they align the beta-barrel regions.

### 1.4 Layout of Thesis

The layout of the remaining chapters in the thesis is as follows: Chapter 2 provides the necessary background information needed to understand the work done in the thesis. This includes the major tools and methods use to compare or construct MSAs and to evaluate them. Chapter 3 presents our work. Section 3.1 presents the construction of a beta barrel dataset. Section 3.2 presents the construction of local blast database used in TMB-Coffee and its evaluation. Section 3.3 presents the method used in TMB-Coffee and highlights its difference between T-Coffee and PSI/TM-Coffee. Section 3.4 presents the evaluation of TMB-Coffee. Section 3.6 and Section 3.7 presents the results and discussion, respectively. Chapter 4 concludes with contributions and limitations of the research. Appendix A contains supplementary information. It contains the dataset, and the scores of individual MSA. It also shows the version of tools used in this research and files uploaded to GitHub.

## Chapter 2

## Background

In this chapter we give a brief background about how proteins sequences are analysed and compared. We look into protein sequence alignment techniques, especially Multiple Sequence Alignment (MSA). We also look into different protein sequence alignment programs.

### 2.1 Protein sequence

Amino acids are the building blocks of proteins. Hence, proteins can be represented by a string of amino acid letter codes that follow the addition order of amino acids during protein formation. There are 20 different amino acids that appear in the genetic code. They can be represented by English letters. Table 2.1 shows list of amino acids. The abbreviations are based on IUPAC-IUB Joint Commission on Biochemical Nomenclature [34, 36].

For computational purposes, there are many file formats that can store protein information such as its sequence, structural topology, lineage etc. Fasta [33] is one such text based format that uses the letter codes to represent protein sequences. This format can also be used to represent DNA, RNA sequences and sequence alignments. Fasta format begins with a single-line description, followed by lines of sequence or alignment data. The description line is distinguished from the sequence data by a greater-than ( $>$ ) symbol. For example, the protein (Uniprot ID- P0A910 [39]) can be represented in fasta format as shown in Figure 2.1. Here, "M" in the second line stands for start of the sequence, Methionine (amino acid),

| Amino Acids | Three Letter Code | Single Letter Code |
| :--- | :---: | :---: |
| Glycine | GLY | G |
| Alanine | ALA | A |
| Valine | VAL | V |
| Leucine | LEU | L |
| IsoLeucine | ILE | I |
| Threonine | THR | T |
| Serine | SER | S |
| Methionine | MET | M |
| Cystein | CYS | C |
| Proline | PRO | P |
| Phenylalanine | PHE | F |
| Tyrosine | TYR | Y |
| Tryptophane | TRP | W |
| Histidine | HIS | H |
| Lysine | LYS | K |
| Argenine | ARG | R |
| Aspartate | ASP | D |
| Glutamate | GLU | E |
| Asparagine | ASN | N |
| Glutamine | GLN | Q |

Table 2.1: Amino Acid Letter Code. Letter code follows IUPAC-IUB Commission on Biochemical Nomenclature. The nomenclature is based on the names of the amino acids.[34]
"I" stands for Isoleucine and so on.

```
>sp|P05695|PORP PSEAE Porin P OS=Pseudomonas aeruginosa
MIRRHSCKGVGSSVAW̄SLLGLAISAQSLAGTVTTDGADIVIKTKGGLEVATTDKEFSFKL
GGRLQADYGRFDGYYTNNGNTADAAYFRRAYLEFGGTAYRDWKYQINYDLSRNVGNDSAG
YFDEASVTYTGFNPVNLKFGRFYTDFGLEKATSSKWVTALERNLTYDIADWVNDNVGTGI
QASSVVGGMAFLSGSVFSENNNDTDGDSVKRYNLRGVFAPLHEPGNVVHLGLQYAYRDLE
DSAVDTRIRPRMGMRGVSTNGGNDAGSNGNRGLFGGSSAVEGLWKDDSVWGLEGAWALGA
FSAQAEYLRRTVKAERDREDLKASGYYAQLAYTLTGEPRLYKLDGAKFDTIKPENKEIGA
WELFYRYDSIKVEDDNIVVDSATREVGDAKGKTHTLGVNWYANEAVKVSANYVKAKTDKI
SNANGDDSGDGLVMRLQYVF
```

Figure 2.1: Protein Sequence in Fasta format. Fasta is a text based format used to represent biological sequences like nucleotide and amino acid sequences. The description line is distinguished from the sequence data by a greater-than $(>)$ symbol in the first column. This is followed by the sequence starting in the next line [33].

### 2.2 Protein Sequence Analysis

Protein sequence analysis [14] are experimental and computational methods to understand and annotate the function, structure and evolution of protein. Here, we focus on
computational methods of sequence alignment. High-throughput production of protein sequences is contributes to an ever increasing collection of sequences. These sequences before being annotated does not provide an understanding of the proteins. Hence, it is necessary to analyse and understand these sequences. There are many methods for sequence analysis; sequence alignment, profile comparison, sequence assembly, etc.

```
AAB24882 TYHMCQFHCRYVNNHSGEKLYECNERSKAFSCPSHLQCHKRRQIGEKTHEHNQCGKAFPT 60
AAB24881 ------------------YECNQCGKAFAQHSSLKCHYRTHIGEKPYECNQCGKAFSK 40
    ****: .***: * *:** * :****.:* *******..
AAB24882 PSHLQYHERTHTGEKPYECHQCGQAFRKCSLLLQRHKRTHTGEKPYE-CNQCGKAFAQ- 116
AAB24881 HSHLQCHKRTHTGEKPYECNQCGKAFSQHGLLQRHKRTHTGEKPYMNVINMVKPLHNS 98
    **** *:***********:***:** : .*************** : * : :
```

Figure 2.2: Sequence Alignment. Alignment of two protein sequences "AAB24882" and "AAB24881" using ClustalW [58]. The protein IDs are from the OMP database [63]. This figure displays only a section of the alignment that shows conserved regions in the sequences. This section shows how gaps are introduced in the 98 residues from "AAB24881" to align it with 116 residues from "AAB24882".

### 2.3 Sequence Alignment

Sequence alignment is a method of arranging the residues in different sequences with respect to each other. This method is used for understanding and comparing the relationship between the sequences in consideration to finally identify function, structure etc. Figure 2.2 shows how a sequence alignment looks like in general. It shows the accession id and the aligned sequences. This sequence alignment is performed by ClustalW [58] program. Sequences can be aligned either by performing local alignment [53] or global alignment [42]. Global alignment tries to align every residue of every sequence. It is an end to end alignment, whereas, local alignment aligns sub-string of the sequences. Figure 2.3 shows global and local alignment. When alignment of two sequences is performed such as in global and local alignment, it is called pairwise alignment.


Figure 2.3: Global and Local Alignment. Global alignment shows how all residues in first sequence is aligned to all residues in second sequence. Whereas, local alignment only aligns a portion of the second sequence to the first [53, 42].

### 2.4 Multiple Sequence Alignment

Unlike pairwise alignment, the alignment of three or more biological sequences is called multiple sequence alignment (MSA) [15, 9]. MSA can be obtained for nucleotide as well as protein sequences. However in this work, we use only protein sequences. MSA is the most robust methods for identifying evolutionary information from these sequences. It is the prerequisite to several studies like secondary structure prediction, homology modelling, phylogenetic analysis etc. For illustration, MSA of three beta-barrel proteins is constructed using Clustal Omega [51]. A section of sequences in the MSA of three transmembrane beta barrel proteins is shown in Figure 2.4. Alpha-numeric key is used to distinguish the sequences, " - " represents gap, " * " represents fully conserved residues, " : " represents highly similar residues and "." represents low similarity.


Figure 2.4: Sample Multiple Sequence Alignment. This figure shows the alignment of "Q48473", "P0A910" and "Q9HVJ6" with each other. This alignment is produced from Clustal Omega [51] program. "Q48473", "P0A910" and "Q9HVJ6" are Uniprot IDs [39].

In Equation $1, S$ is a set of $m$ sequences where $m$ is a whole number and $m \geq 3$. i.e. $S_{i}$ where $\mathrm{i}=1,2, \ldots, \mathrm{~m}$.

$$
\begin{gather*}
S:=\left\{\begin{array}{c}
\left(\mathrm{S}_{1}=S_{11}, S_{12}, \ldots, S_{1 n_{1}}\right), \\
\left(\mathrm{S}_{2}=S_{21}, S_{22}, \ldots, S_{2 n_{2}}\right), \\
\ldots, \\
\left(\mathrm{S}_{m}=S_{m 1}, S_{m 2}, \ldots, S_{m n_{m}}\right)
\end{array}\right\}  \tag{1}\\
S^{\prime}:=\left\{\begin{array}{c}
\left(\mathrm{S}_{1}^{\prime}=S_{11}^{\prime}, S_{12}^{\prime}, \ldots, S_{1 L}^{\prime}\right), \\
\left(\mathrm{S}_{2}^{\prime}=S_{21}^{\prime}, S_{22}^{\prime}, \ldots, S_{2 L}^{\prime}\right), \\
\ldots, \\
\left(\mathrm{S}_{m}^{\prime}=S_{r 1}^{\prime}, S_{r 2}^{\prime}, \ldots, S_{r L}^{\prime}\right)
\end{array}\right\} \tag{2}
\end{gather*}
$$

Then, an MSA, given in Equation 2 is produced by inserting gaps into sequences $S_{i}$ in $S$ so that the modified sequences $S_{i}^{\prime}$ in set $S^{\prime}$ conform to length $L . L \geq \max \left\{x_{i} \mid i=1, \ldots, r\right\}$ and no column in sequences of $S$ can contain only gaps. Thus, removing all gaps from sequence $S_{i}^{\prime}$ gives sequence $S_{i}$.

MSA can be computed either by performing global or local alignments and can be an extension of pairwise alignment. Whichever technique is employed, the aim is to get the best alignment possible. Although there is no single best technique to finding the best alignment [5], it is non trivial to find alignment with biological correctness. MSAs should aim to maximise matches while permitting minimum gaps. Since more gaps make non homologous sequences to be aligned, it is undesired.

The most commonly studied method that computes score for characters in the alignment column is Sum-of-Pairs (SP) [9]. Consider the multiple sequence alignment $S^{\prime}$ of S , then

$$
\begin{equation*}
S P\left(a_{1}, \ldots, a_{m}\right)=\sum_{1 \leq i<j \leq m} \delta\left(a_{i}, a_{j}\right) \tag{3}
\end{equation*}
$$

where, $a_{i}$ can be any character or a space in a column of the alignment; $\delta\left(a_{i}, a_{j}\right)$ is a value
assigned to matches or mismatches or insertions or deletions, a numeric value. The SP score of $S^{\prime}$ is given in Equation 4.

$$
\begin{equation*}
S P\left(S^{\prime}\right)=\sum_{x \text { column }} S P\left(S_{1}^{\prime}[x], \ldots, S_{m}^{\prime}[x]\right) \tag{4}
\end{equation*}
$$

The SP score is computed by assigning numeric values to matches, mismatches, insertions or deletions. Matches can be given positive values and mismatches, insertions, deletions can be penalized. Insertion/deletion can be further penalized when gaps are opened or extended (gap open and gap extension penalty) depending on the objective function used. Hence, points assigned to mismatches, matches, gaps and gap extensions is decided based on the biological significance and the scoring functions used. Ultimately, it has to provide the optimal alignment. The SP score is not appropriate when many sequence fragments lead to an MSA with columns that are not complete [40]. The following example shows how the SP score is calculated. We now consider 4 sequences that are aligned as given below,

$$
\begin{array}{lllllllllll}
\mathrm{S}_{1} & = & \mathrm{A} & \mathrm{~L} & \mathrm{G} & - & - & \mathrm{G} & \mathrm{~A} & \mathrm{G} & \mathrm{~A} \\
\mathrm{~S}_{2} & = & - & \mathrm{L} & \mathrm{G} & \mathrm{~V} & \mathrm{~V} & \mathrm{G} & \mathrm{~A} & \mathrm{~L} & - \\
\mathrm{S}_{3} & = & \mathrm{A} & \mathrm{~L} & - & \mathrm{V} & - & \mathrm{G} & \mathrm{~A} & - & \mathrm{A} \\
\mathrm{~S}_{4} & = & \mathrm{L} & \mathrm{~L} & \mathrm{G} & \mathrm{~V} & \mathrm{~V} & \mathrm{~L} & \mathrm{~A} & \mathrm{~L} & -
\end{array}
$$

We can look at the aligned sequences in the form of a matrix. We assume that a match $=$ 1 , a mismatch $=-1$, and a gap $=-2$. Then, Sum-of-Pairs score for the first column in the MSA is calculated as:

$$
\begin{aligned}
S P(A,-, A, L) & =\delta(A,-)+\delta(A, L)+\delta(A, A)+\delta(L,-) \\
& =-2+1+-1+-2+-2+-1 \\
& =-7 \\
S P\left(S_{1}-S_{4}\right) & =-7+6+-3+-3+-7+0+6+-7+-7 \\
& =-22
\end{aligned}
$$

There are 9 columns in the alignment above. Note that $\delta(-,-)$ is given a value equal to 0 . This scoring scheme is applied to all such possible combinations while looking for optimal
multiple sequence alignment of a set of sequences. An alignment with higher score is considered to have a better alignment. However, it becomes complex when the number of sequences and length of sequences increase. In the last three decades, many MSA techniques were developed. In practise, MSA nowadays use heuristics to get optimal alignment. The following techniques are popular ones:

- Dynamic Programming
- Center star method
- Progressive alignment
- Iterative method


### 2.4.1 Dynamic Programming

Generally dynamic programming [41] is used for global pairwise alignment but can be used to perform alignment on multiple sequences. For aligning protein sequences, the parameters used are gap penalty and substitution matrix. Dynamic programming requires construction of n dimensional matrix for n sequences. Thus, the search space grows and the time to compute it grows exponentially with size of sequence and increase in number of sequences. Dynamic programming can described as the following

$$
\operatorname{Align}\left(S_{i}^{1}, S_{j}^{2}\right)=\max \left\{\begin{array}{l}
\operatorname{Align}\left(S_{i-1}^{1}, S_{j-1}^{2}\right)+s\left[a_{i}, a_{j}\right]  \tag{5}\\
\operatorname{Align}\left(S_{i-1}^{1}, S_{j}^{2}\right)-g \\
\operatorname{Align}\left(S_{i}^{1}, S_{j-1}^{2}\right)-g
\end{array}\right.
$$

where, $S^{1}, S^{2}, \ldots S^{k}$ is a set of sequences; $S_{i}^{1}, S_{j}^{2}$ are residue of $S^{1}$ and $S^{2}$ respectively; $s\left(a_{i}, a_{j}\right)$ is the weight residue $a_{i}$ and $a_{j}$ from a substitution matrix and $g$ is the gap penalty (penalty applied when gaps occur in alignment).

### 2.4.2 Center star method

Optimal multiple sequence alignment using dynamic programming takes exponential time. The center star method [24] employs steps that can minimize SP distance score, and can compute alignments in polynomial time. The steps are as follows; (i) Find string $S_{c}$ in the sequence and compute pairwise alignments. (ii) Convert pairwise alignment to MSA. The Figure 2.5 shows how pairwise alignment is converted to MSA in center star method.

|  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $S_{1}$ | $=$ | M | L | G | - | - | G | A | G | A |
| $S_{2}$ | $=$ | - | L | G | V | V | G | A | C | - |
| $S_{1}$ | $=$ | M | L | G | - | - | G | A | G | A |
| $S_{3}$ | $=$ | M | L | - | V | - | G | A | - | A |
|  |  |  |  |  |  |  |  |  |  |  |
| $S_{1}$ | $=$ | M | L | G | - | - | G | A | G | A |
| $S_{2}$ | $=$ | - | L | G | V | V | G | A | C | - |
| $S_{3}$ | $=$ | M | L | - | V | - | G | A | - | A |
|  |  |  |  |  |  |  |  |  |  |  |
| $S_{1}$ | $=$ | M | L | G | - | - | G | A | G | A |
| $S_{4}$ | $=$ | L | L | G | V | V | C | A | C | - |
|  |  |  |  |  |  |  |  |  |  |  |
| $S_{1}$ | $=$ | M | L | G | - | - | G | A | G | A |
| $S_{2}$ | $=$ | - | L | G | V | V | G | A | C | - |
| $S_{3}$ | $=$ | M | L | - | V | - | G | A | - | A |
| $S_{4}$ | $=$ | L | L | G | V | V | C | A | C | - |

Figure 2.5: Center Star Method. Pairwise alignments $S_{1}, S_{2}$ and $S_{1}, S_{3}$ is converted to MSA $S_{1}, S_{2}, S_{3}$. Then, pairwise alignment of $\mathrm{S}_{1}, \mathrm{~S}_{4}$ and MSA $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ is converted to MSA $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$.

### 2.4.3 Progressive alignment

Progressive methods are based on tree or hierarchical methods that are heuristic. The first progressive method of sequence alignment was developed by Da Fei Feng and Russell F. Doolittle [18]. The idea of this technique is to align the most related or groups of related sequences first and follow through less related ones. It depends on initial pairwise alignments. This technique uses guide trees to produce the alignments in the order that the tree grows. Clustering methods such as UPGMA [55] or Neighbor-Joining [48] are used to produce the guide trees. This method employs modified scoring matrices based on a weighting scheme so that the alignments are not picked randomly. They are not optimal
global alignments because when errors are made, they cannot be fixed in the later stages and this might influence the alignment. Generally, this technique to not appropriate for distantly related sequences but modern applications have fixed that problem (For example T-Coffee [43] ). The Clustal family of alignment tools [11] also employ progressive methods. Progressive alignments are usually faster than other methods.

### 2.4.4 Iterative method

Iterative methods are like progressive alignment but rectifies its drawbacks. The idea of iterative method is to produce progressive alignment and then fix the errors in the initial alignment iteratively. So, the goal here is to improve the alignment score by maximising the objective function used. In this method, whole pairwise alignments produced in the beginning or sections of it can be revisited and modified to get a better score. This process makes it iterative. While progressive alignment methods compromise on accuracy and improve efficiency, iterative methods are the opposite. Two programs based on this method are PRRN/PRRP [22] and DIALIGN [37].

### 2.5 Substitution/Scoring Matrices

During evolution, biological sequences (protein or nucleotide) undergo mutation; i.e gradual changes in the sequence. A substitution matrix is a matrix of log-odds of the probability of change in biological sequences. It is represented in a $20 \times 20$ matrix of logodds indexed by the amino acid letter. They are used to score the alignment of residues in a column. Scoring matrices should consider the physio-chemical properties of the amino acid and the probability that the amino acid is substituted. A positive score is given when the frequency of change in amino acid residue is less likely to be by random chance and a zero score is given when the frequency is equal to that expected by chance. A negative score is given when the frequency is less to that expected by chance. There are several variants of substitution matrices [25, 12]. The mathematical definition of a general substitution matrix is as follows:

$$
\begin{equation*}
S_{i j}=\log \frac{p_{i} \cdot K_{i, j}}{p_{i} \cdot p_{j}}=\log \frac{K_{i, j}}{p_{j}}=\log \frac{\text { observed frequency }}{\text { expected frequency }} \tag{6}
\end{equation*}
$$

where $K_{i, j}$ is probability that amino acid $i$ transforms into amino acid $j$, and $p_{i}, p_{j}$ are the frequencies of amino acids $i$ and $j$. There are several variants of substitution matrices most of which are a series of matrices; PAM [12], BLOSUM [25], GONNET (GON) [21].

### 2.5.1 BLOSUM (Block Substitution Matrix)

BLOSUM [25] is a series of matrices derived from gapless alignments of sequences that are distantly related. Different BLOSUM matrices are BLOSUM45, BLOSUM62, BLOSUM80. Numbers are added to the end of the matrix name and refers to the minimum sequence identity. Greater numbers mean closer distance between sequences. Possibility of errors in these matrices arise from the alignments that are erroneous.

### 2.5.2 PAM (Point Accepted Mutation)

PAM matrices [12] are substitution matrices based on global alignment of closely related sequences and their evolutionary model with divergence close to $15 \%$. Unlike BLOSUM, PAM extrapolates the evolutionary distance to create more matrices. Higher the number, greater the evolutionary distance. Since PAM matrices are extrapolated, errors get scaled when dealing with PAM for higher distance. Different PAM matrices are PAM250, PAM160, PAM120 etc.

### 2.5.3 GON (GONNET)

The Gonnet matrix [21] is a substitution matrix based on pairwise alignments of sequences from protein databases. It uses classical distance matrices to produce an alignment of proteins. The alignment is used to produce a new distance matrix to refine the alignment, iteratively. The Gonnet matrix is normalized to PAM250, hence, they suggest its usage in conjunction with PAM matrices. Different Gonnet matrices are GON200, GON250, GON350 etc.

BLOSUM, PAM and GONNET (GON) matrices have different approaches to construction, yet they are comparable based on whether they are designed for proteins that are closely, distantly related or somewhere in between. Table 2.3 shows comparable BLOSUM, PAM and GON matrices [38].

| BLOSUM | PAM | GON |
| :--- | :--- | :--- |
| BLOSUM45 | PAM250 | GON200 |
| BLOSUM62 | PAM160 | GON250 |
| BLOSUM80 | PAM120 | GON350 |

Table 2.3: Comparable BLOSUM, PAM and GON matrices which are similar [26].

### 2.6 Alignment Tools

### 2.6.1 Blast

Sequence homology is the presence of shared ancestry between sequences. This is important in identifying previously characterized sequences, finding phylogenetically related sequences, identifying possible functions based on similarities to known sequences etc. Blast [1] is a fast program used to search for such homology from databases. Hence, it uses substitution matrices and gap penalties to compare a query sequence with a database of sequences. The algorithm is: (i) Low complexity regions or sequences with repeats are removed so that it does not influence the scoring system to produce high score for insignificant sequences from the database. (ii) Create words from query sequence (typically word size is 3 for protein sequence) and scan the database for these words (called a 'hit'). For each word, high scoring matches are produced from the database. (iii) All high scoring words are categorized for later comparisons. (iv) A High-scoring Segment Pair (HSP) [71] is a local alignment with no gaps that achieves one of the highest alignment scores in a given search. The matches are extended to the left and right of the word in the sequence to form HSPs until the score starts to reduce. (v) All HSPs that have a high score are evaluated to determine
the significance in terms of e-value. (vi) Smith-Waterman local alignment [53] between the query and the match is produced for all matches that are beyond the e-value threshold.

Blast can be downloaded from ftp://ftp.ncbi.nlm.nih.gov/blast/executables/ blast+/LATEST/

### 2.6.2 Clustal Omega

Clustal Omega [51] is one of the sequence alignment tools in the Clustal family [11]. It is used for computing multiple sequence alignment of nucleotide or amino acid sequences The algorithm of Clustal Omega starts with computing pairwise alignment and then calculating distance matrices using UPGMA [55] /Neighbor-Joining methods [48]. Guide trees produced from this are used to compute the final multiple sequence alignment. Just like the other tools, this is a progressive alignment. Clustal Omega implements a modified version of mBed [8] and uses HHalign [54] for computing its pairwise alignment.

Clustal Omega be downloaded from http://www.clustal.org/omega/.

### 2.6.3 MAFFT

MAFFT [28] is a method for rapid multiple sequence alignment based on fast Fourier transform. It can be used to generate multiple sequence alignment of nucleotide or amino acid sequences. For the alignment, each amino acid is converted into a vector of two values, volume and polarity. After the algorithm calculates the relationship between the sequences, it is transformed into fourier signal information. MAFFT applies standard dynamic programming and optimally rearranges homologous regions in the sequences. It also implements an iterative approach. There are three modes of MAFFT: (i) progressive method, (ii) iterative refinement with Weighted Sum-of-Pairs score (WSP) [23], (iii) iterative refinement with WSP and consistency score [44].

MAFFT can be downloaded from https://mafft.cbrc.jp/alignment/software/.

### 2.6.4 MUSCLE

MUSCLE [16] is a multiple sequence alignment tool for proteins that computes progressive alignment of the sequences and then refines it. The stages of the algorithm are as follows: (i) Computing k-mer distance matrix of each pair of input sequence and then clustering the matrix with UPGMA [55] to produce a binary tree. (ii) A progressive MSA is computed from this tree. (iii) For refining the multiple sequence alignment, the new tree from stage (ii) is divided in to sub trees and a profile is generated for each tree. This stage involves improving the alignment produced in the previous stage. Here, Kimura distance [29] is used to re-estimate the tree from previous stage to create a new one and uses the multiple sequence alignment as input. An optimized alignment is computed using progressive alignment for sub branches that have changed in the new tree relative to the previous tree. Finally, the profiles are aligned to check if the SP score has improved, if not the alignment is discarded. The steps are repeated until a user defined threshold or convergence. Figure 2.6 shows the overview of MUSCLE.

MUSCLE can be downloaded from https://www.drive5.com/muscle/.

### 2.6.5 T-Coffee

T-Coffee[43], which stands for "Tree-based Consistency Objective Function for Alignment Evaluation" is an MSA method that uses progressive alignment in a broader sense. Progressive alignment tend to be greedy in nature and mistakes made during the beginning of the step by step alignment cannot be rectified during later steps. Although, T-Coffee uses the progressive alignment strategy, it minimizes the drawbacks of such algorithm. T-Coffee generates pairwise alignments and these are used to generate a library of alignments. This library is further used to produce the final MSA. The pairwise alignments help in determining how well the sequences align with each other. Thus, it considers the relationship between all the sequences and not just the sequence that is being currently aligned.

T-Coffee algorithm can be divided into three parts: (1) Pairwise Alignment; (2) T-Coffee


Figure 2.6: Overview of MUSCLE program. The figure summarizes the flow of the MUSCLE algorithm. There are three main stages: Stage 1 (draft progressive), Stage 2 (improved progressive) and Stage 3 (refinement). A multiple sequence alignment is available at the completion of each stage, at which point the algorithm may terminate. [16].

Library Construction is used as a position specific scoring scheme in the next part; (3) TCoffee Progressive Alignment using the library. The library is a set of pairwise alignments that contains the weight of all possible matches of residues in those alignments. This library is used while multiply aligning sequences in the progressive alignment step. Figure 2.7 shows overview of T-Coffee method.


Figure 2.7: Overview of T-Coffee Alignment Program. The figure shows the main steps required to compute a multiple sequence alignment using the T-Coffee[43] method. Square blocks indicate input or output while rounded boxes indicate the method used.

## (1) Pairwise Alignment

The algorithm starts with taking the sequences to be aligned as input and produces their pairwise alignments. It produces pairwise alignments of all pairs of sequences. The original T-Coffee uses a mix of ClustalW and Lalign pairwise alignment programs to compute global and local pairwise alignments respectively. However, a variety of pairwise alignment tools can be incorporated into T-Coffee package. T-Coffee is very flexible in terms of the methods that an be used along with it. The new default pairwise alignment program however is adapted from the Probcons package [13] and is called proba_pair. For the sake of simplicity we consider certain elements in the algorithm and has been described in Table 2.4. It takes a list of input sequences called "seqList". For each pair of sequences in this list, pairwise alignments are computed using proba_pair (we call it "probcons_pair") and stored
in "Lalignments". Lalignments stores a list of all pairwise alignments (pairwise alignment from all pairs of input sequences).

## (2) T-Coffee Library Construction

Step (2) can be further divided into two parts, construction of (a) Primary Library and (b) Extension of Primary Library. A weight " $w$ " is computed for each pairwise alignment. The weight " w " is calculated as weight $=\mid($ match $* 100) /($ ungapped_alignment $) \mid$. Thus, weight is the absolute value of percentage identity in the pairwise alignment. Percentage identity is used as weight because it is known to be an indicator for the accuracy of sequence alignment. Algorithm 2 shows the construction of T-Coffee library. To compute the weight, "Lmatches" contains all residue-residue matches for the pairwise alignment and we store the number of matches in "nbMatches". The function count() finds the total number of residue-residue matches in "Lmatches" for an alignment. The function compute_ungapedAlignment() counts the number of columns in the alignment without gaps in them. The primary library consists of pairwise alignments, the weights of the pairwise alignments and the matched residues.

T-Coffee uses a triplet approach for extending the library. The triplet approach is performed to combine some of the information contained in the whole primary library such that the final weight for a pair of residues in a pairwise alignment contains weight from other pairs of residues. In the triplet approach, each alignment is considered with a triplet of sequences. Figure 2.8 shows how the T-Coffee library is computed using weights and shows its extension. For example: In Figure 2.8, a) shows alignment of residues $\operatorname{SeqA}(\mathrm{G})$ and $\operatorname{SeqB}(\mathrm{G})$ in the word GARFIELD and the weight computed for it (Prim. Weight=88). Let us call this weight $p w$.

In Figure 2.8, b) we see that the residues $\operatorname{SeqA}(\mathrm{G})$ and $\operatorname{SeqC}(\mathrm{G})$ are aligned, as well as, residues $\operatorname{SeqC}(G)$ and $\operatorname{SeqB}(G)$. Thus, there is an alignment of residues $\operatorname{SeqA}(\mathrm{G})$ and $\operatorname{Seq} \mathrm{B}(\mathrm{G})$ through $\operatorname{SeqC}$. So, the weight of the triplet is $\min \left(w_{1}, w_{2}\right)$ where $w_{1}$ is $\mathrm{w}(\operatorname{Seq} A(G), \operatorname{SeqC}(G))$ and $w_{2}$ is $\mathrm{w}(\operatorname{SeqC}(G), \operatorname{Seq}(G))$. Let us call this weight $e w$, where,
$e w=\min (77,100)$.Assuming this triplet, the weight of $\operatorname{SeqA}(G)$ and $\operatorname{SeqB}(\mathrm{G})$ in the extended library is updated to $\operatorname{Sum}(p w, e w)=88+77=165$. In the complete extended library such triplets are considered for $\operatorname{Seq} A(G)$ and $\operatorname{Seq} B(G)$ through all other sequences. In summary, the weight associated with a pair of residues is the sum of all the weights gathered through the examination of all the triplets involving that pair. This is computed for each pair of residues of SeqA and SeqB. The steps are carried out for all such pairs of sequences [43].
a) Primary Library

b) Library Extension

b) Libray Extenion

Extended Library


SeqA GARFIELD THE LAST FA-T CAT
SeqB GARFIELD THE ---- FAST CAT

Figure 2.8: T-Coffee Library Construction. This picture is taken from the original T-Coffee paper [43]. a) Primary Library: If pairs of sequences are aligned as shown here, the weight can be calculated as absolute value of $\left(100^{*}\right.$ (number of identical residues/total number of ungaped columns within the complete alignment). i.e For SeqA and SeqB, number of identical residues is 16 and ungapped columns is 18 . Therefore, weight is 88 . b) Extended Library: It takes each aligned residue pair from the library and check the alignment of the two residues with residues from the remaining sequences. For example; Consider alignment of residues in SeqA and SeqB through SeqC. The new weight is calculated as $(\min (($ weight of SeqA and SeqC),(weight of SeqB and SeqC)) + (original weight of SeqA and SeqB)). i.e $(\min (77,100)+88)=165$. In final library, the weight for residues in SeqA, SeqB through all other sequences are added up. The more intermediate sequences supporting an aligned pair of residues, the higher its weight. Note: Depending on the pairwise alignment program used, the weights may differ.

## (3) T-Coffee Progressive Alignment

While performing progressive alignment with T-Coffee, the extended library is used as a position specific scoring scheme. Hence, T-Coffee uses this scheme instead of BLOSUM or PAM matrices for constructing the multiple sequence alignment. In progressive alignment, the pairwise alignments are made to produce distance trees. This distance tree is used to construct a new neighbor-joining distance matrix. This is used to construct a guide tree. The guide tree is used to produce multiple sequence alignments. Algorithm 1 shows T-Coffee program, Algorithm 2 shows how the T-Coffee library is constructed. Figure 2.9 shows the steps in function T-Coffee_progressiveAlignment( ) in Algorithm 3

| Element | Description | Used In |
| :---: | :---: | :---: |
| Alignment | It is an object type to store pairwise alignment | Algorithm1; Line1 |
| Lalignment | List to store pairwise alignment | Algorithm1; Line2 |
| seqList | List of protein sequences | Algorithm1; Line3 |
| probcons_pairwise( ) | Sub routine adapted from Probcons package. It is used to produce the pairwise alignment of two sequences $s e q_{1}, s e q_{2}$ | Algorithm1; Line5 |
| p_align | Variable of type list to store pairwise alignment for probcons_pairwise | Algorithm1; Line5 |
| store_pairwise <br> _alignment ( ) | Sub routine used to store pairwise alignment in p_align to the Alignment object | Algorithm1; Line6 |
| aln | Instance of the Alignment object | Algorithm1; Line7 |
| count ( ) | Sub routine used to count the number of matches in pairwise alignment. It takes list of matches Lmatches in the alignment object as input | Algorithm2; Line3 |
| nbMatches | Variable to store number of matches | Algorithm2; Line3 |
| compute_ <br> ungappedAlignment( ) | Sub routine to remove gaps in the alignment. i.e It removed gapped columns in the alignment | Algorithm2; Line4 |
| ungapped_align | Variable to store number of ungapped alignments | Algorithm2; Line4 |
| get_pairwise( ) | Sub routine to collect pairwise alignment of particular sequences from instance "aln" | Algorithm2; <br> Line13,Line14 |
| $L B_{20 x} 20$ | Matrix to store the weights of pairwise aligments of all residue pairs. Matrix is of size $20 \times 20$ because there are 20 amino acid residues | Algorithm2; Line23 |
| r1 and r2 | Residues in the sequences for which matches have been identified and weighted | Algorithm2; Line26 |
| $\mathrm{D}[\mathrm{i}, \mathrm{j}]$ | Distance matrix D contains distances of pairwise alignments in Lalignment. | Algorithm3; Line1 |
| ```getnbMatches( ) countSeq( )``` | Sub routine to get number of matches Sub routine to count the number of sequences in seqList | Algorithm3; Line3 |
| n | Integer n stores the number of sequences in seqList | Algorithm3; Line3 |
| neighborJoining( ) | Sub routine to produce guide tree T using Neighbor-Joining method. It takes distance matrix and number of sequences as input | Algorithm3; Line4 |

Table 2.4 continued from previous page

| Element | Description | Used In |
| :---: | :---: | :---: |
| T | stores guide tree produced by <br> Neighbor Joining method | Algorithm3; Line4 |
| chooseclosestSeq( ) | Sub routine to choose the closest two sequence in the guide tree $T$ | Algorithm3; Line6 |
| $\mathrm{A}_{1}, \mathrm{~A}_{2}$ | Variables to store closest two sequences in guide tree $T$ | Algorithm3; Line6 |
| $\operatorname{Align}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ | Sub routine is a Dynamic Programming method to compute alignments. It is explained in Equation 4. Here however, the T-Coffee library LB $\left[\mathrm{a}_{i}, \mathrm{a}_{j}\right]$ is used instead of substitution matrix and gap penalty is kept zero. | Algorithm3; Line7 |
| $\mathrm{A}_{n}$ | stores the alignment produced by $\mathrm{A}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and the alignment grows as it proceeds (more and more sequences get aligned). <br> It grows to become the MSA | Algorithm3; Line7 |
| root | root of guide tree T | Algorithm3; Line9 |
| Blastp( ) | Sub routines that performs protein Blast with the parameters described in the description of Algorithm. <br> It takes input list of sequences and database | Algorithm4; Line4 <br> Algorithm5: Line4 |
| gappedHomologseq | Variable to store list of homologous sequences ( i.e Blast hits or result) | Algorithm4; Line4 <br> Algorithm5: Line4 |
| $\operatorname{add}($ ) | Adds homologous sequences to the query sequence. <br> This step is described in figure 2.10 | Algorithm4; Line5 <br> Algorithm5; Line5 |
| preProfile_seqs | Variable to store the list of seq and its homologs | Algorithm4; Line5 <br> Algorithm5; Line5 |
| MpreProfile_seqs | matrix to store seq and its homologs | Algorithm4; Line6 <br> Algorithm5; Line6 |
| PseqProfile | Variable to store list of profiles | Algorithm4,5; <br> Line20, Line22 |
| pairofProfile | Variable to store list of pairwise alignments | Algorithm4; Line24 <br> Algorithm5; Line24 |
| storepairwiseAlignment ( ) | Sub routine to store pairwise alignments to alignment object. Takes input a pairwise alignment | Algorithm4; Line25 <br> Algorithm5; Line25 |
| hmmtop( ) | Sub routine hmmtop to predict transmembrane topology. Takes input sequence list, profile of that sequence | Algorithm4; Line31 |
| topol | Variable to store topology of seq from seqList | Algorithm4; Line31 |
| updateMSA( ) | Sub routine to color code MSA according to the predicted topology. It takes input MSA and topology | Algorithm4; Line32 |

Table 2.4: Elements of the Algorithms

## Using the T-Coffee package

After installing the T-Coffee package, the following command assumes the default parameters for the input sequencefile.

```
>t_coffee sequencefile
```



Figure 2.9: T-Coffee Progressive Alignment Steps. Step (1) shows distance matrix D for pairwise alignments from 5 different sequences. Step (2) shows guide tree produced for those 5 sequences based on the distance matrix D. Here we see that "P0A929" and "P24017" are closely related. So is "P24305" and "P30690". "P26466" is the distantly related sequence. Guide tree T is a binary tree. Step (3) shows the final multiple sequence alignment.

```
Algorithm 1 T-Coffee
Input: list of sequences seqList
Output: Multiple sequence alignment \(M\)
    Creating an object type "Alignment" to store the pairwise alignment
    Initializing the list of pairwise alignment, Lalignment \(:=\) null
    for \(s^{s e q} q_{1}\) in seqList do
        for \(s e q_{2}\) in seqList do
                p_align \(:=\) probcons_pairwise \(\left(s e q_{1}\right.\), seq \(\left._{2}\right)\)
            \# Storing pairwise alignment "p_align" in the Alignment object "aln" using sub
        routine "store_pairwiseAlignment()"
                aln \(:=\) store_pairwiseAlignment(p_align)
                Lalignment \(:=\) Lalignment.append(aln)
        end for
    end for
    LB, Lalignment \(:=\) T-CoffeeLibrary (seqList,Lalignment)
    \(M:=\) T-Coffee_progressiveAlignment(seqList, LB, Lalignment)
    return \(M\)
```

Parameters can specified by adding flags. The web server of T-Coffee uses the following command and it can be used for the local installation of T-Coffee as well.

```
>t_coffee -in=sequencefile -mode=regular -output=score_html clustalw_aln \
fasta_aln score_ascii phylip -maxnseq=150 -maxlen=10000 -case=upper \
-seqnos=off -outorder=input -run_name=result -multi_core=4 -quiet=stdout
```

T-Coffee can be downloaded from http://www.T-Coffee.org/Packages/Stable/Latest/.

### 2.6.6 TM-Coffee

TM-Coffee $[19,10]$ is a multiple sequence alignment method for alpha helical transmembrane protein sequences. This method combines homology extension and consistency-based progressive approach from T-Coffee to optimally align the multiple sequences. It uses PSI-Coffee mode of the T-Coffee package and performs Blast on a reduced database of transmembrane proteins for homology extension. The database used for TM-Coffee contains transmembrane helices and transmembrane helical segments. Thus the library that is produced contain these transmembrane elements and supports the progressive alignment

```
Algorithm 2 T-Coffee_Library
Input: list of sequences seqList, list of pairwise alignments Lalignment
Output: library \(L B\), list of pairwise alignments Lalignment
    Initializing the list of matches, Lmatches \(:=\) null
    for aln in Lalignment do
        nbMatches \(:=\operatorname{count(aln.Lmatches)~}\)
        ungapped_align \(:=\) compute_ungappedAlignment(aln.p_align)
        Computing weight \(w\) of pairwise alignment as:
                        \(w:=\left|\frac{(n b \text { Matches } * 100)}{\text { ungapped_align }}\right|\)
            \# Update the list of matches
        for match in aln.Lmatches do
            match.w := w
        end for
    end for
            \# Construct library extension
    for aln in Lalignment do
            \#Collect all sequences not in pairwise alignment; store them in "LotherSeq"
        Lotherseq \(:=\) seqList \(\backslash\left\{\right.\) aln.seq \(_{1}\), aln.seq \(\left.q_{2}\right\}\)
        for seq in LotherSeq do
            \# Collect the pairwise alignments from Lalignment
                \(a l n_{1}:=\) get_pairwise(aln.seq \({ }_{1}\), seq, Lalignment)
            \(a l n_{2}:=\) get_pairwise(aln.seq \({ }_{2}\), seq, Lalignment)
        end for
            \# Update the weight of current pairwise alignment
        \(a l n \cdot w:=\min \left(a l n_{1} \cdot w+a n_{2} \cdot w\right)+a l n . w\)
        for match in aln.Lmatches do
            if match in (aln 1 .Lmatches) OR match in (aln 2 .Lmatches) then
                match. \(w:=\) match \(. w+\) aln. \(w\)
            end if
        end for
    end for
        \# Build library
    Initilialize matrix \(L B_{20 x 20}\) to zero matrix.
    for aln in Lalignment do
        for match in aln.Lmatches do
            \(L B\left[\right.\) match. \(r_{1}\), match. \(\left.r_{2}\right]:=\mathrm{LB}\left[\right.\) match. \(r_{1}\), match. \(\left.r_{2}\right]+\) match.w
        end for
    end for
    return LB, Lalignment
```

```
Algorithm 3 T-Coffee_progressiveAlignment
    Input: list of sequences seqList, TCoffee library \(L B\), list of pairwise alignment
Lalignment
    Output: Multiple sequence alignment \(M\)
    for aln in Lalignment do
            Distance matrix D \(\left[\right.\) aln.seq \(q_{1}\), aln.seq \(\left.q_{2}\right]:=1-\frac{\text { get_nbMatches(aln.Lmatches) }}{\min \left(\left|a \ln \cdot S e q_{1}\right|,\left|a \ln . S e q_{2}\right|\right)}\)
    end for
    \#Neighbor-Joining method produces a tree T
    \(\mathrm{T}:=\) neighborJoining(D,countSeq(seqList))
    do
        \(A_{1}, A_{2}:=\) choose_closestSeq(T)
        \(A_{n}:=\operatorname{Align}\left(A_{1}, A_{2}\right)\)
        Update T with \(A_{n}\)
    while not \(\operatorname{root}(\mathrm{T})\)
    \(M:=A_{n}\)
    return \(M\)
```

process better. The default database used for TM-Coffee is a reduced uniref50 with entries that contain the keyword "transmembrane". It also allows substitution of these databases with "uniref90" and "uniref100", both with the keyword "transmembrane", hence a database specific for transmembrane alpha helical proteins.

The algorithm can be divided into four parts: (1) Homology Extension; (2) T-Coffee Library Construction; (3) T-Coffee Progressive Alignment; (4) Topology Prediction. The TM-Coffee algorithm is shown in Algorithm 4 and an overview in Figure 2.10. Elements used in this algorithm are explained in Table 2.4.

## (1) Homology Extension

In this step, Blast is run on each sequence from the input sequence list. Default parameters (evalue $=10$, gap open penalty $=11$, gap extension penalty $=1$, matrix $=$ Blosum62) are used for running Blast. Blast hits with percent identity between $50 \%-90 \%$ and query coverage above $70 \%$ are filtered and the remaining hits are discarded. Then the corresponding query sequence is added to the filtered hits. These hits are the homologs of the sequence in consideration. Table 2.5 lists the parameters and filters used for Blast. This filtered result


Figure 2.10: Overview of TM-Coffee. The figure shows the TM-Coffee strategy; the main steps required to compute a multiple sequence alignment using the TM-Coffee[19] method. Square boxes indicate input or output while rounded boxes indicate the method used.
is called "Preprofiles" in the algorithm. Figure 2.12, a) shows the Preprofile. It contains gapped columns (unaligned positions in the hits with respect to the query sequence) and unmatched positions in the hits with respect to the query sequence.

These gapped columns are removed and any unmatched position is replaced with a gap. Figure $2.12, \mathrm{~b}$ ) illustrates the result of this step. It shows how a Profile looks like after gaps are removed and unmatched positions are replaced by gaps. The Profile looks like a one-to-all MSA (i.e seq-to-hits MSA) [19, 10].

## (2) T-Coffee Library Construction

Pairwise alignment is performed on all pairs of Profiles produced in the previous step using the Probcons program adapted for TM-Coffee [13, 19]. These pairwise alignments are stored in the list "Lalignment" in the algorithm. The list of sequences "seqList" and "Lalignment" is passed as parameters to the function TCoffee_Library( ). This function is shown separately in Algorithm 2 and described in Section 2.6.5. Unlike the original T-Coffee program, TM-Coffee creates a T-Coffee library from the pairwise alignment of Profiles rather than pairwise alignment of sequences.

## (3) T-Coffee Progressive Alignment

This step follows regular T-Coffee progressive alignment except that the T-Coffee library used has homology extension as a precursor as explained above. In the algorithm, the MSA is produced with the function T-Coffee_progressiveAlignment( ). It takes input the list of sequences "seqList", T-Coffee Library "LB" and pairwise alignment of Profiles "Lalignment" This function is explained separately in Algorithm 3 and described in Section 2.6.5.

## (4) Topology Prediction

The HMMTOP [67] program produces topology predictions of each sequence. The MSA is color coded according to its topology as "IN", "HEL" and "OUT" where each stand for "inner loop", "transmembrane helix", "outer loop" respectively. function updateMSA( ) performs this step. An updated MSA is shown in Figure 2.11. Note that topology prediction does not influence the multiple sequence alignment method. It is only for visualization purposes.


Figure 2.11: TM-Coffee Topology Prediction. This figure shows the TM-Coffee MSA color coded according to the transmembrane topology. Here, IN is inner loop, HEL is transmembrane helix, OUT is outer loop.

| Parameter/Filter Type | Parameter/Filter Value |
| :--- | :--- |
| Substitution Matrix | Blosum62 |
| Gap Opening Penalty (gop) | 11 |
| Gap Extension Penalty (gep) | 1 |
| Expectation Value (evalue) | 10 |
| Percentage Identity (pident) | $\geq 50 \% \& \leq 90 \%$ |
| Query Coverage (qcovs) | $70 \%$ |
| Blast Database (blastdb) | uniref50 with keyword "transmembrane" |

Table 2.5: Default parameters and filters used in Blast for TM-Coffee.

## a) Blast Output



## b) Profile



Figure 2.12: Blast output to profile. a) Shows output of Blastp. Sequence used as input to Blastp has the Uniprot id "P02931" and is represented by "seq". This is only for illustrative purpose and the full length of sequences are not shown here. Here "seq" represents the input/query sequence to Blastp and the remaining rows are the Blast hits produced for that input sequence by Blastp for "seq". The Blast hits are represented by unique numeric Sequence ids. These Blast hits are similar sequences to the input sequence "seq". The output format for Blast that returns this type of output is called "FlatQueryAnchoredNoIdentities". b) Shows a profile looks like. Blastp output is turned into a profile by removing all columns corresponding to positions unaligned to the query sequence (i.e. gaps in the query sequence "seq") and by filling with gaps query positions unmatched by Blastp. Gaps are represented by "-" and have been shaded in the profile for visibility. [10, 19].

The TM-Coffee web-server takes input protein sequences in fasta format and produces an MSA in clustalW "aln" format by default, along with the guide tree used and TCscore. TM-Coffee uses EBI Blast/ NCBI Blast as the Local Blast program. The command used by the TM-Coffee web-server is shown below.
>tmcoffee.sh -in data_5dcfd219.in -mode psicoffee -blast_server LOCAL \}
--search-db 'UniRef50 -- Very Fast/Rough' --search-type ' -prot_min_sim 50 \}
-prot_max_sim 90 -prot_min_cov 70' --search-out 'clustalw_aln fasta_aln \}
score_ascii phylip score_html' -maxnseq 1000 -maxlen 5000 -case upper \}
-seqnos off -outorder input -run_name result -multi_core 4 -quiet=stdout


Figure 2.13: Evaluation of TM-Coffee. This figure shows steps in the evaluation of TM-Coffee. Square boxes represent input or output and rounded box represents the method used.

## Evaluation of TM-Coffee Algorithm

TM-Coffee is evaluated by its authors using the well curated gold standard Balibase [59] of reference alignments. TM-Coffee is evaluated based on BAliBASE2-ref7 MSA. They use a dataset of 435 transmembrane alpha helices from reference 7 of BAliBASE2 [3]. The MSA generated by TM-Coffee is compared to the reference alignment using BaliScore program to get a score based on Total Column score and Sum-of-pairs score [10]. Figure 2.13 illustrates overview of steps involved in the evaluation of TM-Coffee.

A web server for TM-Coffee is available at
http://T-Coffee.crg.cat/apps/T-Coffee/do:tmcoffee.
TM-Coffee is a part of T-Coffee and can be downloaded from
http://www.T-Coffee.org/Packages/Stable/Latest/

```
Algorithm 4 TM-Coffee
    Input: list of sequences seqList, blast database blastdb
    Default parameters and Filters for Blastp: Given in Table 2.5
    Output: multiple sequence alignment \(M\) with color coded topology
    Create an object type "Alignment" to store the pairwise alignment
    Initialize the list of pairwise alignments, Lalignment \(:=\) null, empty matrix
    MpreProfile_seqs, list PseqProfile \(:=\) null
    for seq in seqList do
        gappedHomolog_seq \(:=\) Blastp(seq, blastdb)
        preProfile_seqs \(:=\) seq.add(gappedHomolog_seq)
        MpreProfile_seqs \(:=\) matrix form of preProfile_seqs
        for \(\mathrm{j}=1\) to N do
            if MpreProfile_seqs \([1, \mathrm{j}]\) is a gap "-" then
                Remove column j from MpreProfile_seqs
            else
                    for \(\mathrm{i}=2\) to M do
                        if MpreProfile_seqs \([1, \mathrm{j}] \neq\) MpreProfile_seqs \([\mathrm{i}, \mathrm{j}]\) then
                        Place gap "-" at MpreProfile_seqs \([\mathrm{i}, \mathrm{j}]\)
                        end if
                    end for
            end if
        end for
        Store all MpreProfile_seqs in list PseqProfile
    end for
    for each pair (profile , profile \(_{2}\) ) in PseqProfile do
        pairof Profiles \(:=\) probcons_pairwise(profile \({ }_{1}\), profile \({ }_{2}\) )
        aln := store_pairwiseAlignment(pairof Profiles)
        Lalignment \(:=\) Lalignment.append(aln)
    end for
    LB, Lalignment \(:=\) T-Coffee_Library (seqList,Lalignment)
    \(M:=\) T-Coffee_progressiveAlignment(seqList, LB, Lalignment)
    topol \(:=\) hmmtop (seqList, seqProfile)
    \(M:=\operatorname{updateMSA}(M\), topol \()\)
    return \(M\)
```


### 2.7 Other Tools and Resources

### 2.7.1 NorMD

NorMD [60] is a reliable objective scoring function for MSA. It stands for normalized mean distance and based on the objective function used by ClustalX[57]. It combines a column scoring method and residue similarity scores. To incorporate residue similarity, it uses matrices such as PAM[12], BLOSUM[25] or GONNET[21]. NorMD also considers abinitio sequence information such as the length, number, and similarity of sequences being compared. It can also detect badly aligned sequences in the alignment. In NorMD, column score is calculated for each column in the alignment and summed over the full length of the alignment. This column score used on NorMD is based on [68].

Mean distance column scores are computed for the core blocks in the alignment. As MD column scores are normalized in the range of 0 to 100 , a threshold can be set above which columns are considered to have statistically significant scores.

The NorMD score is calculated as

$$
\begin{equation*}
\text { Nor } M D=\frac{M D-G A P C O S T}{M a x M D * L Q R I D} \tag{7}
\end{equation*}
$$

where, $M D$ is mean pairwise distance between sequences in a continuous sequence space, GAPCOST is the mean gap cost for each pairwise alignment in the MSA, $\operatorname{MaxMD}$ is the maximum possible MD score and $L Q R I D$ is the lower quartile range of the pairwise hash score.

This objective scoring function is based on the sequences and can be used when there are no benchmark or reference alignments available. NorMD provides various advantages such as being unbiased towards the type of MSA program used during evaluation. NorMD allows the e-value for pairwise alignments in the MSA to be as high as 10. NorMD can be computed on single MSA and does not need alternate MSAs to form a consensus like in other object functions for MSA. For an alignment, NorMD score above 0.6 is considered to be a quality alignment. Higher the score is above the cutoff, better the MSA. NorMD
is tested on Balibase reference alignment and a cut-off 0.6 is the lowest score obtained by reliable alignments in general[60], [61].

NorMD can be downloaded from http://www.bork.embl.de/Docu/AQUA/latest/

### 2.7.2 Blast Database

A database of sequences and other related information in a Blast recognisable format is called a Blast database. A set of sequences can be converted to a Blast database. Popular protein databases that are available in Blast format are "NR", "Swissprot", "NT", "Refseq_protein", "PDB" etc. For this research, we construct and use local databases recognisable by Blast. These databases can be downloaded or created locally. Popular Blast databases can be downloaded from ftp://ftp.ncbi.nlm.nih.gov/blast/db/.

### 2.7.3 Homology Extension

Homology extension [52, 10] is a method by which evolutionary information required for the alignment is enriched by database searches for homologous sequence. Instead of considering the sequence itself, its homologs are taken to consider the evolutionary variability. A threshold is set for selecting homologs. Only sequences that fall beyond the threshold are considered. This is a pre-alignment step. The set of sequences obtained by homology extension are converted to a profile. Finally many such profiles are aligned to produce an MSA.

### 2.7.4 HMMTOP

HMMTOP $[67,66]$ is a program to predict transmembrane topology as well as localization of the helical segments in them. It uses an HMM showing that the maxima of the likelihood function on the space of all possible topologies of a given amino acid sequence with an experimentally established topology. The states for the HMM are; inside loop (I), inside tail (i), membrane helix (h), outside tail (o) and outside loop (O). Licence for HMMTOP can be requested at http://www.enzim.hu/hmmtop/html/download.html

## Chapter 3

## TMB-Coffee

Transmembrane beta-barrel proteins are an important class of proteins. It is important to study MSA of available sequence data on TMBB proteins to help identify, annotate function and also understand their structure. In this chapter, we discuss about how we construct a dataset of beta barrel proteins, and adapt TM-Coffee, an MSA method based on homology extension followed by progressive alignment using T-Coffee, to develop a tool TMB-Coffee for MSA of TMBB proteins. Finally, TMB-Coffee method is evaluated for the quality of alignments produced.

### 3.1 Construction of Dataset

There is no benchmark dataset of TMBB proteins or reference alignments for them. Literature review suggests that the work that is being done on transmembrane beta-barrel proteins is based only a select few well curated proteins that have known structure represented in PDB. Out of the 4034 redundant transmembrane structures, less than $12 \%$ percent of them are beta barrels (according to PDBTM [64] version $18^{\text {th }}$ January 2019) and the remaining structures are alpha helices. After clustering to remove identical sequence up to $10 \%$ dissimilar, we are left with 93 beta barrels and 1169 alpha helices. Hence, there is a need to construct a larger dataset with available data that includes proteins that have known structures or have been reviewed.

PDB is the most popular 3D structure database for proteins yet it does not have any entries specifically annotated as transmembrane beta-barrel. Orientations of Proteins in Membranes database (OPM database) [35] is another database that claims to have spatial arrangement of transmembrane protein in the lipid bi-layer that has been obtained from theoretical and compared with experimental data. This database has 233 TMBB entries with co-referenced Uniprot IDs. TMBB sequence data that is available is either relatable to PDB IDs or Uniprot IDs. Whenever we found PDB IDs associated with TMBBs, corresponding Uniprot IDs are found to maintain consistency in the type of data that we have.


Figure 3.1: Statistics of Uniprot entries of beta barrel proteins. This represents the total number of Uniprot IDs corresponding to TMBB entries in each source of data (P1andP2- It comes from Paper1 [17] and Paper2 [30] citing TMBB structures, TopDB [65], PDBTM [64], OPMDB [63], PDB [6], Uniprot [4]).

Sequences that are considered for MSAs usually need to meet the following general requirements; (i) it would be ideal if sub-groups of the sequences that are too similar be pre-aligned separately, and (ii) one member of each subgroup be included in the sequence considered for final multiple sequence alignment, (iii) remove that are too dissimilar before computing the MSA.

Due to the lack of a benchmark dataset or alignment for TMBB, we carefully constructed a dataset. (1) We reviewed many papers that cited beta barrel proteins with known 3D
structure. (2) We chose Paper1[17] and Paper2[30]. (3) Both combined gave us TMBBs with available structures that has been empirically annotated. (4) PDB IDs [6] are extracted from these papers. (5) The corresponding Uniprot IDs are found for these PDB IDs. (6) We have a list of Uniprot IDs[4] of TMBB that have 3D structure. (7) We extract Uniprot IDs of all TMBB proteins from TopDb [65]. (8) Then, we get all TMBB from OPMDB[63]. It contains a list of PDB structures of the proteins. (9) The PDB IDs are extracted and corresponding Uniprot IDs are found.
(10) Now, we have a list of Uniprots IDs corresponding to entries from all the different sources of transmembrane beta barrel proteins (TMBB) (Paper1 (P1)[17], Paper2 (P2)[30], TopDB[65], OPMDB[63], PDB[6]), Uniprot. (11) Duplicate Uniprot IDs are removed from the list. (12) Keep only those entries in list that had "reviewed" status according to Uniprot and discard the rest. (13) Retrieve the fasta sequence of all the entries produced in the previous step. This is the list of entries/sequences that is used as the dataset for testing our MSA method. We call our dataset "datasetTMB" and it contains 159 entries/sequences. The complete list of Uniprot IDs of the sequences in datasetTMB is given in the Table A. 3 in Appendix.

### 3.2 Construction of Local Blast Database for TMB-Coffee

MSA based on homology extension is usually more accurate than other general alignment techniques but suffers poor performance because of the time taken to iteratively perform Blast searches to get homologs. TM-Coffee is a multiple sequence alignment tool for alpha helical transmembrane proteins and performs homology extension using a database of transmembrane helices. This is highlighted in red in Table 2.10. We adapt their technique and use it to align TMBB. We use databases that contain beta barrel transmembrane proteins, beta barrel transmembrane segments, and outer membrane proteins. Since we have used reduced databases of TMBB proteins, the time taken to perform homology extension is reduced compared to the time taken for a larger database like Swissprot. For Blast we also consider Swissprot database, a database that is minimally redundant but contains a mix of
all proteins, alpha helices, beta barrels and other proteins. We use this as a control to check if the beta barrel databases that we consider makes a difference. We use standalone Blast+ version 2.9 to construct a local database that serves the purpose of similarity searches. First, we download non redundant beta barrel sequences from OMPDB [63]. These entries have a sequence identity of up to $70 \%$. It is downloaded in fasta format. We use the following script to create a non redundant database in blast format. We call this database "OMPDB70" where OMPDB is the name of the database from where the data is downloaded and the number 70 represents sequence identity threshold.

```
> makeblastdb -in OMPDBsequence.fasta -dbtype prot -title 'rOMPdb70" \
    - parse_seqids
```

In the above command, "makeblastdb" is the command used in Blast+ (a version of NCBI Blast package that contains many standalone programs for working with sequences) for the construction of local Blast database. The flag "-in" takes the input in fasta file format. The flag "-dbtype" is used to specify the type of database that "makeblastdb" command has to create. Here we create a protein sequence database, hence the keyword "prot". The flag, "-parse_seqids" is used to create a list of fasta headers of the sequences in the database that can be used for sequence look-ups. The final flag is "-title", to have a user-specified title for the database.

We construct another database, unirefOMBB100 in the same way; also named after the source and sequence identity threshold. The unirefOMBB100 database contains sequences from Uniprot Uniref database with keyword, "outer membrane beta barrel". The number 100 means it has sequences that are up to $100 \%$ identical and hence is a redundant database. Finally, we also download and convert sequences in Swissprot to a blast database . Swissprot contains well curated but minimally redundant amino acid sequences. Local versions of these databases are created in Blast format for further use in TMB-Coffee. Table 3.1 shows the number of sequences in each locally created blast database.

| Local Blast Database | Number of Sequences |
| :--- | :--- |
| OMPdb70 | 22556 |
| unirefOMBB100 | 57350 |
| swissprot | 471914 |

Table 3.1: Local databases and the number of sequences in them

### 3.3 TMB-Coffee

This section explains the TMB-Coffee algorithm. We call it, "TMB-Coffee" to distinguish it from TM-Coffee. TMB-Coffee differs from TM-Coffee with respect to the database used for homology extension and the input sequences. The differences in TMB-Coffee w.r.t TM-Coffee is highlighted in red in Table 3.2.

TMB-Coffee can be divided into three parts: 1) Homology extension 2) T-Coffee Library construction 3) T-Coffee progressive alignment. The TMB-Coffee algorithm is shown in Algorithm 5 and an overview in Figure 3.2. Elements used in this algorithm are explained in Table 2.4. Although the following steps are same as TM-Coffee, the input, blast database, the library and the final output is different.


Figure 3.2: Overview of TMB-Coffee. The figure shows the TMB-Coffee strategy; the main steps required to compute a multiple sequence alignment using the TMB-Coffee method. Square blocks indicate input or output while rounded boxes indicate the method used. Input sequences and sequences in database used here are all beta-barrel sequences. Red highlights present the changes in TMB-Coffee.

## (1) Homology Extension

The major difference between TMB-Coffee and TM-Coffee is the Blast database that is used for homology extension. TM-Coffee uses a transmembrane alpha helix specific database, whereas, TMB-Coffee uses TMBB specific database.
a) When we have a set of TMBB protein sequences to be aligned, the Homology Extension step takes each sequence in the set and performs Blast on it. A sequence that is used as an input to Blast program is called a query sequence. Blast returns a set of similar sequences as its output for each input/query sequence. These homologs are retrieved from a TMBB specific local blast database. b) The query sequence is stacked on its homologs. This is called a "Preprofile" and looks like an MSA. c) Unaligned columns in the Preprofile (gapped positions) corresponding to the query sequence is removed and unmatched positions are filled with gaps, to convert a Preprofile to a Profile. Steps a, b and c are repeated on all remaining sequences in the initial set of sequences to be aligned. In the end, we have one profile for each sequence from the input set. Next, pairwise alignment is performed using ProbCons Pair-HMM for all pairs of profiles.

| Parameter/Filter Type | Parameter/Filter Value |
| :--- | :--- |
| Substitution Matrix | Blosum62 |
| Gap Opening Penalty (gop) | 11 |
| Gap Extension Penalty (gep) | 1 |
| Expectation Value (evalue) | 10 |
| Blast Database (blastdb) | TMBB specific database |

Table 3.2: Parameters and Filters used in Blast for TMB-Coffee

## 2) T-Coffee Library Construction

This step follows the same procedure as in the original T-Coffee program. The pairwise profile alignments are weighted to produce primary library. Then this library is extended to produce the T-Coffee library. The steps to compute the primary library and its extension to create a T-Coffee library is explained in detail in Section 2.6.5. While TM-Coffee uses transmembrane alpha helices to create a T-Coffee Library, TMB-Coffee uses TMBB for the same purpose. Therefore, the TMB-Coffee library constitutes weights of beta barrel

| Features | MSA Method |  |  |
| :---: | :---: | :---: | :---: |
|  | T-Coffee | TM-Coffee | TMB-Coffee |
| Input | Protein sequences | TM Alpha Helix sequences | TMBB sequences |
| Homology Extension | No | Yes | Yes |
| Use of Database | No | Yes (TM Alpha Helix) | Yes (TMBB) |
| Pairwise Alignment | Sequence | Profile | Profile |
| T-Coffee Library Construction | Yes | Yes | Yes |
| T-Coffee Progressive Alignment | Yes | Yes | Yes |

Table 3.3: Differences and Similarities between T-Coffee, TM-Coffee and TMB-Coffee.
residues computed from the pairwise alignments of beta barrel sequences.

## 3) T-Coffee Progressive Alignment

This step also follows the same procedure as the original T-Coffee program. Here, the pairwise alignments are made to produce distances. The distance between the pairs are used to compute a guide tree using the Neighbor-Joining method. The guide tree is followed for performing multiple sequence alignment using dynamic programming and uses T-Coffee library to determine which residues should align in a pair or sequences or sub-alignments. This step is explained in detail in Section 2.6.5.

Table 3.3 shows the differences between T-Coffee, TM-Coffee and TMB-Coffee methods.

### 3.4 Evaluation of TMB-Coffee

Generally, MSAs produced by various MSA programs are compared to reference/benchmark MSA to determine their performance or calculate accuracy. In the case of TM-Coffee, Balibase-Ref7 (Balibase MSA for transmembrane alpha helices) benchmark is used for the evaluation. Balibase is a manually curated MSA with the help of sequence and structural information. Since there is no benchmark or reference alignment like Balibase available for TMBB proteins, a comparison based evaluation is not possible for TMB-Coffee.

Instead of comparison based evaluation of MSA, there are programs that can estimate the quality of the MSA based of various criteria such as residue similarity, alignment of residues in a column of the MSA, etc. MUMSA[32], AL2CO[46], COFFEE Objective

```
Algorithm 5 TMB-Coffee
    Input: list of sequences seqList, blast database blastdb
    Default parameters and Filters for Blastp: Given in Table 3.2
    Output: multiple sequence alignment \(M\)
    Creating an object type "Alignment" to store the pairwise alignment
    Initializing the list of pairwise alignment, Lalignment \(:=\) null, empty matrix
    MpreProfile_seqs, list PseqProfile \(:=\) null
    for seq in seqList do
        gappedHomolog_seq := Blastp(seq, blastdb)
        preProfile_seqs \(:=\) seq.add(gappedHomolog_seq)
        Store preProfile_seqs in matrix form to MpreProfile_seqs
            \# Creating Profile from MpreProfile_seqs
        for \(\mathrm{j}=1\) to N do
            if MpreProfile_seqs[1,j] is a gap"-" then
                Remove column j from MpreProfile_seqs
            else
                for \(\mathrm{i}=2\) to M do
                        if MpreProfile_seqs \([1, \mathrm{j}] \neq\) MpreProfile_seqs \([\mathrm{i}, \mathrm{j}]\) then
                                    Place gap "-" at MpreProfile_seqs \([\mathrm{i}, \mathrm{j}]\)
                    end if
                end for
            end if
        end for
        Store all MpreProfile_seqs in list PseqProfile
    end for
    for each pair (profile \(e_{1}\), profile \(e_{2}\) ) in PseqProfile do
        pairofProfiles \(:=\) probcons_pairwise(profile \({ }_{1}\), profile \({ }_{2}\) )
        aln \(:=\) store_pairwiseAlignment(pairof Profiles)
        Lalignment \(:=\) Lalignment.append(aln)
    end for
    LB, Lalignment \(:=\) T-CoffeeLibrary (seqList,Lalignment)
    \(M:=\) T-Coffee_progressiveAlignment(seqList, LB, Lalignment)
    return \(M\)
```

function[44], NorMD [60] can be used to determine the quality of MSA when there is a lack of reference alignments. NorMD produces a score to evaluate the quality of the alignments based on the sum of columns scores and other ab-initio information.

We use NorMD to measure the quality of MSA in this research for the various advantages it has over other programs mentioned above. The strategy used in MUMSA requires several MSAs of the same sequences to be compared. It looks for the average overlap and the multiple overlap scores in the MSAs. This can be useful for comparing MSAs produced by different MSA programs but not to estimate the quality an individual MSA. The COFFEE objective function, on the other hand, looks for consistency between a library of pairwise alignments and the MSA produced from it. This method is believed to be biased towards TMB-Coffee. AL2CO looks for conserved regions and computes a conservation index. We use NorMD because the objective measure is based on the unaligned sequences and this does not have a bias towards any MSA program. It can also evaluate a single MSA to determine whether the alignment is reliable. In addition, NorMD permits the automatic identification of misaligned regions in the MSA.

From Equation 7, the range of NorMD score depends on $\operatorname{Max} M D$. It is the maximum possible MD score and is dependant on the longest sequence and number of sequences in MSA in consideration. For our research the lowest NorMD score is 0.098 and the highest is 4.490. However, majority of the scores ranges from 0.000 to 1.000. According to [60], [61], it is observed that alignment with lower NorMD score yet a reliable quality has a NorMD score of 0.6. It is also observed that higher NorMD scores mean better MSA.

Figure 3.3 shows the overview of steps of evalaution of TMB-Coffee. Following are the steps of evaluation of TMB-Coffee in detail: (1) We take one sequence in datasetTMB and perform Blast with OMPdb70 database. We use default Blast parameters for the input sequence. (2) Similar sequences obtained from Blast is used as input to TMB-Coffee. Blast in TMB-Coffee uses the same database for homology extension. (3) The MSA obtained from TMB-Coffee is scored using NorMD to get a numeric score. An MSA in this context contains one sequence from datasetTMB and its homologs. Steps $1,2,3$ are repeated for all other sequences in datasetTMB. Note that when the initial Blast does not return any


Figure 3.3: Steps in the Evaluation of TMB-Coffee. A TMBB sequence obtained from datasetTMB is used as input to the initial Blast. Top 10 blast hits/results are used as input to TMB-Coffee. Quality of the resulting MSA is determined using NorMD score. Note: The database used for initial Blast and Blast within TMB-Coffee is "OMPdb70".
hits, such input sequences are not processed further.
(A) We use three different local blast databases: OMPdb70, unirefOMBB100 and swissprot. While OMPdb70 and unirefOMBB100 are beta-barrel specific databases, swissprot is a general purpose protein database.
(B) We use three thresholds for the number of blast hits: 10,25 , and 50.

Table 3.4 shows the number of sequences in datasetTMB that obtained Blast results according to the above filters. Hence, for each sequence in datasetTMB that met the above criteria, TMB-Coffee is used to produce an MSA. NorMD is computed on each MSA to determine the quality of the MSA. Out of 159 sequences in datasetTMB, only some sequences produced Blast results with the thresholds (10, 25 and 50 ). Blast hits for the remaining sequences produced hits less than the threshold. Such sequences are not used in the experiments. For swissprot database, even though, Blast produced sufficient hits, TMBCoffee could not produce alignments for all sequences. This is due to the reason that swissprot database is redundant. When TMB-Coffee detects redundant sequences during the alignment step, it is considered as a single sequence. We see this difference in the

|  | Number |  |  |
| :--- | :---: | :---: | :---: |
|  | of sequences with at least |  |  |
| Database | $\mathbf{1 0}$ hits | $\mathbf{2 5}$ hits | $\mathbf{5 0}$ hits |
| OMPdb70 | 137 | 110 | 106 |
| unirefOMBB100 | 88 | 52 | 46 |
| swissprot | 142 | 106 | 57 |

Table 3.4: Number of sequences from datasetTMB that meets the Blast criteria for number of hits. This also tells how many MSA we have in each category except swissprot. Swissprot has $124 / 142,85 / 106,32 / 57$ MSAs for 10 hits, 25 hits and 50 hits respectively
number of alignments produced while using swissprot because of the reason that too many redundant sequences are reduced to a single one and less than 3 sequences cannot produce an alignment. Only $124 / 142,85 / 106,32 / 57$ MSAs are produced for 10 hits, 25 hits and 50 hits respectively. To make the performance evaluation and comparison of TMB-Coffee consistent, we consider only those sequences that meet the above criteria.

### 3.5 Environment Used

All programs are run on virtual machine using Ubuntu 18.10 64bit OS with Intel Core i7-4790 @ 3.6 Ghz processor, 1 core, 8 GB DDR3 RAM. Scripting is based on Python 3.6.8 in Jupyter Notebook 5.7.6 and GNU Bash 4.4.19(1) on Ubuntu 18.10. Virtual environment is built on the host Windows 7 Enterprise SP1 using OracleVM Virtual Box 5.1.14.

### 3.6 Results

This section contains results of the evaluation of TMB-Coffee. In Figure 3.3 we see the NorMD evaluation of TMB-Coffee using the database "OMPdb70" to get at least 10 hits from Blast. Hits in the initial Blast determines the number of sequences in the final MSA produced by TMB-Coffee. In this section, we show the results of not just "At least 10 hits" but also "At least 25 " and "At least 50 " hits from the initial Blast. We also present the results obtained for top hits from Blast while using the local Blast databases "OMPdb70", "unirefOMBB100" and "swissprot". Finally, we compare the performance of TMB-Coffee

|  | Average NorMD score for MSA from TMB-Coffee |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Database: swissprot <br> Blast hits | Database: OMPdb70 <br> Average NorMD |  | Database: unirefOMBB100 |
|  | Average NorMD |  | Average NorMD |  |
| At least 10 | 0.996 |  | 0.644 | 0.811 |
| At least 25 | 0.851 | 0.692 | 0.710 |  |
| At least 50 | 0.727 | 0.683 | $\mathbf{0 . 5 7 4}$ |  |

Table 3.5: Average NorMD score for MSAs from TMB-Coffee for Top Blast hits while using different Blast databases (Swissprot, OMPdb70, unirefOMBB100).
with other general purpose MSA programs. According to [60], MSA with NorMD score above 0.6 is considered to be a reliable one. Therefore, 0.6 is the cut off used to determine if TMB-Coffee could generate reliable MSAs. In our study, the lowest NorMD score that we obtained is 0.098 for P31243 using swissprot (10 hits) and highest is 4.490 for P09616 using unirefOMBB100 (25 hits).

Table 3.5 shows the average NorMD scores obtained for "At least 10", "At least 25 ", "At least 50" hits from Blast while using databases swissprot, OMPdb70 and unirefOMBB100. This is the average taken from the NorMD scores for individual MSA produced for each sequence in datasetTMB. Note that all NorMD scores are computed based on defaults parameters (substitution matrix $=$ Blosum62, gap open penalty $=0$ and gap extension penalty $=0$ ).

Table 3.6 shows the comparison of TMB-Coffee with other general purpose MSA programs. The saame set of sequences are used to obtain MSAs and its NorMD scores. This table shows the average of NorMD scores sequences with at least 10 Blast hits. Similarly, Table 3.7 and Table 3.8 shows the comparison of TMB-Coffee with other general purpose MSA programs for 25 and 50 hits respectively. The individual NorMD scores are for each category is given in Section A. 4 in the Appendix.

### 3.7 Discussion

In the results we show the average NorMD scores obtained for MSAs from each MSA program on various databases with different input sizes. The individual NorMD scores are

| MSA Method | Comparison of MSA Programs using NorMD score (10 hits) |  |  |
| :---: | :---: | :---: | :---: |
|  | Database: Swissprot | Database: OMPdb70 | Database: unirefOMBB100 |
|  | Average NorMD | Average NorMD | Average NorMD |
| Clustal Omega | 0.967 | 0.647 | 0.801 |
| MAFFT | 1.096 | $\underline{0.715}$ | 1.131 |
| MUSCLE | 0.996 | 0.655 | 0.988 |
| T-Coffee | 0.976 | 0.653 | 0.845 |
| TMB-Coffee | 0.996 | 0.644 | 0.811 |

Table 3.6: Comparison of MSA programs - Average NorMD score for MSA of sequences from datasetTMB with 10 hits. Highest scores are underlined. Scores for TMB-Coffee are bold.

| MSA Method | Comparison of MSA Programs using NorMD score ( 25 hits) |  |  |
| :---: | :---: | :---: | :---: |
|  | Database: Swissprot Average NorMD | $\begin{gathered} \text { Database: OMPdb70 } \\ \text { Average NorMD } \\ \hline \end{gathered}$ | Database: unirefOMBB100 Average NorMD |
| Clustal Omega | 0.877 | 0.694 | 0.706 |
| MAFFT | $\underline{0.924}$ | $\underline{0.715}$ | $\underline{0.869}$ |
| MUSCLE | 0.899 | 0.704 | 0.764 |
| T-Coffee | 0.587 | 0.693 | 0.753 |
| TMB-Coffee | 0.851 | 0.692 | 0.710 |

Table 3.7: Comparison of MSA programs - Average NorMD score for MSA of sequences from datasetTMB with 25 hits. Highest scores are underlined. Scores for TMB-Coffee are bold.

| MSA Method | Comparison of MSA Programs using NorMD score ( 50 hits ) |  |  |
| :---: | :---: | :---: | :---: |
|  | Database: Swissprot Average NorMD | Database: OMPdb70 Average NorMD | Database: unirefOMBB100 Average NorMD |
| Clustal Omega | 0.708 | 0.676 | 0.602 |
| MAFFT | $\underline{0.804}$ | $\underline{0.691}$ | $\underline{0.713}$ |
| MUSCLE | 0.748 | 0.683 | 0.599 |
| T-Coffee | 0.734 | 0.685 | 0.619 |
| TMB-Coffee | 0.727 | 0.683 | 0.574 |

Table 3.8: Comparison of MSA programs - Average NorMD score for MSA of sequences from datasetTMB with 50 hits. Highest scores are underlined. Scores for TMB-Coffee are bold.
for each category is given in Section A. 4 in the Appendix. In order to evaluate the performance of TMB-Coffee we use NorMD score. According to [60], MSA with NorMD score above 0.6 is considered to be a reliable one. Therefore, 0.6 is the cut off used to determine if TMB-Coffee could generate reliable MSAs. In our study, the lowest NorMD score that we obtained is 0.098 for P31243 using swissprot (10 hits) and highest is 4.490 for P09616 using unirefOMBB100 (25 hits).

## TMB-Coffee generally produces reliable MSAs

As we see in Table 3.5, the average NorMD score for each category is above the cut-off except for 50 hits using unirefOMBB100. We also see that the scores for unirefOMBB100 for 10 hits and 25 hits have scores 0.811 and 0.710 respectively. From this we can conclude that, although, usage of this database has enabled MSAs to get reliable scores for 10 and 25 hits, it does not for 50 hits. NorMD scores for MSA from TMB-Coffee are above 0.6, conveying that TMB-Coffee generally produces reliable MSAs.

## The Swissprot database results in better MSAs

The average scores for swissprot and OMPdb70 has met the cut-off score for NorMD in all categories. This suggests that both these databases can be used for producing reliable MSAs using TMB-Coffee, but, Swissprot database results in better MSAs. The assumption that using OMPdb70 and unirefOMBB100 (two beta-barrel specific databases) would produce better alignments is not supported by the results.

## MAFFT performed better than TMB-Coffee

We also compared the performance of different MSA programs with that of TMB-Coffee. We performed experiments with three different input sizes 10 hits, 25 hits and 50 hits. The average NorMD scores obtained for various MSA programs for the different input sizes are reported in Table 3.6, Table 3.7 and Table 3.8 respectively.

From Table 3.6, we see that MAFFT has scored better than TMB-Coffee in all the categories. We can also see that T-Coffee has also performed better than TMB-Coffee

| Paired t-test | ClustalO | MAFFT | Muscle | T-Coffee | TMB-Coffee |
| :--- | :---: | :---: | :---: | :---: | :---: |
| ClustalO | NA | $\mathbf{4 . 5 3}$ | 1.52 | 0.45 | 1.69 |
| MAFFT |  | NA | $\mathbf{- 4 . 2 2}$ | $\mathbf{- 5 . 2 4}$ | $\mathbf{- 4 . 7 0}$ |
| Muscle |  |  | NA | $\mathbf{- 1 . 0 1}$ | 0.03 |
| T-Coffee |  |  |  | NA | 1.36 |
| TMB-Coffee |  |  |  |  | NA |

Table 3.9: Paired t-test (Swissprot - 10 hits). NULL hypothesis: x and y have identical performance. Highlighted values are significant
based on higher NorMD scores. We see similar trend for the other input sizes in Table 3.7 and Table 3.8. In all the experiments, MAFFT gets better NorMD score than any other MSA program including TMB-Coffee.

The NorMD scores seems very close to each other. Therefore to check the statistical significance of the difference, we performed a paired t-test. We perform paired T-Test for MSA using Swissprot as it obtained top scores.

From Table 3.9 we see that the score obtained by MAFFT is significant compared to all other programs. Whereas, the score obtained by TMB-Coffee is not significant compared to the score from other programs. All remaining t-test tables given in Appendix Section A. 5 yield similar results.

From literature review we know that T-Coffee is the state of the art and is considered to have one of the most accurate MSAs. However from the comparisons we see that MAFFT outperforms T-Coffee and TMB-Coffee. Therefore, we wanted to check if MAFFT aligns better in the TMBB region of the sequences than TMB-Coffee.

Figure 3.4 shows the alignment in the TMBB region by TMB-Coffee and Figure 3.5 shows the alignment in the TMBB region by MAFFT. The aligned regions are marked by a black box in both figures. To determine how well the TMBB regions have been aligned, we count the number of conserved, similar and weakly similar residues in aligned regions. After counting the aligned regions, we see that TMB-Coffee has aligned with a count of 21 , whereas, MAFFT has a count of 17 . Higher count for the aligned region suggests better alignment in the TMBB region.

Although, the alignment from MAFFT has a higher NorMD score of 1.000 than that of TMB-Coffee 0.701, TMB-Coffee has a better alignment of the TMBB region. This


Figure 3.4: Illustration of alignment in TMBB region of sequences using TMB-Coffee. Blue and Green are consecutive TMBB regions. Black box shows area within the TMBB regions that have aligned well. "*" represents conserved residues, ":" represents slightly similar residues and "." represents weakly similar residues. NorMD score for this alignment (P0A910- Swissprot 10 hits) is 0.701 .


Figure 3.5: Illustration of alignment in TMBB region of sequences using MAFFT. Blue and Green are consecutive TMBB regions. Black box shows area within the TMBB regions that have aligned well. "*" represents conserved residues, ":" represents slightly similar residues and "." represents weakly similar residues. NorMD score for this alignment (P0A910- Swissprot 10 hits) is 1.000 .
suggests that TMB-Coffee may align TMBB regions better than MAFFT. It also conveys that NorMD score may not reflect the alignment of beta-barrels. However, more work is to be done to check if this holds true for the majority of the other alignments in the experiment.

## Chapter 4

## Conclusion

In conclusion, MSA program MAFFT outperforms T-Coffee and TMB-Coffee in terms of NorMD score. However, TMB-Coffee can better align TMBB regions in the sequences. Well curated general purpose database, Swissprot results better alignment in TMB-Coffee. This chapter presents the work done to develop TMB-Coffee, an MSA method to align TMBB protein sequences. It also summarizes contributions and presents the limitations of this work. The aim of this research is to develop an MSA method to align TMBB protein sequences and to see how well existing methods perform in comparison to our method, TMB-Coffee.

### 4.1 Contributions

Our Contributions are:
(1) the creation of dataset of TMBB proteins as gold standard;
(2) adaption of TM-Coffee for the context of TMBB proteins, as TMB-Coffee tool;
(3) evaluation and comparison of TMB-Coffee.

We cleaned and consolidated the data that is available on TMBB into a single dataset. This dataset that we created has 159 TMBB proteins.

We adapted TM-Coffee to be TMB-Coffee for aligning TMBB protein sequences using beta-barrel specific sequence databases and library of TMBB.

We evaluated TMB-Coffee by scoring MSAs produced using NorMD. Finally, we compared the performance of TMB-Coffee with state of the art multiple sequence alignment tools.

We use two TMBB specific databases to test their effect on the MSA. However we get better alignments while using swissprot, a general purpose protein database and not a TMBB specific database. While we compare TMB-Coffee with state of the art MSA methods, we see that MAFFT produces better alignment based on NorMD score in all cases. Therefore we learn that, though the same method works for Transmembrane alpha helices, it does not hold true for TMBB. However, we also see that TMB-Coffee aligns TMBB regions better than MAFFT in select cases.

The dataset, databases and scripts used in this research are available on GitHub. The following URL can be used to reach the repository, https://github.com/akhiljobby/ msa_transmembraneBetaBarrel.

### 4.2 Limitations

This work only considers sequence based approaches for constructing the MSA rather than a structure based one. It is shown in literature when sequence and structure based techniques are combined, it produces more accurate alignments. Hence, in future structure based alignments methods can be produced for TMBBs in combination with homology extension to check if that can improve the quality of multiple sequence alignments. Further study is required in determining if TMB-Coffee aligns TMBB regions better than state of the art methods. We also do not use topological information in this research. Such information may supplement the alignment process and in turn lead to better MSA.

## Appendix A

## Supplementary Info

## A. 1 Files on Github

The files related to our work can be found at https://github.com/akhiljobby/msa_ transmembraneBetaBarrel. It has a README file with instructions and details of files. The list of files are presented in Table A.1.

| FILES |  |
| :--- | :--- |
| matrices.tar | DESCRIPTION |
| datasetTMB.fasta file contains various substitution matrices |  |
| AllIDs.xlsx | Fasta file contains the dataset of TMB used as a gold standard |
| NorMDscores.xlsx | Excel file contains Uniprot ID of TMBB extracted from various sources |
| alignments.tar | Excel file contains the NorMD scores for all MSA programs used separated <br> by size of input and database used |
| extractFastaSeqfromBlastDB.ipynb | Tar file contains all MSAs produced by MSA programs based on various <br> categories |
| loopBlast.ipynb | local Blast databases |
| loopTMBCoffee.ipynb | Jupyter Notebook file contains script to perform iterations of Blastp |
| makeProfile.ipynb | Jupyter Notebook file contains script to loop TMBCoffee script |
| removeCSVCol.ipynb | Jupyter Notebook file contains script to create Profile from Blast output |
| splitBlastOut.ipynb | Jupyter Notebook file contains script to remove columns from csv output <br> of Blast |
| removeIdsLessThresh.ipynb | Jupyter Notebook file contains script to filter Blast output based on |
| thresholds |  |

Table A. 1 continued from previous page

| FILES |  |
| :--- | :--- |
| splitFasta.py.ipynb | Jupyter Notebook file contains script to split one fasta file with <br> multiple sequences into multiple fasta files |
| topBlastResult.ipynb | Jupyter Notebook file contains script to filter top Blast results based <br> on minimum number of hits |
| tmbcoffee.ipynb | Jupyter Notebook file contains script for TMBCoffee |
| AlignmentToProfile.ipynb | Jupyter Notebook file contains script to convert an alignment to a <br> profile |
| combineFastaFiles.ipynb | Jupyter Notebook file contains script to combine several fasta files to <br> one fasta file |
| README | File contains instructions and description of contents in the repository |

Table A.1: List of files on GitHub

## A. 2 Tools Used

| Tools | Version |
| :--- | :--- |
| T-Coffee | 12.00 .7 fb 08 c 2 |
| Blast+ | 2.9 |
| CDHIT | 4.8 |
| Clustal Omega | 1.2 .4 |
| HMMTOP | 2.0 |
| MAFFT | 7.428 |
| MUSCLE | 3.8 .31 |
| NORMD | 1.3 |

Table A.2: Version of the tools used in this research

## A. 3 Dataset of TMBB - "datasetTMB"

Table A.3: Entries in datasetTMB

| Information Related to Entries in datasetTMB |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Uniprot ID | Entry name | Protein names | TCDB | Organism | Length |
| A0QR29 | MSPA_MYCS2 | Porin MspA | 1.B.24.1.1 | Mycobacterium smegmatis | 211 |
| A1JUB7 | YADA_YERE8 | Adhesin YadA |  | Yersinia enterocolitica serotype $\mathrm{O}: 8$ / biotype 1B | 422 |
| A5F934 | OMPU_VIBC3 | Porin OmpU |  | Vibrio cholerae serotype O1 | 341 |
| E3PJ86 | GSPD2_ECOH1 | Secretin GspD 2 |  | Escherichia coli O78:H11 | 686 |
| E3PJ88 | ASPS2_ECOH1 | Pilotin AspS 2 |  | Escherichia coli O78:H11 | 136 |
| E6MXW0 | OMPA_NEIMH | Major outer membrane protein P.IA |  | Neisseria meningitidis serogroup B / serotype 15 | 392 |
| O18423 | TXL_EISFE | Lysenin (efL1) | 1.C.43.1.1 | Eisenia fetida | 297 |
| O33407 | ESTA_PSEAE | Esterase EstA (Autotransporter esterase EstA) | 1.B.12.5.9 | Pseudomonas aeruginosa | 646 |
| O88093 | HBP_ECOLX | Hemoglobin-binding protease hbp autotransporter |  | Escherichia coli | 1377 |
| P00646 | CEA3_ECOLX | Colicin-E3 |  | Escherichia coli | 551 |
| P00747 | PLMN_HUMAN | Plasminogen |  | Homo sapiens | 810 |
| P01031 | CO5_HUMAN | Complement C5 |  | Homo sapiens | 1676 |
| P02748 | CO9_HUMAN | Complement component C9 |  | Homo sapiens | 559 |
| P02787 | TRFE_HUMAN | Serotransferrin (Transferrin) |  | Homo sapiens | 698 |
| P02929 | TONB_ECOLI | Protein TonB | 2.C.1.1.1 | Escherichia coli | 239 |
| P02930 | TOLC_ECOLI | Outer membrane protein TolC | 1.B.17.1.1 | Escherichia coli | 493 |
| P02931 | OMPF_ECOLI | Outer membrane porin F | 1.B.1.1.1 | Escherichia coli | 362 |
| P02932 | PHOE_ECOLI | Outer membrane porin PhoE | 1.B.1.1.2 | Escherichia coli | 351 |
| P02943 | LAMB_ECOLI | Maltoporin (Lambda receptor protein) | 1.B.3.1.1 | Escherichia coli | 446 |
| P04419 | CEA2_ECOLX | Colicin-E2 | 1.C.1.4.1 | Escherichia coli | 581 |
| P05430 | OMPA_NEIGO | Major outer membrane protein P.IA | 1.B.1.5.1 | Neisseria gonorrhoeae | 326 |
| P05695 | PORP_PSEAE | Porin P (Outer membrane protein D1) | 1.B.5.1.1 | Pseudomonas aeruginosa | 440 |
| P05825 | FEPA_ECOLI | Ferrienterobactin receptor | 1.B.14.1.22 | Escherichia coli | 746 |
| P06129 | BTUB_ECOLI | Vitamin B12 transporter BtuB | 1.B.14.3.1 | Escherichia coli | 614 |
| P06716 | CEIA_ECOLX | Colicin-Ia | 1.C.1.1.1 | Escherichia coli | 626 |
| P06970 | FAED_ECOLX | Outer membrane usher protein FaeD | 1.B.11.1.1 | Escherichia coli | 812 |
| P06971 | FHUA_ECOLI | Ferric hydroxamate receptor | 1.B.14.1.2 | Escherichia coli | 747 |
| P06996 | OMPC_ECOLI | Outer membrane porin C | 1.B.1.1.3 | Escherichia coli | 367 |
| P07110 | PAPC_ECOLX | Outer membrane usher protein PapC | 1.B.11.2.1 | Escherichia coli | 836 |
| P07357 | CO8A_HUMAN | Complement component C8 alpha chain | 1.C.39.3.1 | Homo sapiens | 584 |
| P07358 | CO8B_HUMAN | Complement component C 8 beta chain |  | Homo sapiens | 591 |
| P07360 | CO8G_HUMAN | Complement component C8 gamma chain |  | Homo sapiens | 202 |
| P08189 | FIMF_ECOLI | Protein FimF |  | Escherichia coli | 176 |
| P08190 | FIMG_ECOLI | Protein FimG |  | Escherichia coli | 167 |
| P08191 | FIMH_ECOLI | Type 1 fimbrin D-mannose specific adhesin (Protein FimH) |  | Escherichia coli | 300 |
| P09167 | AERA_AERHY | Aerolysin | 1.C.4.1.1 | Aeromonas hydrophila | 493 |
| P09169 | OMPT_ECOLI | Protease 7 (EC 3.4.23.49) (Omptin) (Outer membrane protein 3B) | 9.B.50.1.1 | Escherichia coli | 317 |
| P09545 | HLYA_VIBCH | Hemolysin | 1.C.14.1.1 | Vibrio cholerae serotype O1 | 741 |

Table A. 3 continued from previous page
-

| 582 |
| :--- |
| 309 |
| 309 |
| 325 |
|  |
| 289 |
| 378 |
| 378 |
| 344 |
| 346 |
| 346 |
| 212 |
| 212 |
| 171 |
| 171 |
| 171 |
| 171 |
| 289 |
| 289 |
| 289 |
| 294 |
| 294 |
| 294 |
| 113 |
| 810 |
| 810 |
| 810 |
| 810 |
| 245 |
| 193 |
| 577 |
| 577 |


| TCDB | Organism |
| :---: | :---: |
| 1.C.3.1.1 | Staphylococcus aureus |
| 1.C.1.4.1 | Escherichia coli |
|  | Staphylococcus aureus |
| 1.C.3.4.2 | Staphylococcus aureus |
| 1.C.3.4.2 | Staphylococcus aureus |
|  | Salmonella typhi |
|  | Salmonella typhimurium Salmonella typhi |
| 1.B.33.1.3 | Escherichia coli |
| 1.B.6.1.1 | Escherichia coli |
|  | Escherichia coli O157:H7 |
| 1.B.39.1.6 | Escherichia coli |
|  | Shigella flexneri |
| 1.B.6.2.1 | Escherichia coli |
|  | Escherichia coli O6:H1 |
|  | Escherichia coli O157:H7 |
|  | Shigella flexneri |
|  | Escherichia coli |
|  | Escherichia coli O157:H7 |
|  | Shigella flexneri |
| 1.B.10.1.1 | Escherichia coli |
|  | Escherichia coli O157:H7 |
|  | Shigella flexneri |
| 1.B.33.1.3 | Escherichia coli |
|  | Escherichia coli |
|  | Escherichia coli O6:H1 |
|  | Escherichia coli O157:H7 |
| 1.B.33.1.3 | Shigella flexneri |
| 1.B.33.1.3 | Escherichia coli |
| 1.B.42.1.2 | Escherichia coli |
| 1.B.33.2.4 | Escherichia coli |
|  | Escherichia coli O157:H7 |
| 1.B.48.1.1 | Escherichia coli |
| 1.B.40.1.1 | Yersinia enterocolitica |
| 1.B.1.1.15 | Vibrio cholerae serotype O1 |
|  | Neisseria meningitidis serogroup B |
| 1.B.9.1.1 | Escherichia coli |

Table A. 3 continued from previous page

| Information Related to Entries in datasetTMB |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Uniprot ID | Entry name | Protein names | TCDB | Organism | Length |
| P10643 | CO7_HUMAN | Complement component C7 |  | Homo sapiens | 843 |
| P11922 | INVA_YERPS | Invasin | 1.B.54.1.2 | Yersinia pseudotuberculosis serotype I | 985 |
| P12643 | BMP2_HUMAN | Bone morphogenetic protein 2 (BMP-2) |  | Homo sapiens | 396 |
| P13036 | FECA_ECOLI | $\mathrm{Fe}(3+)$ dicitrate transport protein FecA | 1.B.14.1.20 | Escherichia coli | 774 |
| P13423 | PAG_BACAN | Protective antigen (PA) (Anthrax toxins translocating protein) | 1.C.42.1.1 | Bacillus anthracis | 764 |
| P13671 | CO6_HUMAN | Complement component C6 | 1.C.39.3.3 | Homo sapiens | 934 |
| P13794 | PORF_PSEAE | Outer membrane porin F | 1.B.6.1.2 | Pseudomonas aeruginosa | 350 |
| P15319 | PAPD_ECOLX | Chaperone protein PapD |  | Escherichia coli | 239 |
| P16869 | FHUE_ECOLI | FhuE receptor ( Fe (III)-ferrioxamine B and Fe (III)-rhodotrulic acid) | 1.B.14.1.1 | Escherichia coli | 729 |
| P17315 | CIRA_ECOLI | Colicin I receptor | 1.B.14.1.4 | Escherichia coli | 663 |
| P17811 | COLY_YERPE | Coagulase/fibrinolysin (Plasminogen activator) |  | Yersinia pestis | 312 |
| P18195 | OMPB1_NEIGO | Major outer membrane protein P.IB (PIB) (Protein IB) (Porin) |  | Neisseria gonorrhoeae | 348 |
| P18895 | ALGE_PSEAE | Alginate production protein AlgE | 1.B.13.1.1 | Pseudomonas aeruginosa | 490 |
| P19809 | EAE_ECO27 | Intimin (Attaching and effacing protein) (Eae protein) |  | Escherichia coli O127:H6 | 939 |
| P21796 | VDAC1_HUMAN | Voltage-dependent anion-selective channel protein 1 (VDAC-1) (hVDAC1) |  | Homo sapiens | 283 |
| P22340 | SCRY_SALTM | Sucrose porin | 1.B.3.1.2 | Salmonella typhimurium | 505 |
| P24017 | OMPA_KLEPN | Outer membrane protein A (Outer membrane porin A) | 1.B.6.1.11 | Klebsiella pneumoniae | 344 |
| P24305 | OMP32_DELAC | Outer membrane porin protein 32 (OMP32) | 1.B.1.6.1 | Delftia acidovorans | 351 |
| P24391 | TOM40_NEUCR | Mitochondrial import receptor subunit tom40 (Protein MOM38) |  | Neurospora crassa | 349 |
| P26466 | LAMB_SALTY | Maltoporin (Maltose-inducible porin) |  | Salmonella typhimurium | 452 |
| P30130 | FIMD_ECOLI | Outer membrane usher protein FimD | 1.B.11.3.9 | Escherichia coli | 878 |
| P30690 | OMPB1_NEIMB | Major outer membrane protein P.IB (PIB) (Porin) |  | Neisseria meningitidis serogroup B | 331 |
| P31243 | PORI_RHOCA | Porin |  | Rhodobacter capsulatus | 301 |
| P31554 | LPTD_ECOLI | LPS-assembly protein LptD | 1.B.42.1.2 | Escherichia coli | 784 |
| P31697 | FIMC_ECOLI | Chaperone protein FimC |  | Escherichia coli | 241 |
| P31780 | GSPD_AERHY | Secretin ExeD (General secretion pathway protein D) |  | Aeromonas hydrophila | 678 |
| P32722 | PORD_PSEAE | Porin D (Imipenem/basic amino acid-specific outer membrane pore) (Outer membrane protein D2) | 1.B.25.1.1 | Pseudomonas aeruginosa | 443 |
| P32977 | PORO_PSEAE | Porin O | 1.B.5.1.2 | Pseudomonas aeruginosa | 438 |
| P35077 | FHAC_BORPE | Filamentous hemagglutinin transporter protein FhaC (TpsB transporter) | 1.B.20.1.6 | Bordetella pertussis | 584 |
| P35672 | INVG_SALTY | Protein InvG | 1.B.22.3.2 | Salmonella typhimurium | 562 |
| P35818 | GSPD_PSEAE | Secretin XcpQ (General secretion pathway protein D) (T2SS protein D) | 1.B.22.1.2 | Pseudomonas aeruginosa | 658 |
| P35916 | VGFR3_HUMAN | Vascular endothelial growth factor receptor 3 (Fms-like tyrosine kinase 4) (FLT-4) |  | Homo sapiens | 1363 |

Table A. 3 continued from previous page

| Information Related to Entries in datasetTMB |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Uniprot ID | Entry name | Protein names | TCDB | Organism | Length |
| P37001 | PAGP_ECOLI | Lipid A palmitoyltransferase PagP (EC 2.3.1.251) (Lipid A acylation protein) |  | Escherichia coli | 186 |
| P37432 | OMPF_SALTY | Outer membrane porin F (Outer membrane protein 1A) (Outer membrane protein B) |  | Salmonella typhimurium | 363 |
| P39767 | PORI_RHOBL | Porin | 1.B.7.1.3 | Rhodobacter blasticus | 289 |
| P42512 | FPTA_PSEAE | $\mathrm{Fe}(3+$ )-pyochelin receptor ( Fe (III)-pyochelin receptor) | 1.B.14.1.8 | Pseudomonas aeruginosa | 720 |
| P43261 | EAE_ECO57 | Intimin (Attaching and effacing protein) (Eae protein) (Gamma-intimin) | 1.B.54.1.1 | Escherichia coli O157:H7 | 934 |
| P45758 | GSPD_ECOLI | Putative secretin GspD | 1.B.22.1.3 | Escherichia coli | 650 |
| P45779 | GSPD_VIBCH | Secretin GspD (Cholera toxin secretion protein EpsD) |  | Vibrio cholerae serotype O1 | 674 |
| P46359 | FYUA_YERPE | Pesticin receptor (IRPC) |  | Yersinia pestis | 673 |
| P48632 | FPVA_PSEAE | Ferripyoverdine receptor | 1.B.14.1.6 | Pseudomonas aeruginosa | 815 |
| P49767 | VEGFC_HUMAN | Vascular endothelial growth factor C (VEGF-C) (Flt4-L) | 9.B.88.2.1 | Homo sapiens | 419 |
| P69434 | PGAA_ECOLI | Poly-beta-1,6-N-acetyl-D-glucosamine export protein (PGA export protein) | 1.B.55.1.1 | Escherichia coli | 807 |
| P69856 | NANC_ECOLI | NanR-regulated channel (Porin NanC) | 1.B.35.2.1 | Escherichia coli | 238 |
| P69857 | NANC_ECO57 | NanC (Porin NanC) |  | Escherichia coli O157:H7 | 238 |
| P69858 | NANC_SHIFL | NanC (Porin NanC) |  | Shigella flexneri | 238 |
| P75780 | FIU_ECOLI | Catecholate siderophore receptor Fiu (TonB-dependent receptor Fiu) | 1.B.14.1.9 | Escherichia coli | 760 |
| P76045 | OMPG_ECOLI | Outer membrane porin G (Outer membrane protein G) | 1.B.21.1.1 | Escherichia coli | 301 |
| P77211 | CUSC_ECOLI | Cation efflux system protein CusC | 1.B.17.3.5 | Escherichia coli | 457 |
| P77774 | BAMB_ECOLI | Outer membrane protein assembly factor BamB | 1.B.33.1.3 | Escherichia coli | 392 |
| Q03155 | AIDA_ECOLX | AIDA-I autotransporter (AIDA) | 1.B.12.1.1 | Escherichia coli | 1286 |
| Q04884 | OPAH_NEIGO | Opacity protein opA60 (Fragment) |  | Neisseria gonorrhoeae | 238 |
| Q05098 | PFEA_PSEAE | Ferric enterobactin receptor | 1.B.14.1.5 | Pseudomonas aeruginosa | 746 |
| Q06584 | PYS2_PSEAE | Pyocin-S2 (EC 3.1.-.-) (Killer protein) | 1.C.1.4.2 | Pseudomonas aeruginosa | 689 |
| Q16853 | AOC3_HUMAN | Membrane primary amine oxidase (Copper amine oxidase) (HPAO) (Semicarbazide-sensitive amine oxidase) (VAP-1) |  | Homo sapiens | 763 |
| Q2FFA2 | LUKL2_STAA3 | Uncharacterized leukocidin-like protein 2 |  | Staphylococcus aureus | 351 |
| Q2FFA3 | LUKL1_STAA3 | Uncharacterized leukocidin-like protein 1 |  | Staphylococcus aureus | 338 |
| Q45340 | BRKA_BORPE | BrkA autotransporter | 1.B.12.2.3 | Bordetella pertussis | 1010 |
| Q48473 | OMPC_KLEPN | Outer membrane porin C (Outer membrane protein C) (Porin OmpC) (Porin ompk36) |  | Klebsiella pneumoniae | 363 |
| Q51397 | OPRJ_PSEAE | Outer membrane protein OprJ |  | Pseudomonas aeruginosa | 479 |
| Q51487 | OPRM_PSEAE | Outer membrane protein OprM | 2.A.6.2.21 | Pseudomonas aeruginosa | 485 |
| Q54450 | HASA_SERMA | Hemophore HasA (Heme acquisition system protein A) | 1.B.14.5.1 | Serratia marcescens | 188 |
| Q5Y4Y6 | GSDA3_MOUSE | Gasdermin-A3 (Gasdermin-3) |  | Mus musculus | 464 |
| Q60932 | VDAC1_MOUSE | Voltage-dependent anion-selective channel protein 1 (mVDAC5) |  | Mus musculus | 296 |
| Q7BCK4 | ICSA_SHIFL | Outer membrane protein IcsA autotransporter | 1.B.12.1.2 | Shigella flexneri | 1102 |
| Q7BSW5 | ESPP_ECO57 | Serine protease EspP (EC 3.4.21.-) | 1.B.12.4.3 | Escherichia coli O157:H7 | 1300 |
| Q7CJV2 | LPTE_YERPE | LPS-assembly lipoprotein LptE |  | Yersinia pestis | 207 |

Table A. 3 continued from previous page

| Information Related to Entries in datasetTMB |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Uniprot ID | Entry name | Protein names | TCDB | Organism | Length |
| Q83LX4 | LPTE_SHIFL | LPS-assembly lipoprotein LptE |  | Shigella flexneri | 193 |
| Q83SQ0 | LPTD_SHIFL | LPS-assembly protein LptD |  | Shigella flexneri | 784 |
| Q8CVI4 | LAMB_ECOL6 | Maltoporin (Maltose-inducible porin) |  | Escherichia coli O6:H1 | 446 |
| Q8CVW1 | OMPC_ECOL6 | Outer membrane porin C (Outer membrane protein 1B) |  | Escherichia coli O6:H1 | 375 |
| Q8ZIK3 | LPTD_YERPE | LPS-assembly protein LptD |  | Yersinia pestis | 780 |
| Q8ZPC9 | ABDH_SALTY | Gamma-aminobutyraldehyde dehydrogenase (ABALDH) |  | Salmonella typhimurium | 474 |
| Q8ZQZ7 | LPTE_SALTY | LPS-assembly lipoprotein LptE |  | Salmonella typhimurium | 196 |
| Q8ZRP0 | BAMA_SALTY | Outer membrane protein assembly factor BamA |  | Salmonella typhimurium | 804 |
| Q8ZRW0 | LPTD_SALTY | LPS-assembly protein LptD |  | Salmonella typhimurium | 786 |
| Q934G3 | KDGM_DICD3 | Oligogalacturonate-specific porin KdgM | 1.B.35.1.1 | Dickeya dadantii | 236 |
| Q99RL1 | HLGC_STAAM | Gamma-hemolysin component C |  | Staphylococcus aureus | 315 |
| Q9HVD1 | PAGL_PSEAE | Lipid A deacylase PagL |  | Pseudomonas aeruginosa | 173 |
| Q9I5U2 | LPTD_PSEAE | LPS-assembly protein LptD |  | Pseudomonas aeruginosa | 924 |
| Q9JZN9 | Y964_NEIMB | Probable TonB-dependent receptor NMB0964 | 1.B.14.2.9 | Neisseria meningitidis serogroup B | 758 |
| Q9K0U9 | TBP1_NEIMB | Transferrin-binding protein 1 |  | Neisseria meningitidis serogroup B | 915 |
| Q9TUM0 | TRFL_CAMDR | Lactotransferrin (Lactoferrin) |  | Camelus dromedarius | 708 |
| Q9X2V7 | MCJA_ECOLX | Microcin J25 (MccJ25) | 9.A.52.1.1 | Escherichia coli | 58 |

Table A.4: Entries in datasetTMB with 3D structure in PDB.

| Uniprot ID | PDB ID | Uniprot ID | PDB ID | Uniprot ID | PDB ID |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A0QR29 | 1UUN | P0A919 |  | P35916 | 4BSJ |
| A1JUB7 | 2LME | P0A920 |  | P37001 | 1MM4 |
| A5F934 | 6 EHB | P0A921 | 1FW2 | P37432 | 3NSG |
| E3PJ86 | 3OSS | P0A922 |  | P39767 | 1BH3 |
| E3PJ88 | 5ZDH | P0A923 |  | P42512 | 1XKW |
| E6MXW0 | 2MPA | P0A927 | 1TLW | P43261 | 2ZQK |
| O18423 | 3ZX7 | P0A928 |  | P45758 | 5WQ7 |
| O33407 | 3 KVN | P0A929 |  | P45779 | 5WQ8 |
| O88093 | 1WXR | P0A937 | 2KM7 | P46359 | 4 EPA |
| P00646 | 1E44 | P0A940 | 2QCZ | P48632 | 1XKH |
| P00747 | 1B2I | P0A941 |  | P49767 | 2X1W |
| P01031 | 1 CFA | P0A942 |  | P69434 | 4Y25 |
| P02748 | 5FMW | P0A943 |  | P69856 | 2WJQ |
| P02787 | 1 A 8 E | P0AC02 | 2 YHC | P69857 |  |
| P02929 | 1IHR | P0ADC1 | 4NHR | P69858 |  |
| P02930 | 1EK9 | P0ADE4 | 2LY3 | P75780 | 6BPM |
| P02931 | 1BT9 | P0ADE5 |  | P76045 | 2F1C |
| P02932 | 1 PHO | P0AEA2 | 4UV2 | P77211 | 3PIK |
| P02943 | 1AF6 | P0C2W0 | 3H7X | P77774 | 2YH3 |
| P04419 | 2 YSU | P0C6Q6 | 5 ONU | Q03155 | 4MEE |
| P05430 |  | P0DH58 |  | Q04884 | 2 MAF |
| P05695 | 2 O 4 V | P10384 | 1 T 16 | Q05098 | 5M9B |
| P05825 | 1 FEP | P10643 | 2 WCY | Q06584 | 4QKO |
| P06129 | 1 NQE | P11922 | 1CWV | Q16853 | $1 \mathrm{PU4}$ |
| P06716 | 1CII | P12643 | 1ES7 | Q2FFA2 |  |
| P06970 |  | P13036 | 1KMO | Q2FFA3 |  |
| P06971 | 1BY3 | P13423 | 1ACC | Q45340 | 3QQ2 |
| P06996 | 2 J 1 N | P13671 | 3 T 5 O | Q48473 | 10SM |
| P07110 | 2KT6 | P13794 | 4RLC | Q51397 | 5AZS |
| P07357 | 2QOS | P15319 | 1N0L | Q51487 | 1WP1 |
| P07358 | 30JY | P16869 | 6 E 4 V | Q54450 | 1B2V |
| P07360 | 1IW2 | P17315 | 2 HDF | Q5Y4Y6 | 5B5R |
| P08189 | 2JMR | P17811 | 2X4M | Q60932 | 3EMN |
| P08190 | 3 BFQ | P18195 |  | Q7BCK4 | 3ML3 |
| P08191 | 1 KIU | P18895 | 3 RBH | Q7BSW5 | 2QOM |
| P09167 | 1PRE | P19809 | 1E5U | Q7CJV2 | 5IXM |
| P09169 | 1 I 78 | P21796 | 2JK4 | Q83LX4 | 4Q35 |
| P09545 | 1XEZ | P22340 | 1A0S | Q83SQ0 | 4Q35 |
| P09616 | 3M2L | P24017 | 2K0L | Q8CVI4 | 2 VDA |
| P09883 | 1BXI | P24305 | 1E54 | Q8CVW1 | 2XE1 |
| P0A071 | 3B07 | P24391 | 5080 | Q8ZIK3 | 5IXM |
| P0A074 | 2QK7 | P26466 | 1MPR | Q8ZPC9 | 6C43 |
| P0A077 | 1LKF | P30130 | 1ZDV | Q8ZQZ7 | 4N4R |
| P0A232 | 5DQX | P30690 | 3WI4 | Q8ZRP0 | 5OR1 |
| P0A263 |  | P31243 | 2POR | Q8ZRW0 | 4N4R |

Table A. 4 continued from previous page

| Uniprot ID | PDB ID | Uniprot ID | PDB ID | Uniprot ID | PDB ID |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P0A264 | 1IIV | P31554 | 4RHB | Q934G3 | 4FQE |
| P0A903 | 2LAE | P31697 | 1BF8 | Q99RL1 | 4P1X |
| P0A910 | 1BXW | P31780 | 6I1X | Q9HVD1 | 2ERV |
| P0A911 |  | P32722 | 2ODJ | Q915U2 | 5IVA |
| P0A915 | 2F1T | P32977 | 4RJW | Q9JZN9 | 4RDR |
| P0A916 |  | P35077 | 3NJT | Q9K0U9 | 3V89 |
| P0A917 | 1ORM | P35672 | 2Y9K | Q9TUM0 | 1DTZ |
| P0A918 |  | P35818 | 4E9J | Q9X2V7 | 1PP5 |

## A. 4 Individual NorMD Scores

| MSA | NorMD Score for MSAs from Different Programs (for Top10 using OMPdb70) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ID | ClustalO | MAFFT | MUSCLE | T-Coffee | TMB-Coffee |
| A0QR29 | 0.324 | 0.492 | 0.408 | 0.491 | 0.443 |
| A1JUB7 | 0.455 | 0.607 | 0.533 | 0.592 | 0.601 |
| A5F934 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| E3PJ86 | 0.758 | 0.739 | 0.727 | 0.684 | 0.722 |
| E6MXW0 | 0.913 | 0.926 | 0.912 | 0.914 | 0.913 |
| O18423 | 0.181 | 0.439 | 0.209 | 0.216 | 0.185 |
| O33407 | 0.667 | 0.674 | 0.676 | 0.676 | 0.668 |
| 088093 | 0.706 | 0.703 | 0.708 | 0.708 | 0.704 |
| P00646 | 0.233 | 0.594 | 0.369 | 0.281 | 0.254 |
| P00747 | 0.733 | 0.768 | 0.653 | 0.696 | 0.778 |
| P01031 | 0.237 | 0.468 | 0.272 | 0.228 | 0.199 |
| P02929 | 0.669 | 1.016 | 0.574 | 0.579 | 0.564 |
| P02930 | 0.661 | 0.655 | 0.653 | 0.655 | 0.652 |
| P02931 | 0.959 | 0.830 | 0.915 | 0.966 | 0.961 |
| P02932 | 0.727 | 0.710 | 0.740 | 0.708 | 0.714 |
| P02943 | 0.387 | 0.514 | 0.422 | 0.403 | 0.416 |
| P05430 | 0.828 | 0.836 | 0.844 | 0.845 | 0.834 |
| P05695 | 0.839 | 0.838 | 0.860 | 0.844 | 0.838 |
| P05825 | 0.709 | 0.701 | 0.729 | 0.737 | 0.733 |
| P06129 | 0.667 | 0.673 | 0.673 | 0.672 | 0.670 |
| P06716 | 0.184 | 0.386 | 0.228 | 0.177 | 0.173 |
| P06970 | 0.684 | 0.685 | 0.685 | 0.686 | 0.689 |
| P06971 | 0.705 | 0.704 | 0.726 | 0.668 | 0.667 |
| P06996 | 0.728 | 0.766 | 0.823 | 0.770 | 0.771 |
| P07110 | 0.696 | 0.698 | 0.697 | 0.700 | 0.698 |
| P08189 | 0.315 | 0.564 | 0.332 | 0.427 | 0.328 |
| P08190 | 0.396 | 0.543 | 0.345 | 0.461 | 0.427 |
| P08191 | 0.275 | 0.492 | 0.281 | 0.295 | 0.219 |
| P09167 | 0.282 | 0.545 | 0.319 | 0.382 | 0.355 |
| P09169 | 0.555 | 0.566 | 0.570 | 0.571 | 0.563 |
| P09545 | 0.250 | 0.490 | 0.274 | 0.292 | 0.294 |
| P0A071 | 0.179 | 0.494 | 0.197 | 0.193 | 0.162 |
| P0A074 | 0.179 | 0.494 | 0.197 | 0.193 | 0.162 |
| P0A077 | 0.182 | 0.364 | 0.203 | 0.261 | 0.232 |

Table A. 5 continued from previous page
NorMD Score for MSAs from Different Programs
(for Top10 using OMPdb70)

| ID | ClustalO | MAFFT | MUSCLE | T-Coffee | TMB-Coffee |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P0A232 | 0.695 | 0.706 | 0.696 | 0.702 | 0.702 |
| P0A263 | 0.892 | 0.865 | 0.948 | 0.783 | 0.902 |
| P0A264 | 0.892 | 0.865 | 0.948 | 0.783 | 0.902 |
| P0A903 | 0.187 | 0.342 | 0.231 | 0.277 | 0.239 |
| P0A910 | 0.795 | 0.814 | 0.773 | 0.802 | 0.795 |


| P0A911 | 0.795 | 0.814 | 0.773 | 0.802 | 0.795 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P0A915 | 0.714 | 0.717 | 0.719 | 0.726 | 0.733 |
| P0A916 | 0.714 | 0.717 | 0.719 | 0.726 | 0.733 |


| P0A917 | 0.793 | 0.805 | 0.787 | 0.783 | 0.768 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P0A918 | 0.793 | 0.805 | 0.787 | 0.783 | 0.768 |


| P0A919 | 0.793 | 0.805 | 0.787 | 0.783 | 0.768 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P0A920 | 0.793 | 0.805 | 0.787 | 0.783 | 0.768 |


| P0A921 | 0.696 | 0.707 | 0.699 | 0.703 | 0.703 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P0A922 | 0.696 | 0.707 | 0.699 | 0.703 | 0.703 |


| P0A923 | 0.696 | 0.707 | 0.699 | 0.703 | 0.703 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P0A927 | 0.705 | 0.713 | 0.715 | 0.716 | 0.715 |


| P0A928 | 0.705 | 0.713 | 0.715 | 0.716 | 0.715 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P0A929 | 0.705 | 0.713 | 0.715 | 0.716 | 0.715 |


| P0A937 | 1.407 | 1.545 | 1.276 | 1.439 | 1.174 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P0A940 | 0.746 | 0.746 | 0.714 | 0.746 | 0.746 |
| P0A941 | 0.746 | 0.746 | 0.714 | 0.746 | 0.746 |


| P0A942 | 0.746 | 0.746 | 0.714 | 0.746 | 0.746 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P0A943 | 0.746 | 0.746 | 0.714 | 0.746 | 0.746 |
| P0AC02 | 0.263 | 0.546 | 0.266 | 0.299 | 0.229 |
| P0ADE4 | 0.724 | 0.632 | 0.741 | 0.613 | 0.611 |
| P0ADE5 | 0.724 | 0.632 | 0.741 | 0.613 | 0.611 |
| P0AEA2 | 0.707 | 0.712 | 0.693 | 0.717 | 0.712 |
| P0C2W0 | 0.621 | 0.687 | 0.592 | 0.656 | 0.641 |
| P0C6Q6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| P0DH58 | 0.847 | 0.871 | 0.876 | 0.855 | 0.849 |
| P10384 | 1.000 | 1.000 | 0.946 | 0.957 | 0.957 |
| P11922 | 0.968 | 1.039 | 1.030 | 1.003 | 0.963 |
| P13036 | 0.757 | 0.756 | 0.765 | 0.760 | 0.761 |
| P13423 | 0.183 | 0.376 | 0.286 | 0.246 | 0.197 |
| P13794 | 0.674 | 0.965 | 0.952 | 0.781 | 0.778 |
| P16869 | 0.659 | 0.673 | 0.656 | 0.670 | 0.665 |
| P17315 | 0.819 | 0.833 | 0.829 | 0.830 | 0.821 |
| P17811 | 0.661 | 0.668 | 0.651 | 0.667 | 0.666 |
| P18195 | 0.821 | 0.878 | 0.828 | 0.861 | 0.828 |
| P18895 | 0.720 | 0.732 | 0.733 | 0.733 | 0.726 |
| P19809 | 0.615 | 0.753 | 0.739 | 0.734 | 0.744 |
| P21796 | 0.283 | 0.432 | 0.422 | 0.279 | 0.236 |
| P22340 | 0.875 | 0.881 | 0.848 | 0.880 | 0.796 |
| P24017 | 0.746 | 0.783 | 0.776 | 0.769 | 0.746 |
| P24305 | 0.831 | 0.848 | 0.838 | 0.845 | 0.831 |
| P24391 | 0.177 | 0.450 | 0.229 | 0.256 | 0.220 |
| P26466 | 1.095 | 0.976 | 0.418 | 0.522 | 0.426 |
| P30130 | 0.687 | 0.690 | 0.648 | 0.692 | 0.695 |
| P30690 | 0.782 | 0.685 | 0.804 | 0.827 | 0.787 |
| P31243 | 0.775 | 0.706 | 0.665 | 0.664 | 0.776 |
|  |  |  |  |  |  |

Table A. 5 continued from previous page

| MSA | NorMD Score for MSAs from Different Programs (for Top10 using OMPdb70) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ID | ClustalO | MAFFT | MUSCLE | T-Coffee | TMB-Coffee |
| P31554 | 0.736 | 0.745 | 0.747 | 0.735 | 0.735 |
| P31697 | 0.251 | 0.453 | 0.268 | 0.222 | 0.162 |
| P31780 | 0.733 | 0.736 | 0.735 | 0.735 | 0.735 |
| P32722 | 0.669 | 0.669 | 0.670 | 0.671 | 0.652 |
| P32977 | 0.987 | 0.989 | 0.998 | 0.993 | 0.988 |
| P35077 | 0.635 | 0.651 | 0.645 | 0.649 | 0.645 |
| P35672 | 0.778 | 0.781 | 0.777 | 0.781 | 0.778 |
| P35818 | 0.821 | 0.743 | 0.834 | 0.788 | 0.817 |
| P37001 | 0.791 | 0.663 | 0.659 | 0.520 | 0.519 |
| P37432 | 0.826 | 0.717 | 0.837 | 0.864 | 0.857 |
| P39767 | 0.722 | 0.740 | 0.729 | 0.728 | 0.728 |
| P42512 | 0.644 | 0.645 | 0.588 | 0.649 | 0.649 |
| P43261 | 0.926 | 0.995 | 0.984 | 0.935 | 0.950 |
| P45758 | 0.783 | 0.784 | 0.786 | 0.786 | 0.782 |
| P45779 | 0.747 | 0.749 | 0.748 | 0.750 | 0.747 |
| P46359 | 0.715 | 0.731 | 0.719 | 0.720 | 0.719 |
| P48632 | 0.748 | 0.746 | 0.747 | 0.750 | 0.747 |
| P69434 | 0.238 | 0.449 | 0.306 | 0.320 | 0.297 |
| P69856 | 0.605 | 0.636 | 0.603 | 0.632 | 0.622 |
| P69857 | 0.605 | 0.636 | 0.603 | 0.632 | 0.622 |
| P69858 | 0.605 | 0.636 | 0.603 | 0.632 | 0.622 |
| P75780 | 0.675 | 0.671 | 0.675 | 0.662 | 0.656 |
| P76045 | 0.793 | 0.801 | 0.793 | 0.803 | 0.796 |
| P77211 | 0.643 | 0.645 | 0.629 | 0.639 | 0.642 |
| P77774 | 0.157 | 0.386 | 0.260 | 0.203 | 0.150 |
| Q03155 | 1.004 | 1.062 | 1.031 | 0.973 | 1.004 |
| Q04884 | 1.111 | 1.152 | 1.156 | 1.065 | 1.146 |
| Q05098 | 0.773 | 0.768 | 0.774 | 0.768 | 0.775 |
| Q16853 | 0.191 | 0.441 | 0.243 | 0.229 | 0.227 |
| Q2FFA3 | 0.158 | 0.462 | 0.241 | 0.199 | 0.176 |
| Q45340 | 0.746 | 0.772 | 0.763 | 0.758 | 0.753 |
| Q48473 | 0.954 | 0.958 | 0.954 | 0.958 | 0.959 |
| Q51397 | 0.724 | 0.724 | 0.724 | 0.728 | 0.727 |
| Q51487 | 0.722 | 0.724 | 0.717 | 0.710 | 0.725 |
| Q54450 | 0.261 | 0.713 | 0.346 | 0.274 | 0.239 |
| Q5Y4Y6 | 0.274 | 0.492 | 0.252 | 0.257 | 0.240 |
| Q60932 | 0.241 | 0.590 | 0.295 | 0.286 | 0.262 |
| Q7BCK4 | 0.802 | 0.860 | 0.860 | 0.819 | 0.805 |
| Q7BSW5 | 0.727 | 0.747 | 0.740 | 0.736 | 0.733 |
| Q7CJV2 | 0.217 | 0.393 | 0.243 | 0.235 | 0.177 |
| Q83SQ0 | 0.732 | 0.741 | 0.747 | 0.732 | 0.731 |
| Q8CVI4 | 0.387 | 0.954 | 0.379 | 0.403 | 0.416 |
| Q8CVW1 | 0.715 | 0.756 | 0.697 | 0.752 | 0.757 |
| Q8ZIK3 | 0.741 | 0.739 | 0.729 | 0.740 | 0.741 |
| Q8ZPC9 | 0.266 | 0.677 | 0.355 | 0.381 | 0.398 |
| Q8ZRP0 | 0.763 | 0.780 | 0.726 | 0.763 | 0.763 |
| Q8ZRW0 | 0.733 | 0.744 | 0.747 | 0.731 | 0.733 |
| Q934G3 | 0.739 | 0.767 | 0.731 | 0.741 | 0.740 |
| Q99RL1 | 0.253 | 0.535 | 0.365 | 0.319 | 0.277 |
| Q9HVD1 | 0.685 | 0.687 | 0.686 | 0.696 | 0.697 |

Table A. 5 continued from previous page

| MSA | NorMD |  |  |  |  | Score for MSAs from Different <br> (for Top10 |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ClustalO | MAFFT | MUSCLE | T-Coffee | TMB-Coffee |  |  |  |  |  |
| Q9I5U2 | 0.784 | 0.868 | 0.786 | 0.870 | 0.871 |  |  |  |  |  |
| Q9JZN9 |  | 0.715 | 0.719 | 0.723 | 0.723 | 0.719 |  |  |  |  |
| Q9K0U9 | 0.780 | 0.797 | 0.798 | 0.797 | 0.791 |  |  |  |  |  |
| Average | 0.648 | 0.716 | 0.656 | 0.654 | 0.645 |  |  |  |  |  |
| Variance | 0.061 | 0.030 | 0.052 | 0.052 | 0.056 |  |  |  |  |  |

Table A.5: NorMD Score for MSAs from Different Programs (for Top10 using OMPdb70)

|  | NorMD Score for MSAs from Different Programs (for Top10 using swissprot) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MSA | ClustalO | MAFFT | Muscle | T-Coffee | TMB-Coffee |
| A1JUB7 | 2.090 | 2.852 | 2.619 | 2.538 | 2.388 |
| A5F934 | 1.224 | 1.253 | 1.313 | 1.173 | 1.187 |
| E3PJ86 | 0.988 | 1.006 | 1.000 | 1.002 | 1.004 |
| E6MXW0 | 1.062 | 1.113 | 1.059 | 1.077 | 1.077 |
| O18423 | 0.280 | 1.829 | 1.448 | 1.060 | 0.941 |
| 033407 | 0.963 | 1.000 | 1.026 | 1.026 | 1.002 |
| O88093 | 0.932 | 0.952 | 0.946 | 0.939 | 0.934 |
| P00646 | 2.219 | 1.963 | 1.627 | 1.747 | 1.842 |
| P00747 | 1.390 | 0.177 | 1.830 | 0.178 | 0.164 |
| P01031 | 1.138 | 1.174 | 1.311 | 1.151 | 1.143 |
| P02748 | 0.963 | 0.989 | 0.972 | 0.980 | 0.980 |
| P02787 | 0.830 | 0.828 | 0.850 | 0.830 | 0.832 |
| P02929 | 0.504 | 0.757 | 0.488 | 0.451 | 0.455 |
| P02930 | 0.539 | 0.524 | 0.545 | 0.592 | 0.591 |
| P02931 | 0.787 | 0.779 | 0.777 | 0.778 | 0.784 |
| P02932 | 0.886 | 0.874 | 0.884 | 0.884 | 0.889 |
| P04419 | 1.804 | 2.770 | 1.466 | 2.334 | 2.158 |
| P05430 | 1.143 | 1.167 | 1.026 | 1.149 | 1.149 |
| P05825 | 1.250 | 1.441 | 1.248 | 1.322 | 1.329 |
| P06716 | 0.811 | 0.874 | 0.840 | 0.806 | 0.795 |
| P06970 | 0.740 | 0.761 | 0.755 | 0.760 | 0.753 |
| P06971 | 0.698 | 0.777 | 0.759 | 0.755 | 0.743 |
| P06996 | 1.257 | 1.265 | 1.124 | 1.269 | 1.269 |
| P07110 | 0.730 | 0.749 | 0.750 | 0.755 | 0.754 |
| P07357 | 0.948 | 1.015 | 0.979 | 1.011 | 0.985 |
| P07358 | 1.008 | 1.091 | 1.018 | 1.099 | 1.087 |
| P07360 | 0.928 | 0.995 | 1.031 | 0.951 | 0.962 |
| P08189 | 0.721 | 0.726 | 0.714 | 0.759 | 0.749 |
| P08190 | 0.638 | 0.692 | 0.680 | 0.766 | 0.685 |
| P09167 | 0.535 | 1.484 | 0.891 | 0.776 | 0.634 |
| P09169 | 0.301 | 1.082 | 0.687 | 0.609 | 0.513 |
| P09883 | 1.579 | 1.760 | 1.166 | 1.854 | 1.759 |
| P0A071 | 0.958 | 1.000 | 1.000 | 1.000 | 1.000 |
| P0A074 | 0.958 | 1.000 | 1.000 | 1.000 | 1.000 |
| P0A077 | 1.171 | 1.223 | 1.179 | 1.231 | 1.187 |
| P0A263 | 0.956 | 0.953 | 0.965 | 0.961 | 0.962 |
| P0A264 | 0.956 | 0.953 | 0.965 | 0.961 | 0.962 |

Table A. 6 continued from previous page

|  | NorMD Score for MSAs from Different Programs (for Top10 using swissprot) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P0A903 | 0.794 | 0.838 | 0.835 | 0.817 | 0.812 |
| P0A910 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| P0A911 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| P0A915 | 0.573 | 0.570 | 0.647 | 0.708 | 0.701 |
| P0A916 | 0.573 | 0.570 | 0.647 | 0.708 | 0.701 |
| P0A917 | 0.835 | 0.950 | 0.513 | 0.465 | 0.597 |
| P0A918 | 0.835 | 0.950 | 0.513 | 0.465 | 0.597 |
| P0A919 | 0.835 | 0.950 | 0.513 | 0.465 | 0.597 |
| P0A920 | 0.835 | 0.950 | 0.513 | 0.465 | 0.597 |
| P0A927 | 2.128 | 2.675 | 2.203 | 1.836 | 2.730 |
| P0A928 | 2.128 | 2.675 | 2.203 | 1.836 | 2.730 |
| P0A929 | 2.128 | 2.675 | 2.203 | 1.836 | 2.730 |
| P0A937 | 0.779 | 0.772 | 0.782 | 0.824 | 0.836 |
| P0AC02 | 0.567 | 0.572 | 0.572 | 0.593 | 0.591 |
| P0AEA2 | 0.713 | 1.523 | 0.967 | 0.906 | 0.456 |
| P0C2W0 | 2.088 | 3.023 | 2.790 | 2.780 | 2.534 |
| P0C6Q6 | 1.572 | 1.585 | 1.428 | 1.574 | 1.522 |
| P0DH58 | 1.062 | 1.113 | 1.059 | 1.077 | 1.077 |
| P10384 | 1.013 | 1.074 | 1.062 | 1.034 | 1.036 |
| P10643 | 1.038 | 1.054 | 1.088 | 1.076 | 1.068 |
| P11922 | 0.927 | 1.132 | 1.000 | 1.059 | 1.042 |
| P12643 | 1.091 | 1.122 | 1.055 | 1.113 | 1.092 |
| P13036 | 0.905 | 0.996 | 0.953 | 0.967 | 0.938 |
| P13671 | 1.001 | 1.024 | 1.091 | 1.048 | 1.046 |
| P15319 | 0.753 | 0.765 | 0.765 | 0.783 | 0.782 |
| P16869 | 0.762 | 0.785 | 0.774 | 0.782 | 0.783 |
| P17315 | 1.274 | 1.487 | 1.267 | 1.391 | 1.369 |
| P18195 | 1.048 | 1.086 | 1.026 | 1.054 | 1.054 |
| P18895 | 0.438 | 0.670 | 0.495 | 0.518 | 0.601 |
| P19809 | 1.303 | 1.517 | 1.496 | 1.516 | 1.513 |
| P21796 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| P22340 | 1.313 | 2.577 | 1.886 | 1.317 | 1.328 |
| P24017 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| P24305 | 1.405 | 1.657 | 1.549 | 1.531 | 1.483 |
| P24391 | 1.003 | 0.972 | 1.039 | 1.030 | 1.028 |
| P26466 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| P30130 | 0.768 | 0.778 | 0.609 | 0.396 | 0.776 |
| P30690 | 1.053 | 1.091 | 1.025 | 1.059 | 1.059 |
| P31243 | 0.143 | 0.276 | 0.179 | 0.133 | 0.098 |
| P31554 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| P31697 | 0.744 | 0.745 | 0.747 | 0.757 | 0.757 |
| P31780 | 0.959 | 0.973 | 0.884 | 0.973 | 0.978 |
| P32722 | 0.372 | 0.513 | 0.319 | 0.336 | 0.328 |
| P35077 | 0.412 | 0.450 | 0.435 | 0.422 | 0.417 |
| P35672 | 0.705 | 0.736 | 0.701 | 0.713 | 0.725 |
| P35818 | 0.959 | 0.980 | 0.968 | 0.976 | 0.978 |
| P35916 | 0.869 | 0.923 | 0.874 | 0.876 | 0.873 |
| P37001 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| P37432 | 0.808 | 0.817 | 0.797 | 0.805 | 0.809 |
| P42512 | 0.836 | 0.867 | 0.864 | 0.861 | 0.858 |
| P43261 | 0.953 | 1.164 | 1.005 | 1.062 | 1.043 |

Table A. 6 continued from previous page

|  | NorMD Score for MSAs from Different Programs (for Top10 using swissprot) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P45758 | 0.868 | 0.877 | 0.857 | 0.877 | 0.878 |
| P45779 | 0.988 | 1.006 | 0.891 | 1.005 | 1.005 |
| P46359 | 0.842 | 0.922 | 0.827 | 0.917 | 0.917 |
| P48632 | 0.787 | 0.825 | 0.797 | 0.821 | 0.820 |
| P49767 | 1.140 | 1.386 | 1.504 | 1.267 | 1.241 |
| P69856 | 0.609 | 0.932 | 0.568 | 0.675 | 0.660 |
| P69857 | 0.609 | 0.932 | 0.568 | 0.675 | 0.660 |
| P69858 | 0.609 | 0.932 | 0.568 | 0.675 | 0.660 |
| P75780 | 0.785 | 0.816 | 0.807 | 0.820 | 0.819 |
| P77211 | 0.841 | 0.859 | 0.931 | 0.847 | 0.846 |
| P77774 | 0.668 | 0.674 | 0.649 | 0.677 | 0.671 |
| Q03155 | 1.041 | 0.893 | 0.630 | 0.575 | 0.595 |
| Q04884 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Q05098 | 1.147 | 1.258 | 1.171 | 1.174 | 1.188 |
| Q06584 | 0.918 | 1.310 | 0.604 | 0.667 | 0.789 |
| Q16853 | 1.013 | 1.051 | 1.025 | 1.012 | 1.012 |
| Q2FFA2 | 1.408 | 1.439 | 1.384 | 1.423 | 1.416 |
| Q2FFA3 | 1.221 | 1.277 | 1.179 | 1.258 | 1.230 |
| Q45340 | 0.617 | 0.686 | 0.626 | 0.616 | 0.615 |
| Q48473 | 1.018 | 1.033 | 1.022 | 0.944 | 1.023 |
| Q51397 | 0.756 | 0.761 | 0.770 | 0.756 | 0.757 |
| Q51487 | 0.762 | 0.767 | 0.769 | 0.762 | 0.762 |
| Q54450 | 0.760 | 2.253 | 1.520 | 1.033 | 1.103 |
| Q5Y4Y6 | 0.729 | 0.776 | 0.757 | 0.774 | 0.755 |
| Q60932 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Q7BSW5 | 0.917 | 0.926 | 0.890 | 0.436 | 0.921 |
| Q7CJV2 | 0.841 | 0.877 | 0.903 | 0.928 | 0.891 |
| Q8CVW1 | 1.020 | 0.943 | 0.948 | 0.893 | 1.026 |
| Q8ZIK3 | 0.881 | 0.878 | 0.886 | 1.027 | 0.883 |
| Q8ZPC9 | 1.000 | 1.000 | 1.000 | 0.882 | 1.000 |
| Q8ZRP0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Q8ZRW0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Q99RL1 | 0.958 | 1.000 | 1.000 | 1.000 | 1.000 |
| Q9I5U2 | 0.949 | 0.946 | 0.950 | 1.000 | 0.951 |
| Q9JZN9 | 1.104 | 1.279 | 1.121 | 0.950 | 1.144 |
| Q9TUM0 | 0.970 | 0.972 | 1.058 | 1.178 | 0.972 |
| Average | 0.967 | 1.096 | 0.996 | 0.976 | 0.996 |
| Variance | 0.134 | 0.254 | 0.167 | 0.161 | 0.197 |

Table A.6: NorMD Score for MSAs from Different Programs (for Top10 using swissprot)

| MSA | NorMD Score for MSAs from Different Programs <br> (for Top10 <br> using unnirefOMBB100) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | ClustalO | MAFFT | Muscle | T-Coffee | TMB-Coffee |
| A0QR29 | 0.171 | 0.377 | 0.176 | 0.227 | 0.190 |
| A1JUB7 | 1.403 | 1.188 | 1.601 | 1.397 | 1.363 |
| A5F934 | 0.407 | 0.592 | 0.405 | 0.384 | 0.348 |
| E6MXW0 | 0.430 | 2.114 | 1.705 | 0.979 | 0.954 |
| O33407 | 0.966 | 0.966 | 0.969 | 0.966 | 0.966 |

Table A. 7 continued from previous page
$\left.\begin{array}{llllll}\hline \text { MSA } & \text { NorMD } & \text { Score for MSAs from Different Programs } \\ \text { (for Top10 } \mathbf{\text { using }} \text { swissprot) }\end{array}\right]$

Table A. 7 continued from previous page

| MSA | NorMDScore for MSAs from Different Programs <br> (for Top10 using swissprot) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P24305 | 0.725 | 0.950 | 1.069 | 0.669 | 0.499 |
| P26466 | 0.377 | 0.786 | 0.568 | 0.389 | 0.353 |
| P30130 | 0.424 | 1.190 | 0.690 | 0.613 | 0.470 |
| P30690 | 0.370 | 0.843 | 0.682 | 0.562 | 0.444 |
| P35818 | 2.023 | 3.251 | 1.041 | 0.580 | 0.355 |
| P43261 | 0.273 | 0.597 | 0.386 | 0.322 | 0.307 |
| P46359 | 0.465 | 0.819 | 0.604 | 0.551 | 0.546 |
| P48632 | 0.605 | 0.832 | 0.541 | 0.553 | 0.553 |
| P69434 | 0.293 | 1.022 | 0.641 | 0.480 | 0.623 |
| P69856 | 0.233 | 0.314 | 0.221 | 0.247 | 0.255 |
| P69857 | 0.233 | 0.314 | 0.221 | 0.247 | 0.255 |
| P69858 | 0.233 | 0.314 | 0.221 | 0.247 | 0.255 |
| P75780 | 0.284 | 0.465 | 0.286 | 0.301 | 0.369 |
| P76045 | 0.201 | 0.522 | 0.461 | 0.335 | 0.234 |
| P77774 | 0.713 | 0.727 | 0.771 | 0.735 | 0.735 |
| Q03155 | 1.374 | 0.848 | 0.881 | 0.761 | 1.266 |
| Q04884 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Q05098 | 0.602 | 0.712 | 0.469 | 0.465 | 0.470 |
| Q2FFA2 | 2.464 | 4.229 | 3.355 | 3.105 | 3.041 |
| Q45340 | 1.017 | 1.085 | 1.033 | 1.020 | 0.956 |
| Q48473 | 0.127 | 0.419 | 0.197 | 0.209 | 0.240 |
| Q54450 | 2.345 | 2.741 | 2.376 | 2.596 | 2.019 |
| Q5Y4Y6 | 0.990 | 1.235 | 1.103 | 1.015 | 1.022 |
| Q7BCK4 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Q7BSW5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Q8CVI4 | 0.425 | 1.177 | 0.706 | 0.477 | 0.420 |
| Q8CVW1 | 0.623 | 1.027 | 0.795 | 0.482 | 0.475 |
| Q8ZRP0 | 1.133 | 1.148 | 1.253 | 1.143 | 1.144 |
| Q934G3 | 0.389 | 0.638 | 0.315 | 0.335 | 0.310 |
| Q9HVD1 | 0.173 | 0.469 | 0.342 | 0.366 | 0.373 |
| Q9I5U2 | 0.853 | 2.118 | 1.269 | 0.938 | 0.944 |
| Q9JZN9 | 0.332 | 0.880 | 0.605 | 0.400 | 0.338 |
| Average | 0.802 | 1.131 | 0.989 | 0.845 | 0.811 |
| Variance | 0.334 | 0.680 | 0.806 | 0.445 | 0.385 |
|  |  |  |  |  |  |
|  |  | 0 | 0 |  |  |

Table A.7: NorMD Score for MSAs from Different Programs (for Top10 using unirefOMBB100)

| MSA | NorMD Score for MSAs from Different Programs (for Top25 using OMPdb70) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ID | ClustalO | MAFFT | Muscle | T-Coffee | TMB-Coffee |
| A0QR29 | 0.250 | 0.368 | 0.286 | 0.337 | 0.351 |
| A1JUB7 | 0.382 | 0.460 | 0.467 | 0.456 | 0.466 |
| A5F934 | 0.833 | 0.830 | 0.806 | 0.840 | 0.832 |
| E3PJ86 | 0.706 | 0.721 | 0.699 | 0.679 | 0.678 |
| E6MXW0 | 0.887 | 0.981 | 0.856 | 0.877 | 0.877 |
| O33407 | 0.648 | 0.661 | 0.658 | 0.658 | 0.657 |
| O88093 | 0.725 | 0.743 | 0.727 | 0.750 | 0.742 |
| P02929 | 0.308 | 0.645 | 0.456 | 0.451 | 0.443 |
| P02930 | 0.699 | 0.671 | 0.697 | 0.660 | 0.660 |

Table A. 8 continued from previous page

| MSA | NorMD Score for MSAs from Different Programs (for Top10 using swissprot) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P02931 | 0.762 | 0.768 | 0.772 | 0.769 | 0.767 |
| P02932 | 0.756 | 0.752 | 0.759 | 0.756 | 0.751 |
| P02943 | 0.793 | 0.805 | 0.762 | 0.760 | 0.760 |
| P05430 | 0.887 | 0.939 | 0.854 | 0.858 | 0.858 |
| P05695 | 0.844 | 0.893 | 0.879 | 0.872 | 0.861 |
| P05825 | 0.768 | 0.768 | 0.775 | 0.770 | 0.769 |
| P06129 | 0.724 | 0.723 | 0.728 | 0.730 | 0.726 |
| P06970 | 0.771 | 0.773 | 0.781 | 0.778 | 0.778 |
| P06971 | 0.673 | 0.675 | 0.674 | 0.671 | 0.667 |
| P06996 | 0.780 | 0.786 | 0.787 | 0.790 | 0.789 |
| P07110 | 0.705 | 0.706 | 0.707 | 0.709 | 0.706 |
| P09169 | 0.590 | 0.602 | 0.593 | 0.605 | 0.598 |
| P0A232 | 0.715 | 0.718 | 0.729 | 0.733 | 0.731 |
| P0A263 | 0.725 | 0.764 | 0.737 | 0.737 | 0.733 |
| P0A264 | 0.725 | 0.764 | 0.737 | 0.737 | 0.733 |
| P0A910 | 0.722 | 0.723 | 0.724 | 0.729 | 0.728 |
| P0A911 | 0.722 | 0.723 | 0.724 | 0.729 | 0.728 |
| P0A915 | 0.745 | 0.823 | 0.994 | 0.578 | 0.634 |
| P0A916 | 0.745 | 0.823 | 0.994 | 0.578 | 0.634 |
| P0A917 | 0.654 | 0.672 | 0.680 | 0.678 | 0.679 |
| P0A918 | 0.654 | 0.672 | 0.680 | 0.678 | 0.679 |
| P0A919 | 0.654 | 0.672 | 0.680 | 0.678 | 0.679 |
| P0A920 | 0.654 | 0.672 | 0.680 | 0.678 | 0.679 |
| P0A921 | 0.724 | 0.734 | 0.733 | 0.740 | 0.733 |
| P0A922 | 0.724 | 0.734 | 0.733 | 0.740 | 0.733 |
| P0A923 | 0.724 | 0.734 | 0.733 | 0.740 | 0.733 |
| P0A927 | 0.679 | 0.711 | 0.708 | 0.694 | 0.690 |
| P0A928 | 0.679 | 0.711 | 0.708 | 0.694 | 0.690 |
| P0A929 | 0.679 | 0.711 | 0.708 | 0.694 | 0.690 |
| P0A940 | 0.648 | 0.652 | 0.645 | 0.651 | 0.648 |
| P0A941 | 0.648 | 0.652 | 0.645 | 0.651 | 0.648 |
| P0A942 | 0.648 | 0.652 | 0.645 | 0.651 | 0.648 |
| P0A943 | 0.648 | 0.652 | 0.645 | 0.651 | 0.648 |
| P0ADE4 | 0.625 | 0.625 | 0.625 | 0.622 | 0.618 |
| P0ADE5 | 0.625 | 0.625 | 0.625 | 0.622 | 0.618 |
| P0AEA2 | 0.727 | 0.731 | 0.722 | 0.737 | 0.729 |
| P0C2W0 | 0.357 | 0.497 | 0.453 | 0.481 | 0.489 |
| P0C6Q6 | 0.830 | 0.849 | 0.843 | 0.863 | 0.828 |
| P0DH58 | 0.872 | 0.981 | 0.854 | 0.873 | 0.873 |
| P10384 | 0.800 | 0.800 | 0.799 | 0.806 | 0.806 |
| P11922 | 0.923 | 0.741 | 0.729 | 0.740 | 0.739 |
| P13036 | 0.828 | 0.821 | 0.825 | 0.829 | 0.828 |
| P13794 | 0.707 | 0.745 | 0.763 | 0.740 | 0.751 |
| P16869 | 0.669 | 0.685 | 0.683 | 0.683 | 0.671 |
| P17315 | 0.778 | 0.788 | 0.783 | 0.787 | 0.771 |
| P17811 | 0.637 | 0.651 | 0.640 | 0.649 | 0.645 |
| P18195 | 0.851 | 0.939 | 0.847 | 0.862 | 0.855 |
| P18895 | 0.786 | 0.748 | 0.813 | 0.789 | 0.800 |
| P19809 | 0.613 | 0.608 | 0.631 | 0.588 | 0.610 |
| P21796 | 0.167 | 0.372 | 0.244 | 0.215 | 0.218 |
| P22340 | 0.731 | 0.747 | 0.739 | 0.739 | 0.737 |

Table A. 8 continued from previous page

| MSA | NorMD |  |  |  | Score for MSAs from Different Programs |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (for Top10 $\mathbf{\text { using }}$ swissprot) |  |  |  |  |  |$]$.

Table A. 8 continued from previous page

| MSA | NorMD Score for MSAs from Different Programs (for Top10 using swissprot) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Variance | 0.023 | 0.016 | 0.020 | 0.018 | 0.018 |

Table A.8: NorMD Score for MSAs from Different Programs (for Top25 using OMPdb70)

| MSA | NorMD Score for MSAs from Different Programs (for Top25 using swissprot) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ID | ClustalO | MAFFT | Muscle | T-Coffee | TMB-Coffee |
| A1JUB7 | 0.339 | 1.083 | 0.927 | 0.607 | 0.506 |
| A5F934 | 1.356 | 1.421 | 1.201 | 1.297 | 1.351 |
| E3PJ86 | 0.948 | 1.014 | 0.981 | 0.985 | 0.990 |
| O33407 | 1.099 | 1.161 | 1.086 | 1.207 | 1.195 |
| O88093 | 1.254 | 1.454 | 1.268 | 1.374 | 1.329 |
| P01031 | 1.091 | 1.139 | 1.108 | 1.118 | 1.086 |
| P02748 | 0.841 | 0.860 | 0.846 | 0.861 | 0.857 |
| P02787 | 0.939 | 0.941 | 0.927 | 0.944 | 0.937 |
| P02930 | 0.289 | 0.639 | 0.436 | 0.391 | 0.398 |
| P02931 | 0.826 | 0.829 | 0.826 | 0.835 | 0.823 |
| P02932 | 0.842 | 0.844 | 0.845 | 0.847 | 0.843 |
| P05430 | 0.246 | 0.623 | 0.564 | 0.513 | 0.484 |
| P06970 | 0.679 | 0.709 | 0.716 | 0.704 | 0.708 |
| P06971 | 0.676 | 0.717 | 0.723 | 0.730 | 0.740 |
| P06996 | 0.875 | 0.908 | 0.865 | 0.913 | 0.908 |
| P07110 | 0.649 | 0.656 | 0.658 | 0.661 | 0.662 |
| P07357 | 0.848 | 0.886 | 0.818 | 0.866 | 0.877 |
| P07358 | 0.831 | 0.854 | 0.873 | 0.853 | 0.846 |
| P07360 | 0.824 | 0.832 | 0.792 | 0.804 | 0.809 |
| P08189 | 0.645 | 0.671 | 0.683 | 0.702 | 0.701 |
| P08190 | 0.585 | 0.553 | 0.584 | 0.598 | 0.596 |
| P0A071 | 1.097 | 1.161 | 1.203 | 1.113 | 1.116 |
| P0A074 | 1.097 | 1.161 | 1.203 | 1.113 | 1.116 |
| P0A077 | 0.941 | 0.970 | 1.134 | 0.961 | 0.949 |
| P0A263 | 0.890 | 0.897 | 0.876 | 0.900 | 0.891 |
| P0A264 | 0.890 | 0.897 | 0.876 | 0.900 | 0.891 |
| P0A910 | 1.080 | 1.270 | 1.079 | 1.162 | 1.118 |
| P0A911 | 1.080 | 1.270 | 1.079 | 1.162 | 1.118 |
| P0A937 | 0.486 | 0.680 | 0.526 | 0.683 | 0.671 |
| P0AEA2 | 0.184 | 0.504 | 0.320 | 0.333 | 0.297 |
| P0C2W0 | 1.308 | 1.707 | 1.682 | 1.293 | 1.150 |
| P0C6Q6 | 1.355 | 1.421 | 1.193 | 1.294 | 1.351 |
| P0DH58 | 0.549 | 0.744 | 0.553 | 0.573 | 0.582 |
| P10643 | 0.828 | 0.859 | 0.821 | 0.845 | 0.857 |
| P11922 | 1.462 | 1.027 | 1.514 | 0.398 | 0.423 |
| P12643 | 1.045 | 1.084 | 1.042 | 1.078 | 1.077 |
| P13036 | 1.098 | 1.229 | 1.138 | 1.034 | 1.065 |
| P13671 | 0.839 | 0.873 | 0.852 | 0.856 | 0.869 |
| P15319 | 0.785 | 0.788 | 0.805 | 0.826 | 0.824 |
| P16869 | 0.696 | 0.740 | 0.743 | 0.731 | 0.736 |
| P19809 | 1.693 | 1.286 | 1.974 | 0.514 | 0.497 |
| P21796 | 0.777 | 0.782 | 0.760 | 0.804 | 0.776 |

Table A. 9 continued from previous page

| MSA | NorMD Score for MSAs from Different Programs (for Top25 using swissprot) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P22340 | 1.536 | 1.797 | 1.386 | 1.583 | 1.560 |
| P24017 | 0.797 | 0.944 | 0.814 | 0.868 | 0.842 |
| P24391 | 0.472 | 0.636 | 0.568 | 0.521 | 0.492 |
| P26466 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| P30130 | 0.674 | 0.626 | 0.598 | 0.493 | 0.493 |
| P30690 | 0.636 | 0.574 | 0.553 | 0.537 | 0.530 |
| P31554 | 0.899 | 0.905 | 0.941 | 0.903 | 0.904 |
| P31697 | 0.725 | 0.722 | 0.732 | 0.757 | 0.749 |
| P31780 | 1.103 | 1.175 | 1.090 | 1.152 | 1.146 |
| P35672 | 0.622 | 0.679 | 0.700 | 0.678 | 0.673 |
| P35818 | 0.869 | 0.892 | 0.886 | 0.882 | 0.881 |
| P37001 | 0.851 | 0.828 | 0.863 | 0.909 | 0.829 |
| P37432 | 0.835 | 0.839 | 0.854 | 0.842 | 0.834 |
| P42512 | 0.808 | 0.857 | 0.820 | 0.861 | 0.850 |
| P43261 | 1.710 | 1.282 | 1.527 | 0.457 | 0.497 |
| P45758 | 0.945 | 0.978 | 0.984 | 0.969 | 0.968 |
| P45779 | 0.989 | 1.018 | 1.037 | 1.012 | 1.009 |
| P46359 | 0.778 | 0.806 | 0.754 | 0.801 | 0.777 |
| P48632 | 0.761 | 0.820 | 0.766 | 0.795 | 0.799 |
| P49767 | 0.887 | 1.010 | 1.018 | 0.941 | 0.948 |
| P75780 | 0.721 | 0.789 | 0.783 | 0.775 | 0.773 |
| P77211 | 0.559 | 0.610 | 0.624 | 0.621 | 0.586 |
| P77774 | 0.497 | 0.544 | 0.546 | 0.526 | 0.533 |
| Q03155 | 0.574 | 0.678 | 0.563 | 0.509 | 0.516 |
| Q04884 | 1.540 | 0.850 | 0.769 | 0.811 | 0.865 |
| Q16853 | 0.878 | 0.908 | 0.924 | 0.903 | 0.900 |
| Q2FFA2 | 1.092 | 1.172 | 1.138 | 1.133 | 1.130 |
| Q2FFA3 | 0.870 | 0.932 | 0.946 | 0.906 | 0.911 |
| Q45340 | 0.548 | 0.688 | 0.585 | 0.637 | 0.649 |
| Q48473 | 0.868 | 0.869 | 0.857 | 0.874 | 0.869 |
| Q51397 | 0.593 | 0.609 | 0.606 | 0.625 | 0.621 |
| Q51487 | 0.585 | 0.593 | 0.601 | 0.623 | 0.610 |
| Q60932 | 0.792 | 0.794 | 0.760 | 0.815 | 0.788 |
| Q7BSW5 | 1.229 | 1.345 | 1.139 | 1.254 | 1.254 |
| Q83SQ0 | 0.901 | 0.907 | 0.941 | 0.905 | 0.906 |
| Q8CVW1 | 0.861 | 0.862 | 0.865 | 0.867 | 0.862 |
| Q8ZIK3 | 0.900 | 0.907 | 0.946 | 0.904 | 0.905 |
| Q8ZPC9 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Q99RL1 | 1.080 | 1.147 | 1.129 | 1.105 | 1.104 |
| Q9I5U2 | 0.726 | 0.749 | 0.727 | 0.743 | 0.748 |
| Q9K0U9 | 1.210 | 1.278 | 1.170 | 1.264 | 1.239 |
| Q9TUM0 | 0.880 | 0.889 | 0.929 | 0.883 | 0.882 |
| Average | 0.877 | 0.924 | 0.899 | 0.857 | 0.851 |
| Variance | 0.088 | 0.067 | 0.076 | 0.060 | 0.059 |

Table A.9: NorMD Score for MSAs from Different Programs (for Top25 using swissprot)

| MSA |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | NorMD Score for MSAs from Different Programs |  |  |  |  |
|  | (for Top25 |  |  |  |  |
| using unirefOMBB100) |  |  |  |  |  |

Table A. 10 continued from previous page

| MSA | NorMD Score for MSAs from Different Programs <br> (for Top25 |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | using unirefOMBB100) |  |  |  |  |

Table A.10: NorMD Score for MSAs from Different Programs (for Top25 using unirefOMBB100)

| MSA | NorMD Score for MSAs from Different Programs (for Top50 using OMPdb70) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ID | ClustalO | MAFFT | Muscle | T-Coffee | TMB-Coffee |
| A1JUB7 | 0.378 | 0.539 | 0.527 | 0.497 | 0.504 |
| A5F934 | 0.807 | 0.830 | 0.794 | 0.808 | 0.807 |
| E3PJ86 | 0.720 | 0.724 | 0.728 | 0.725 | 0.723 |
| E6MXW0 | 0.813 | 0.831 | 0.804 | 0.822 | 0.826 |
| O33407 | 0.667 | 0.692 | 0.691 | 0.693 | 0.686 |
| 088093 | 0.811 | 0.747 | 0.724 | 0.703 | 0.698 |
| P02929 | 0.181 | 0.465 | 0.316 | 0.255 | 0.270 |
| P02930 | 0.662 | 0.661 | 0.669 | 0.665 | 0.665 |
| P02931 | 0.726 | 0.731 | 0.727 | 0.733 | 0.726 |
| P02932 | 0.706 | 0.716 | 0.698 | 0.708 | 0.710 |
| P02943 | 0.718 | 0.735 | 0.707 | 0.718 | 0.710 |
| P05430 | 0.807 | 0.816 | 0.820 | 0.822 | 0.821 |
| P05695 | 0.689 | 0.713 | 0.737 | 0.721 | 0.717 |
| P05825 | 0.760 | 0.765 | 0.764 | 0.763 | 0.762 |
| P06129 | 0.724 | 0.731 | 0.741 | 0.733 | 0.740 |
| P06970 | 0.689 | 0.693 | 0.702 | 0.697 | 0.696 |
| P06971 | 0.611 | 0.615 | 0.615 | 0.616 | 0.613 |
| P06996 | 0.710 | 0.740 | 0.715 | 0.723 | 0.720 |
| P07110 | 0.710 | 0.713 | 0.712 | 0.716 | 0.711 |
| P09169 | 0.554 | 0.565 | 0.560 | 0.564 | 0.563 |
| P0A232 | 0.712 | 0.717 | 0.722 | 0.712 | 0.709 |
| P0A263 | 0.713 | 0.731 | 0.718 | 0.722 | 0.717 |
| P0A264 | 0.713 | 0.731 | 0.718 | 0.722 | 0.717 |
| P0A910 | 0.743 | 0.735 | 0.752 | 0.744 | 0.748 |
| P0A911 | 0.743 | 0.735 | 0.752 | 0.744 | 0.748 |
| P0A915 | 0.630 | 0.637 | 0.633 | 0.614 | 0.611 |
| P0A916 | 0.630 | 0.637 | 0.633 | 0.614 | 0.611 |
| P0A917 | 0.670 | 0.671 | 0.662 | 0.681 | 0.682 |
| P0A918 | 0.670 | 0.671 | 0.662 | 0.681 | 0.682 |
| P0A919 | 0.670 | 0.671 | 0.662 | 0.681 | 0.682 |
| P0A920 | 0.670 | 0.671 | 0.662 | 0.681 | 0.682 |
| P0A921 | 0.713 | 0.721 | 0.707 | 0.717 | 0.714 |
| P0A922 | 0.713 | 0.721 | 0.707 | 0.717 | 0.714 |
| P0A923 | 0.713 | 0.721 | 0.707 | 0.717 | 0.714 |
| P0A927 | 0.712 | 0.731 | 0.728 | 0.726 | 0.721 |
| P0A928 | 0.712 | 0.731 | 0.728 | 0.726 | 0.721 |
| P0A929 | 0.712 | 0.731 | 0.728 | 0.726 | 0.721 |
| P0A940 | 0.640 | 0.644 | 0.641 | 0.641 | 0.641 |
| P0A941 | 0.640 | 0.644 | 0.641 | 0.641 | 0.641 |
| P0A942 | 0.640 | 0.644 | 0.641 | 0.641 | 0.641 |

Table A. 11 continued from previous page

| MSA | NorMD Score for MSAs from Different Programs (for Top50 using OMPdb70) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P0A943 | 0.640 | 0.644 | 0.641 | 0.641 | 0.641 |
| P0ADE4 | 0.650 | 0.645 | 0.647 | 0.649 | 0.642 |
| P0ADE5 | 0.650 | 0.645 | 0.647 | 0.649 | 0.642 |
| P0AEA2 | 0.927 | 1.158 | 0.978 | 1.102 | 0.972 |
| P0C2W0 | 0.349 | 0.520 | 0.543 | 0.497 | 0.516 |
| P0C6Q6 | 0.807 | 0.823 | 0.811 | 0.808 | 0.807 |
| P0DH58 | 0.801 | 0.818 | 0.803 | 0.814 | 0.816 |
| P10384 | 0.747 | 0.731 | 0.749 | 0.739 | 0.751 |
| P11922 | 0.744 | 0.669 | 0.705 | 0.684 | 0.676 |
| P13036 | 0.758 | 0.751 | 0.762 | 0.764 | 0.763 |
| P13794 | 0.602 | 0.614 | 0.611 | 0.621 | 0.602 |
| P16869 | 0.661 | 0.665 | 0.665 | 0.668 | 0.664 |
| P17315 | 0.755 | 0.759 | 0.759 | 0.765 | 0.760 |
| P17811 | 0.583 | 0.594 | 0.590 | 0.596 | 0.594 |
| P18195 | 0.810 | 0.826 | 0.808 | 0.824 | 0.826 |
| P18895 | 0.559 | 0.577 | 0.605 | 0.606 | 0.613 |
| P19809 | 0.627 | 0.633 | 0.654 | 0.626 | 0.635 |
| P22340 | 0.561 | 0.601 | 0.589 | 0.582 | 0.575 |
| P24017 | 0.744 | 0.732 | 0.747 | 0.749 | 0.752 |
| P24305 | 0.846 | 0.845 | 0.848 | 0.851 | 0.848 |
| P26466 | 0.719 | 0.735 | 0.711 | 0.723 | 0.718 |
| P30130 | 0.696 | 0.698 | 0.685 | 0.699 | 0.697 |
| P30690 | 0.794 | 0.800 | 0.803 | 0.805 | 0.804 |
| P31243 | 0.728 | 0.741 | 0.739 | 0.727 | 0.721 |
| P31554 | 0.646 | 0.655 | 0.651 | 0.649 | 0.648 |
| P31780 | 0.749 | 0.752 | 0.753 | 0.753 | 0.750 |
| P32722 | 0.592 | 0.604 | 0.601 | 0.603 | 0.601 |
| P32977 | 0.633 | 0.675 | 0.675 | 0.649 | 0.640 |
| P35077 | 0.540 | 0.540 | 0.545 | 0.556 | 0.556 |
| P35672 | 0.754 | 0.753 | 0.756 | 0.761 | 0.758 |
| P35818 | 0.777 | 0.776 | 0.780 | 0.784 | 0.776 |
| P37001 | 0.659 | 0.660 | 0.670 | 0.675 | 0.675 |
| P37432 | 0.764 | 0.758 | 0.741 | 0.758 | 0.757 |
| P39767 | 0.691 | 0.699 | 0.668 | 0.714 | 0.711 |
| P42512 | 0.585 | 0.592 | 0.569 | 0.596 | 0.589 |
| P43261 | 0.621 | 0.624 | 0.643 | 0.614 | 0.621 |
| P45758 | 0.739 | 0.743 | 0.742 | 0.744 | 0.740 |
| P45779 | 0.731 | 0.734 | 0.740 | 0.735 | 0.733 |
| P46359 | 0.651 | 0.662 | 0.662 | 0.667 | 0.664 |
| P48632 | 0.666 | 0.674 | 0.672 | 0.671 | 0.665 |
| P69856 | 0.478 | 0.514 | 0.505 | 0.523 | 0.521 |
| P69857 | 0.478 | 0.514 | 0.505 | 0.523 | 0.521 |
| P69858 | 0.478 | 0.514 | 0.505 | 0.523 | 0.521 |
| P75780 | 0.661 | 0.664 | 0.663 | 0.664 | 0.659 |
| P76045 | 0.145 | 0.270 | 0.225 | 0.271 | 0.266 |
| P77211 | 0.674 | 0.679 | 0.680 | 0.681 | 0.680 |
| Q03155 | 0.641 | 0.675 | 0.663 | 0.636 | 0.632 |
| Q04884 | 0.718 | 0.766 | 0.729 | 0.719 | 0.732 |
| Q05098 | 0.753 | 0.756 | 0.753 | 0.757 | 0.756 |
| Q45340 | 0.577 | 0.620 | 0.602 | 0.615 | 0.616 |
| Q48473 | 0.711 | 0.721 | 0.710 | 0.716 | 0.710 |

Table A. 11 continued from previous page

| MSA | NorMD Score for MSAs from Different Programs (for Top50 using OMPdb70) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q51397 | 0.642 | 0.645 | 0.643 | 0.648 | 0.648 |
| Q51487 | 0.671 | 0.679 | 0.677 | 0.681 | 0.680 |
| Q7BCK4 | 0.644 | 0.663 | 0.661 | 0.644 | 0.641 |
| Q7BSW5 | 0.815 | 0.719 | 0.613 | 0.674 | 0.691 |
| Q83SQ0 | 0.632 | 0.645 | 0.641 | 0.636 | 0.635 |
| Q8CVI4 | 0.718 | 0.733 | 0.711 | 0.718 | 0.711 |
| Q8CVW1 | 0.735 | 0.746 | 0.729 | 0.738 | 0.741 |
| Q8ZIK3 | 0.637 | 0.644 | 0.642 | 0.641 | 0.639 |
| Q8ZRP0 | 0.640 | 0.644 | 0.640 | 0.641 | 0.640 |
| Q8ZRW0 | 0.647 | 0.657 | 0.651 | 0.651 | 0.650 |
| Q934G3 | 0.604 | 0.616 | 0.611 | 0.635 | 0.630 |
| Q9HVD1 | 0.716 | 0.731 | 0.723 | 0.733 | 0.726 |
| Q9I5U2 | 0.717 | 0.716 | 0.726 | 0.726 | 0.728 |
| Q9JZN9 | 0.807 | 0.805 | 0.814 | 0.821 | 0.817 |
| Q9K0U9 | 1.011 | 0.847 | 0.803 | 0.788 | 0.779 |
| Average | 0.676 | 0.691 | 0.683 | 0.685 | 0.683 |
| Variance | 0.014 | 0.010 | 0.009 | 0.010 | 0.009 |

Table A.11: NorMD Score for MSAs from Different Programs (for Top50 using OMPdb70)

| MSA | NorMD |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Score for MSAs from Different Programs <br> (for Top50 <br> using swissprot) |  |  |  |  |
| ID | ClustalO | MAFFT | Muscle | T-Coffee | TMB-Coffee |
| A5F934 | 0.864 | 0.955 | 0.597 | 0.797 | 0.709 |
| E3PJ86 | 0.514 | 0.650 | 0.583 | 0.594 | 0.577 |
| P01031 | 1.146 | 1.174 | 1.133 | 1.152 | 1.148 |
| P02787 | 1.116 | 1.133 | 1.096 | 1.171 | 1.161 |
| P02931 | 0.363 | 0.498 | 0.377 | 0.406 | 0.375 |
| P02932 | 0.263 | 0.516 | 0.383 | 0.340 | 0.356 |
| P06971 | 0.637 | 0.693 | 0.680 | 0.689 | 0.686 |
| P07360 | 0.440 | 0.501 | 0.478 | 0.435 | 0.396 |
| P08189 | 0.471 | 0.581 | 0.585 | 0.629 | 0.610 |
| P0A910 | 0.736 | 0.768 | 0.748 | 0.819 | 0.812 |
| P0A911 | 0.736 | 0.768 | 0.748 | 0.819 | 0.812 |
| P10643 | 0.957 | 1.370 | 1.073 | 0.224 | 0.235 |
| P12643 | 0.753 | 0.806 | 0.796 | 0.769 | 0.754 |
| P16869 | 0.683 | 0.721 | 0.732 | 0.778 | 0.766 |
| P24017 | 0.745 | 0.772 | 0.750 | 0.829 | 0.820 |
| P26466 | 0.873 | 1.077 | 0.906 | 0.917 | 0.904 |
| P31554 | 0.737 | 0.752 | 0.754 | 0.749 | 0.749 |
| P37001 | 0.775 | 0.766 | 0.750 | 0.792 | 0.785 |
| P45758 | 0.707 | 0.731 | 0.709 | 0.731 | 0.728 |
| P45779 | 0.528 | 0.679 | 0.563 | 0.591 | 0.584 |
| P48632 | 0.673 | 0.683 | 0.709 | 0.703 | 0.701 |
| P49767 | 0.772 | 1.127 | 0.887 | 0.876 | 0.913 |
| P75780 | 0.763 | 0.878 | 0.849 | 0.867 | 0.840 |
| P77774 | 0.416 | 0.677 | 0.641 | 0.595 | 0.618 |
| Q7BSW5 | 0.313 | 0.622 | 0.504 | 0.453 | 0.453 |
| Q83SQ0 | 0.735 | 0.750 | 0.754 | 0.747 | 0.747 |
|  |  |  |  |  |  |

Table A. 12 continued from previous page

| MSA | NorMD <br> (for Top50 $\mathbf{~ u s i n g ~ s w i s s p r o t ) ~}$ |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Q8ZIK3 | 0.756 | 0.766 | 0.758 | 0.762 | 0.762 |
| Q8ZPC9 | 0.726 | 0.730 | 0.744 | 0.737 | 0.732 |
| Q8ZRW0 | 0.747 | 0.756 | 0.771 | 0.752 | 0.752 |
| Q9I5U2 | 0.626 | 0.636 | 0.631 | 0.656 | 0.656 |
| Q9K0U9 | 1.002 | 1.064 | 1.004 | 1.048 | 1.043 |
| Q9TUM0 | 1.094 | 1.114 | 1.229 | 1.076 | 1.067 |
| Average | 0.708 | 0.804 | 0.748 | 0.734 | 0.727 |
| Variance | 0.048 | 0.046 | 0.041 | 0.047 | 0.047 |

Table A.12: NorMD Score for MSAs from Different Programs (for Top50 using swissprot)

| MSA | NorMD Score for MSAs from Different Programs |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | (for Top50 |  |  |  |  |
|  | using unirefOMBB100) |  |  |  |  |

Table A. 13 continued from previous page

| MSA | NorMD Score for MSAs from Different Programs <br> (for Top50 <br> using unirefOMBB100) |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| P69856 | 0.137 | 0.260 | 0.197 | 0.193 | 0.204 |
| P69857 | 0.137 | 0.260 | 0.197 | 0.193 | 0.204 |
| P69858 | 0.137 | 0.260 | 0.197 | 0.193 | 0.204 |
| P76045 | 0.205 | 0.336 | 0.260 | 0.212 | 0.230 |
| P77774 | 0.469 | 0.563 | 0.586 | 0.457 | 0.496 |
| Q03155 | 0.787 | 0.790 | 0.711 | 0.597 | 0.585 |
| Q04884 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Q05098 | 0.404 | 0.448 | 0.310 | 0.399 | 0.410 |
| Q45340 | 0.682 | 0.762 | 0.730 | 0.704 | 0.674 |
| Q7BCK4 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Q7BSW5 | 0.862 | 0.871 | 0.863 | 0.868 | 0.864 |
| Q8ZRP0 | 0.628 | 0.657 | 0.520 | 0.666 | 0.653 |
| Q9HVD1 | 0.127 | 0.315 | 0.230 | 0.195 | 0.197 |
| Q9I5U2 | 1.069 | 2.199 | 1.230 | 1.149 | 1.035 |
| Average | 0.602 | 0.713 | 0.599 | 0.619 | 0.574 |
| Variance | 0.163 | 0.228 | 0.082 | 0.153 | 0.062 |

Table A.13: NorMD Score for MSAs from Different Programs (for Top50 using unirefOMBB100)

## A. 5 Paired t-test

| Paired t-test | OMPdb70 (10 Hits) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | ClustalO | MAFFT | MUSCLE | T-Coffee | TMB-Coffee |
| ClustalO | NA | $\mathbf{6 . 3 6}$ | 1.17 | 0.97 | -0.47 |
| MAFFT |  | NA | $\mathbf{- 5 . 9 0}$ | $\mathbf{- 6 . 3 0}$ | $\mathbf{- 6 . 3 9}$ |
| MUSCLE |  |  | NA | -0.43 | $\mathbf{- 2 . 6 1}$ |
| T-Coffee |  |  |  | NA | $\mathbf{- 2 . 7 3}$ |
| TMB-Coffee |  |  |  |  | NA |

Table A.14: Paired t-test (OMPdb70 - 10 Hits). NULL hypothesis: x and y have identical performance. Highlighted values are significant.

| Paired t-test | unirefOMBB100 (10 Hits) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | ClustalO | MAFFT | MUSCLE | T-Coffee | TMB-Coffee |
| ClustalO | NA | $\mathbf{7 . 0 5}$ | $\mathbf{3 . 6 4}$ | 1.64 | 0.36 |
| MAFFT |  | NA | $\mathbf{- 3 . 5 8}$ | $\mathbf{- 6 . 8 5}$ | $\mathbf{- 6 . 8 4}$ |
| MUSCLE |  |  | NA | $\mathbf{- 4 . 1 6}$ | $\mathbf{- 4 . 3 2}$ |
| T-Coffee |  |  |  | NA | $\mathbf{- 2 . 8 3}$ |
| TMB-Coffee |  |  |  |  | NA |

Table A. 15 continued from previous page
Paired t-test $\quad$ unirefOMBB100 (10 Hits)

Table A.15: Paired t-test (unirefOMBB100-10 Hits). NULL hypothesis: x and y have identical performance. Highlighted values are significant.

| Paired t-test | swissprot (25 Hits) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | ClustalO | MAFFT | MUSCLE | T-Coffee | TMB-Coffee |
| ClustalO | NA | $\mathbf{2 . 5 7}$ | 1.5 | -0.73 | -1.02 |
| MAFFT |  | NA | -1.74 | $\mathbf{- 3 . 8 7}$ | -4.15 |
| MUSCLE |  |  | NA | -1.58 | -1.82 |
| T-Coffee |  |  |  | NA | $\mathbf{- 2 . 2 7}$ |
| TMB-Coffee |  |  |  |  | NA |

Table A.16: Paired t-test (Swissprot - 25 Hits). NULL hypothesis: x and y have identical performance. Highlighted values are significant.

| Paired t-test | OMPdb70 (25 Hits) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | ClustalO | MAFFT | MUSCLE | T-Coffee | TMB-Coffee |
| ClustalO | NA | $\mathbf{3 . 3 8}$ | 1.33 | -0.17 | -0.31 |
| MAFFT |  | NA | -1.61 | $\mathbf{- 4 . 0 8}$ | $\mathbf{- 4 . 6 1}$ |
| MUSCLE |  |  | NA | -1.47 | $\mathbf{- 1 . 6 9}$ |
| T-Coffee |  |  |  | NA | -0.79 |
| TMB-Coffee |  |  |  |  | NA |

Table A.17: Paired t-test (OMPdb70-25 Hits). NULL hypothesis: x and y have identical performance. Highlighted values are significant.

| Paired t-test | unirefOMBB100 (25 Hits) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | ClustalO | MAFFT | MUSCLE | T-Coffee | TMB-Coffee |
| ClustalO | NA | $\mathbf{3 . 2 0}$ | 1.59 | 1.46 | 0.13 |
| MAFFT |  | NA | $\mathbf{- 3 . 5 3}$ | $\mathbf{- 4 . 2 0}$ | $\mathbf{- 2 . 8 4}$ |
| MUSCLE |  |  | NA | -0.49 | -1.77 |
| T-Coffee |  |  |  | NA | -1.09 |
| TMB-Coffee |  |  |  |  | NA |

Table A.18: Paired t-test (unirefOMBB100-25 Hits). NULL hypothesis: x and y have identical performance. Highlighted values are significant.

| Paired t-test | swissprot (50 Hits) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | ClustalO | MAFFT | MUSCLE | T-Coffee | TMB-Coffee |
| ClustalO | NA | $\mathbf{4 . 8 1}$ | $\mathbf{2 . 7 1}$ | 1.00 | 0.69 |
| MAFFT |  | NA | $\mathbf{- 3 . 2 6}$ | -1.85 | -2.09 |

Table A. 19 continued from previous page

| Paired t-test | swissprot (50 Hits) |  |  |  |
| :--- | :---: | :---: | :--- | :---: |
| MUSCLE | NA | -0.45 | -0.76 |  |
| T-Coffee |  | NA | $\mathbf{- 2 . 1 8}$ |  |
| TMB-Coffee |  | NA |  |  |

Table A.19: Paired t-test (Swissprot - 50 Hits). NULL hypothesis: x and y have identical performance. Highlighted values are significant.

| Paired t-test | OMPdb70 (50 Hits) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | ClustalO | MAFFT | MUSCLE | T-Coffee | TMB-Coffee |
| ClustalO | NA | $\mathbf{3 . 0 1}$ | 1.44 | $\mathbf{2 . 1 9}$ | 1.61 |
| MAFFT |  | NA | $\mathbf{- 3 . 0 7}$ | $\mathbf{- 2 . 2}$ | $\mathbf{- 2 . 8 1}$ |
| MUSCLE |  |  | NA | 1.47 | 0.16 |
| T-Coffee |  |  |  | NA | -1.97 |
| TMB-Coffee |  |  |  |  | NA |

Table A.20: Paired t-test (OMPdb70-50Hits). NULL hypothesis: x and y have identical performance. Highlighted values are significant.

| Paired t-test | unirefOMBB100 (50 Hits) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | ClustalO | MAFFT | MUSCLE | T-Coffee | TMB-Coffee |
| ClustalO | NA | $\mathbf{4 . 1 4}$ | -0.11 | 1.44 | -0.57 |
| MAFFT |  | NA | -0.57 | $\mathbf{- 3 . 4 1}$ | $\mathbf{- 2 . 2 7}$ |
| MUSCLE |  |  | NA | 0.69 | -1.06 |
| T-Coffee |  |  |  | NA | -0.95 |
| TMB-Coffee |  |  |  |  | NA |

Table A.21: Paired t-test (unirefOMBB100-50 Hits). NULL hypothesis: x and y have identical performance. Highlighted values are significant.

## Bibliography

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool," Journal of Molecular Biology, vol. 215, no. 3, pp. 403-410, 1990.
[2] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman, "Gapped BLAST and PSI-BLAST: A new generation of protein database search programs," Nucleic Acids Research, vol. 25, no. 17, pp. 3389-3402, 1997.
[3] A. Bahr, J. D. Thompson, J.-C. Thierry, and O. Poch, "BAliBASE (Benchmark Alignment dataBASE): enhancements for repeats, transmembrane sequences and circular permutations," Nucleic Acids Research, vol. 29, no. 1, pp. 323-326, 2001.
[4] A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane et al., "The universal protein resource (UniProt)," Nucleic Acids Research, vol. 33, no. suppl_1, pp. D154-D159, 2005.
[5] G. J. Barton, "Sequence alignment for molecular replacement," Acta Crystallographica Section D: Biological Crystallography, vol. 64, no. 1, pp. 25-32, 2008.
[6] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, "The protein data bank," Nucleic Acids Research, vol. 28, no. 1, pp. 235-242, 2000.
[7] T. J. Beveridge, "Structures of gram-negative cell walls and their derived membrane vesicles," Journal of Bacteriology, vol. 181, no. 16, pp. 4725-4733, 1999.
[8] G. Blackshields, F. Sievers, W. Shi, A. Wilm, and D. G. Higgins, "Sequence embedding for fast construction of guide trees for multiple sequence alignment," Algorithms for Molecular Biology, vol. 5, no. 1, p. 21, 2010.
[9] H. Carrillo and D. Lipman, "The multiple sequence alignment problem in biology," SIAM Journal on Applied Mathematics, vol. 48, no. 5, pp. 1073-1082, 1988.
[10] J.-M. Chang, P. Di Tommaso, J.-F. Taly, and C. Notredame, "Accurate multiple sequence alignment of transmembrane proteins with PSI-Coffee," BMC Bioinformatics, vol. 13, no. 4, p. S1, 2012.
[11] R. Chenna, H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G. Higgins, and J. D. Thompson, "Multiple sequence alignment with the Clustal series of programs," Nucleic Acids Research, vol. 31, no. 13, pp. 3497-3500, 2003.
[12] M. Dayhoff, R. Schwartz, and B. Orcott, "A model of evolutionary change in proteins," Atlas of Protein Sequence and Structure, vol. 5, pp. 345-352, 1978.
[13] C. B. Do, M. S. Mahabhashyam, M. Brudno, and S. Batzoglou, "ProbCons: Probabilistic consistency-based multiple sequence alignment," Genome Research, vol. 15, no. 2, pp. 330-340, 2005.
[14] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge University Press, 1998.
[15] R. V. Eck, "Non-randomness in amino-acid 'alleles'," Nature, vol. 191, no. 4795, p. 1284, 1961.
[16] R. C. Edgar, "MUSCLE: Multiple sequence alignment with high accuracy and high throughput," Nucleic Acids Research, vol. 32, no. 5, pp. 1792-1797, 2004.
[17] J. W. Fairman, N. Noinaj, and S. K. Buchanan, "The structural biology of $\beta$-barrel membrane proteins: a summary of recent reports," Current Opinion in Structural Biology, vol. 21, no. 4, pp. 523-531, 2011.
[18] D.-F. Feng and R. F. Doolittle, "Progressive alignment and phylogenetic tree construction of protein sequences," Methods in Enzymology, vol. 183, pp. 375-387, 1990.
[19] E. W. Floden, P. D. Tommaso, M. Chatzou, C. Magis, C. Notredame, and J.-M. Chang, "PSI/TM-Coffee: A web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases," Nucleic Acids Research, vol. 44, no. W1, pp. W339-W343, 2016.
[20] S. Galdiero, M. Galdiero, and C. Pedone, " $\beta$-barrel membrane bacterial proteins: structure, function, assembly and interaction with lipids," Current Protein and Peptide Science, vol. 8, no. 1, pp. 63-82, 2007.
[21] G. H. Gonnet, M. A. Cohen, and S. A. Benner, "Exhaustive matching of the entire protein sequence database," Science, vol. 256, no. 5062, pp. 1443-1445, 1992.
[22] O. Gotoh, "Significant improvement in accuracy of multiple protein sequence alignments by iterative refinement as assessed by reference to structural alignments," Journal of Molecular Biology, vol. 264, no. 4, pp. 823-838, 1996.
[23] O. Gotoh, "A weighting system and algorithm for aligning many phylogenetically related sequences," Bioinformatics, vol. 11, no. 5, pp. 543-551, 1995.
[24] D. Gusfield, "Efficient methods for multiple sequence alignment with guaranteed error bounds," Bulletin of Mathematical Biology, vol. 55, no. 1, pp. 141-154, 1993.
[25] S. Henikoff and J. G. Henikoff, "Amino acid substitution matrices from protein blocks," Proceedings of the National Academy of Sciences, vol. 89, no. 22, pp. 10915-10919, 1992.
[26] S. Henikoff and J. G. Henikoff, "Performance evaluation of amino acid substitution matrices," Proteins: Structure, Function, and Bioinformatics, vol. 17, no. 1, pp. 4961, 1993.
[27] B. K. Jap and P. J. Walian, "Structure and functional mechanism of porins," Physiological Reviews, vol. 76, no. 4, pp. 1073-1088, 1996.
[28] K. Katoh, K. Misawa, K.-i. Kuma, and T. Miyata, "MAFFT: A novel method for rapid multiple sequence alignment based on fast fourier transform," Nucleic Acids Research, vol. 30, no. 14, pp. 3059-3066, 2002.
[29] M. Kimura, The neutral theory of molecular evolution. Cambridge University Press, 1983.
[30] J. H. Kleinschmidt, "Folding of $\beta$-barrel membrane proteins in lipid bilayersUnassisted and assisted folding and insertion," Biochimica et Biophysica Acta (BBA)Biomembranes, vol. 1848, no. 9, pp. 1927-1943, 2015.
[31] R. Koebnik, K. P. Locher, and P. Van Gelder, "Structure and function of bacterial outer membrane proteins: barrels in a nutshell," Molecular Microbiology, vol. 37, no. 2, pp. 239-253, 2000.
[32] T. Lassmann and E. L. Sonnhammer, "Automatic assessment of alignment quality," Nucleic Acids Research, vol. 33, no. 22, pp. 7120-7128, 2005.
[33] D. J. Lipman and W. R. Pearson, "Rapid and sensitive protein similarity searches," Science, vol. 227, no. 4693, pp. 1435-1441, 1985.
[34] K. L. Loening, "IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN) Nomenclature and Symbolism for Amino Acids and Peptides," European Journal of Biochemistry, vol. 138, no. 1, pp. 9-37, 1984.
[35] M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, and A. L. Lomize, "OPM database and PPM web server: resources for positioning of proteins in membranes," Nucleic Acids Research, vol. 40, no. D1, pp. D370-D376, 2011.
[36] J. E. Merritt and K. L. Loening, "IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN) Nomenclature of Tetrapyrroles Recommendations 1978," European Journal of Biochemistry, vol. 108, no. 1, pp. 1-30, 1980.
[37] B. Morgenstern, A. Dress, and T. Werner, "Multiple DNA and protein sequence alignment based on segment-to-segment comparison," Proceedings of the National Academy of Sciences, vol. 93, no. 22, pp. 12 098-12 103, 1996.
[38] D. W. Mount, "Comparison of the PAM and BLOSUM amino acid substitution matrices," Cold Spring Harbor Protocols, vol. 3, no. 6, 2008.
[39] N. R. Movva, K. Nakamura, and M. Inouye, "Gene structure of the OmpA protein, a major surface protein of Escherichia coli required for cell-cell interaction," Journal of Molecular Biology, vol. 143, no. 3, pp. 317-328, 1980.
[40] J. Muller, C. J. Creevey, J. D. Thompson, D. Arendt, and P. Bork, "AQUA: Automated quality improvement for multiple sequence alignments," Bioinformatics, vol. 26, no. 2, pp. 263-265, 2009.
[41] Ö. U. Nalbantoğlu, "Dynamic programming," in Multiple Sequence Alignment Methods. Springer, 2014, pp. 3-27.
[42] S. B. Needleman and C. D. Wunsch, "A general method applicable to the search for similarities in the amino acid sequence of two proteins," Journal of Molecular Biology, vol. 48, no. 3, pp. 443-453, 1970.
[43] C. Notredame, D. G. Higgins, and J. Heringa, "T-Coffee: A novel method for fast and accurate multiple sequence alignment," Journal of Molecular Biology, vol. 302, no. 1, pp. 205-217, 2000.
[44] C. Notredame, L. Holm, and D. G. Higgins, "Coffee: an objective function for multiple sequence alignments." Bioinformatics (Oxford, England), vol. 14, no. 5, pp. 407-422, 1998.
[45] F. S.-M. Pais, P. de Cássia Ruy, G. Oliveira, and R. S. Coimbra, "Assessing the efficiency of multiple sequence alignment programs," Algorithms for Molecular Biology, vol. 9, no. 1, p. 4, 2014.
[46] J. Pei and N. V. Grishin, "AL2CO: calculation of positional conservation in a protein sequence alignment," Bioinformatics, vol. 17, no. 8, pp. 700-712, 2001.
[47] W. Pirovano, K. A. Feenstra, and J. Heringa, "Praline ${ }^{\text {TM }}$ : A strategy for improved multiple alignment of transmembrane proteins," Bioinformatics, vol. 24, no. 4, pp. 492-497, 2008.
[48] N. Saitou and M. Nei, "The neighbor-joining method: A new method for reconstructing phylogenetic trees." Molecular Biology and Evolution, vol. 4, no. 4, pp. 406-425, 1987.
[49] G. E. Schulz, "Transmembrane $\beta$-barrel proteins," Advances In Protein Chemistry, vol. 63, pp. 47-70, 2003.
[50] Y. Shafrir and H. R. Guy, "STAM: Simple transmembrane alignment method," Bioinformatics, vol. 20, no. 5, pp. 758-769, 2004.
[51] F. Sievers and D. G. Higgins, "Clustal Omega for making accurate alignments of many protein sequences," Protein Science, vol. 27, no. 1, pp. 135-145, 2018.
[52] V. Simossis, J. Kleinjung, and J. Heringa, "Homology-extended sequence alignment," Nucleic Acids Research, vol. 33, no. 3, pp. 816-824, 2005.
[53] T. F. Smith and M. S. Waterman, "Identification of common molecular subsequences," Journal of Molecular Biology, vol. 147, no. 1, pp. 195-197, 1981.
[54] J. Söding, "Protein homology detection by HMM-HMM comparison," Bioinformatics, vol. 21, no. 7, pp. 951-960, 2004.
[55] R. R. Sokal, "A statistical method for evaluating systematic relationship," University of Kansas Science Bulletin, vol. 28, pp. 1409-1438, 1958.
[56] L. K. Tamm, H. Hong, and B. Liang, "Folding and assembly of $\beta$-barrel membrane proteins," Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1666, no. 1-2, pp. 250-263, 2004.
[57] J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, "The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools," Nucleic Acids Research, vol. 25, no. 24, pp. 48764882, 1997.
[58] J. D. Thompson, D. G. Higgins, and T. J. Gibson, "CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice," Nucleic Acids Research, vol. 22, no. 22, pp. 4673-4680, 1994.
[59] J. D. Thompson, P. Koehl, R. Ripp, and O. Poch, "BAliBASE 3.0: latest developments of the multiple sequence alignment benchmark," Proteins: Structure, Function, and Bioinformatics, vol. 61, no. 1, pp. 127-136, 2005.
[60] J. D. Thompson, F. Plewniak, R. Ripp, J.-C. Thierry, and O. Poch, "Towards a reliable objective function for multiple sequence alignments," Journal of Molecular Biology, vol. 314, no. 4, pp. 937-951, 2001.
[61] J. D. Thompson, J.-C. Thierry, and O. Poch, "Rascal: Rapid scanning and correction of multiple sequence alignments," Bioinformatics, vol. 19, no. 9, pp. 1155-1161, 2003.
[62] W. Tian, M. Lin, K. Tang, J. Liang, and H. Naveed, "High-resolution structure prediction of $\beta$-barrel membrane proteins," Proceedings of the National Academy of Sciences, vol. 115, no. 7, pp. 1511-1516, 2018.
[63] K. D. Tsirigos, P. G. Bagos, and S. J. Hamodrakas, "OMPdb: a database of $\beta$ barrel outer membrane proteins from gram-negative bacteria," Nucleic Acids Research, vol. 39, no. suppl_1, pp. D324-D331, 2010.
[64] G. E. Tusnady, Z. Dosztanyi, and I. Simon, "PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank," Nucleic Acids Research, vol. 33, no. suppl_1, pp. D275-D278, 2005.
[65] G. E. Tusnady, L. Kalmar, and I. Simon, "TOPDB: topology data bank of transmembrane proteins," Nucleic Acids Research, vol. 36, no. suppl_1, pp. D234-D239, 2007.
[66] G. E. Tusnady and I. Simon, "Principles governing amino acid composition of integral membrane proteins: application to topology prediction," Journal of Molecular Biology, vol. 283, no. 2, pp. 489-506, 1998.
[67] G. E. Tusnady and I. Simon, "The HMMTOP transmembrane topology prediction server," Bioinformatics, vol. 17, no. 9, pp. 849-850, 2001.
[68] M. Vingron and P. R. Sibbald, "Weighting in sequence space: a comparison of methods in terms of generalized sequences," Proceedings of the National Academy of Sciences, vol. 90, no. 19, pp. 8777-8781, 1993.
[69] W. C. Wimley, "Toward genomic identification of $\beta$-barrel membrane proteins: Composition and architecture of known structures," Protein Science, vol. 11, no. 2, pp. 301-312, 2002.
[70] Ö. Yildiz, K. R. Vinothkumar, P. Goswami, and W. Kühlbrandt, "Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation," The EMBO Journal, vol. 25, no. 15, pp. 3702-3713, 2006.
[71] H. Zhang, "Alignment of BLAST high-scoring segment pairs based on the longest increasing subsequence algorithm," Bioinformatics, vol. 19, no. 11, pp. 1391-1396, 2003.

