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Chapter I

Data collection
One of the main challenges encountered in building a membrane proteome-wide system is the

lack of gold-standard databases. For our problem, we need to define two distinct datasets. The

first dataset includes data on membrane proteins with their different types. The second includes

data on transporters with their substrate specificities. In this chapter, Section 1 highlights

the challenges and illustrates the inconsistencies between the different biological databases.

Section 2 and 3 define the main bioinformatics ontologies and databases we used to build our

datasets. Next, Section 4 describes the process of building the first database, which contains

data about different membrane protein types. Section 5 then outlines the process of building

the second database of transporters substrate categories and describes our ontology-based,

automated substrate annotation. Finally, Section 6 concludes the chapter.

1 Challenges

Challenges are encountered with respect to multiple aspects of the data-collection process. All

of these problems stem from the lack of standardized annotation across different databases. We

can encapsulate the issues in three main points: The first is the inconsistency of gold-standard

databases. For example, we examined a transporter classification database (TCDB) that

contains experimentally characterized proteins (see Section 3.2) and a Swiss-Prot that contains

the worldwide primary database of well-annotated and manually inspected data (see Section 3.1).

We found that, of 17,000 entries in TCDB, 6,710 are also in Swiss-Prot and only 3,292 of

these are annotated with transporter related GO molecular function (GO:0005215 transporter

activity). This indicates that Swiss-Prot annotations are stricter than those of TCDB.
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The second point is that, at the level of transporter substrate prediction, the ultimate goal

is to predict the exact substrate specificity the transporter transports across the membranes.

However, this is not obtainable given the current state-of-art because of the lack of well-annotated

transporter data. This fact led us to predict the general category (e.g., amino acid) rather than

the exact substrate (e.g., arginine). Still, no universally defined sets of gold-standard substrate

categories are used in prediction. Researchers are using their own subsets of substrate classes.

As the literature review indicates (see Section ??), some authors [1] group the substrates into

four groups with one general class referring to all other types of substrate as others. Other

authors (Schaadt et al. in [2] and [3]) include oligopeptides —i.e., a few amino acids linked

in a polypeptide chain. Others(Chen et al. [1] and Mishra et al. [4]) elect to incorporate

protein/mRNA, which consists of one or more polypeptides with at least 50 amino acids. Still

others (Barghash et al. [5]) completely discount the protein or oligopeptide category. This

raises a challenge when building a database of transporter substrate classes: What substrates

should we include in our dataset?

The third point is that all of the substrate specificity datasets (see Section ??) rely on the

manual curation of the biological function annotation (assigning substrate category to a protein

sequence). Aside from the fact that manual curation can be extremely time consuming, it also

is subject to expert opinion. The details and decisions are often not provided, which makes it

difficult to replicate or rebuild the same dataset. Thus, we need to find a way to make this

assignment automatic, standardized, easily scalable, and flexible so as to include more or fewer

substrate classes.
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2 Ontologies and classifications

2.1 Enzyme Classification

The Enzyme Commission (EC) number is a standardized numerical classification scheme for

enzymes which describes the chemical reaction catalyzed by an enzyme. The EC numbers

are assigned by the Nomenclature Committee of the International Union of Biochemistry and

Molecular Biology. Each enzyme code consists of the letters EC followed by four digits separated

by periods: e.g., EC X.Y.Z.W. The first digit denotes the general type of reaction catalyzed by

the enzyme; it ranges from one to six (see Table 1). The next three digits further define and

specify the reaction type.

Class Name Reaction catalyzed
EC 1 Oxidoreductases Oxidation\reduction reactions
EC 2 Transferases Transfer of a chemical group from one molecule to another
EC 3 Hydrolases Formation of two products from a substrate by hydrolysis
EC 4 Lyases Non-hydrolytic addition or removal of groups from substrates
EC 6 Isomerases Intramolecule rearrangement
EC 6 Ligasess Joining of two molecules

Table 1: Top-level reaction classes in enzyme commission numbers

2.2 Chemical Entities of Biological Interest

Chemical Entities of Biological Interest (ChEBI) [6] is a database and ontology which contains

information about chemical entities. Each entry in the database is classified within the ontology.

ChEBI acts as source of unique reliable identifiers for chemicals in annotation. It is commonly

used in many bioinformatics databases and as a chemistry component of several ontologies,

including the gene ontology [7].

The ChEBI ontology contains three sub-ontologies:

• . A chemical ontology in which entities are classified based on their structural features

and properties (e.g., monosaccharid, carboxylic acid, anion).

• . A role ontology in which the entities are classified on the basis of their activities in
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chemical or biological systems (e.g., vitamin, drug, enzyme).

• . A subatomic particle ontology in which particles smaller than atoms are classified (e.g.,

electron, photon, nucleon).

For each entity in the ChEBI database, information is displayed over several tabs. The main

tab is the default tab. It displays general information about the entity (ChEBI name, ID,

structure, definition) and shows some of the information contained within the ontology. The

ChEBI ontology tab shows the ontology information in further details and provides two options

for visualizing the ontology: a graph view and a tree view. The graph view represents a

visualization of two relationships—”is a” (blue links) and ”has part of” (black links)—between

the ontologies of a certain entity (see Fig 1). The tree view shows all of the immediate relations

of a given entity in addition to showing all parents within the hierarchy and the immediate

children.

2.3 Gene Ontology

The Gene Ontology (GO) [8] project is the largest resource available that provides an ontology

of defined terms with which to represent specific gene products. The GO describes functions

with respect to three domains: molecular function (MF), biological process (BP) and cellular

component (CC). The molecular function concerns the activities of a gene product at the

molecular level. Biological processes include the larger processes accomplished by multiple

molecular activities. Cellular components include the locations relative to cellular structures

in which a gene product performs its function. The ontology is structured as a directed acyclic

graph in which each term has specific relationships to one or more other terms in the same

domain. The GO terms that refer to chemical entities have fully defined semantic relationships

to corresponding chemical terms in ChEBI. This is done to facilitate an accurate and consistent,

systems-wide chemical view of the biological representation [7].

For transporters related terms, we have GO term GO:0006810 transport in PB which is

defined as the processes involved the directed movement of substances (such as macromolecules,

small molecules, ions) or cellular components (such as complexes and organelles) into, out of

or within a cell, or between cells, or within a multicellular organism by means of some agent
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Figure 1: ChEBI Ontology graph view

This figure shows a full graph view of hexose (CHEBI:18133) on the ChEBI ontology, are added to. All of the

presented relationships in this case are ”is a” between the ontologies. By clicking on ontology terms within the

view, one can see a definition for that specific term.

such as a transporter, pore or motor protein.

The other GO term is GO:0005215 transporter activity in MF that is defined as the

function that enables the directed movement of substances (such as macromolecules, small

molecules, ions) into, out of or within a cell, or between cells.

2.4 Evidence and Conclusion Ontology

The Evidence Ontology (ECO) is a structured, controlled vocabulary for capturing evidence

in biological research. This ontology is used to document evidence-based conclusions derived

from investigations. [9].

The current version of ECO contains more than 600 terms arranged in hierarchy with two
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high-level classes ”evidence” (ECO:000000) and ”assertion method” (ECO:0000217). The

”evidence” is defined as ’type of information that is used to support an assertion’. The majority

of evidence is either experimental (e.g., expression pattern evidence) or computational (e.g.,

sequence similarity evidence), other types include author statement (with or without traceable

reference) and curator inference.

In addition to the evidence, ECO describes the mechanism by which an assertion is made (e.g.,

manual by curator or electronic). the ”assertion method” is defined as ’A means by which a

statement is made about an entity’. For example, if an algorithm was used to assign a predicted

function to protein without any curator judgment, ECO expresses that as automatic assertion.

Similarly, if curator came up with the annotation after reading a result reported in a paper,

ECO captures that a manual curation.

3 Databases

3.1 UniProt

UniProtKB (UniProt Knowledgebase) [10] is the worldwide primary database of protein sequence

and highly annotated functional information. UniProtKB employs GO annotation, that associates

GO terms (in MF, BP, and CC) with the UniProtKB records. This association is accompanied

by the reference from which the evidence was derived, in addition to the evidence code that

indicate the degree to which the annotation is supported. The evidence codes are commonly

encoded as three letter ”GO evidence codes”. However, they are now being replaced by ECO

(see Section 2.4) terms that provides the ability to capture more breadth and depth of evidence

information than the traditional GO evidence codes.

Furthermore, each protein record contains a list of keywords that summarize the content of

a UniProtKB entry and facilitate the search for proteins of interest. Keywords are controlled

vocabulary with a hierarchical structure that are added during the manual annotation process.

Generally, UniProtKB consists of two sections: Swiss-Prot and TrEMBL.

Swiss-Prot contains well-annotated, non-redundant proteins that have been manually inspected.

The annotation includes protein and gene names, keywords assignment, function, sub-cellular
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location, peer-reviewed references, secondary structure elements, and cross-references to other

biological databases and information about their function. Most GO annotations in the Swiss-Prot

are supported by ECO manual curation evidence terms.

TrEMBL contains protein sequences that are unrevised and automatically annotated. All of

the GO terms are associated with ECO terms that are based automatic assertion. In addition,

TrEMBL entries generally contain fewer keywords than Swiss-Prot entries, and the keywords

are assigned automatically according to specific annotation rules.

As of September 2017, Swiss-Prot contains 557,713 sequence entries and TrEMBL contains

116,030,110 sequence entries.

3.2 Transporter Classification Database

The TCDB [11] uses a classification system approved by the International Union of Biochemistry

and Molecular Biology (IUBMB) for membrane transport proteins; it is known as the transporter

classification (TC) system. The TCDB is a curated database of accurate and experimentally

characterized information collected from over 10,000 published references. As of August 2018,

it contains more than 17,000 unique protein sequences that are classified into more than

800 transporter families. Each entry in the database has a transport classification identifier

(TCID) that consists of five components: V.W.X.Y.Z. where V is a number from 1 to 9 that

corresponds to the transporter class (e.g., channels, carrier, pumps (active transport)), W refers

to a transporter subclass, X is a number that refers to the transporter family, Y is a number

that corresponds to transporter subfamily and Z refers to the substrate or range of substrates

transported. 2 exemplifies a TCDB entry.

The 17,000 entries in TCDB are divided into 66 superfamilies, 1248 families, and 2554 subfamilies.

The transporter class TC.9 contains all of the uncharacterized transporters with around 2630

entries. In total, there are 4016 sequences in TCDB that contains ”unknown” on blank substrate

identity.
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Figure 2: TCDB entry example

TCID consists of five components: V.W.X.Y.Z V is a number from 1-9 that corresponds to the transporter

class (e.g. channels, carrier, pumps (active transport), W is a letter that refers to a transporter subclass, X is

a number that refers to the transporter family, Y is also a number that corresponds to transporter subfamily

and Z refers to the substrate or range of substrates.

4 Dataset I: membrane protein classes

This dataset includes membrane proteins sequences divided based on their biological roles:

enzymes, receptors, transporters. It also contains membrane proteins that have other functions

marked as others.

4.1 Materials and methods

we collected the data from the worldwide curated protein-sequence database, Swiss-Prot (Section 3.1),

which we accessed in February of 2018. The membrane protein dataset contains four membrane

functional classes: enzymes, receptors, transporters, and others.

The first set is the membrane proteins set SMem that is retrieved by searching as follows:

SMem = locations:(location:membrane) reviewed:yes

For the enzymes, we retrieved all sequences located in the membrane and annotated with EC

numbers. The EC numbers for enzyme proteins are manually curated in the description of

Swiss-Prot entries. The set of enzymes EX was retrieved by searching as follows:
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EX = locations:(location:membrane) ec:X.-.-.- AND reviewed:yes

where X ∈ {1, 2, 3, 4, 5, 6}, the six enzyme reaction classes. The enzyme initial set E0 is the

combination of the six sets as:

E0 =
6∪

x=1

Ex (1)

For receptors, because they do not have a distinct classification like enzymes, we relied on

Swiss-Prot curators keywords to retrieve the initial set. We chose a ”Receptor [KW-0675]”

keyword that falls into a molecular function keyword subcategory which indicates that the

protein functions molecularly as a receptor. The initial set R0 was obtain by searching as

follows:

R0 = locations:(location:membrane) keyword:"Receptor [KW-0675]"

AND reviewed:yes

For transporters, we search for proteins that have (GO:0005215 transporter activity) GO MF

annotation. The GO MF is directly related to actual function of the protein rather than the

general process that the it is involved in.

The initial set of transporters T0 was obtained by searching as follows:

T0 = locations:(location:membrane)

goa:("transporter activity [5215]") AND reviewed:yes

Finally, another initial set O0 for other classes of membrane proteins was obtained by removing

E0, R0 and T0 from the membrane protein set SMem as follows:

O0 = SMem ∩ (E0 ∪R0 ∪ T0) (2)

After the initial extraction of the membrane protein classes, we retrieved more information

regarding each sequence from UniProtKB Swiss-Prot entries. The information includes keywords,

organism species, subcellular locations, and GO MF annotations with the evidence codes using

web scraping in R.

The data was screened to attain the best-quality dataset by adhering to the following criteria:
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• Step 1:Protein sequences that have evidence ”inferred from homology” for the existence

of a protein were removed.

• Step 2: Protein sequences that are annotated with multiple functions (e.g., receptors

and enzymes) were set aside for further examination.

• Step 3: Protein sequences that have no or merely computational evidence (IEA) of GO

molecular function annotation were eliminated.

• Step 4: Protein sequences with more than 60% pairwise sequence identity were removed

via a CD-HIT [12] program to avoid any homology bias.

The final sets are appointed after Step 4 for all the membrane classes —except in the case of

transporters to which further filtering was applied —as is discussed in Section 5.

4.2 Results

The membrane proteins classes dataset and the details about the curation process of membrane

proteins are presented in Fig 3. The final dataset contains total of 9063 membrane proteins

sequences divided based on their functional role: 2890 enzymes, 1123 receptors, 2231 transporters,

and 2819 belong to other functional classes.
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4. DATASET I: MEMBRANE PROTEIN CLASSES 11

Figure 3: Membrane proteins curation process

This figure shows details of the curation process for membrane proteins. Step 1: Protein sequences that have

evidence ”inferred from homology for the existence of a protein were removed. Step 2: Protein sequences

annotated with multiple functions (e.g., as receptors and enzymes) were set aside for further examination. Step

3: Protein sequences with no or merely computational evidence (IEA) for GO molecular function annotation

were eliminated. Step 4: Protein sequences with more than 60% pairwise sequence identity were removed.



5 Dataset II: transporter substrate categories

This dataset contains transporter protein sequences divided based in their substrate categories.

The latest gold-standard, substrate-specific, transport protein dataset was published by Mishra

et al. [4] in 2014 . Their dataset consists of 900 transporters divided into seven major classes

based on substrate specificity: 85 amino acid/oligopeptide transporters, 72 anion transporters,

296 cation transporters, 70 electron transporters, 85 protein/mRNA transporters, 72 sugar

transporters, and 220 other transporters. However, due to the exponential growth of bioinformatical

databases and protein annotation, we needed to update this dataset to include newly annotated

proteins. While all of the available substrate prediction databases rely heavily on the manual

curation, we adopted an ontology-based form of automatic substrate annotation. The automated

approach revolves around GO MF annotation in Swiss-Prot entries, GO ontology, and CheBI

ontology.

5.1 Materials and methods

The first decision we had to make was to choose the substrate categories with respect to

ChEBI-IDs. We initially attempted to follow Saiers classification system [13] (See Table 2) by

mapping each subcategory to its relevant ChEBI term, but we ran into multiple issues. First,

the classification system simultaneously offers role and chemical classification. For example,

category five (vitamins, cofactors, and their precursors) and some of the subcategories of

category six belong to ChEBIs role ontology while the rest of categories belong to its chemical

ontology. A single compound could have both if it includes ”is a” and ”has role” relations in

its ontology.

Therefore, all of the compounds have chemical classifications and some also have role classifications.

We would often run into the issue of multiple classification for a single substrate. For example,

Glycine (CHEBI:15428), which is an amino acid, is classified under Sair classification as follows:

3.A. Amino acids and conjugates;5.D signaling molecules;

6.B. Specific drugs drug

Since we are most interested in the chemical composition of the transported substrates, and as
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all of the substrate prediction methods (see Section ??) predict the chemical classification, we

have opted to consider the chemical categories.

Category and substrate type Subcategories
1.Inorganic molecules A. Nonselective

B. Water
C. Cations
D. Anions
E. Others

2.Carbon compounds A. Sugars, polyols, and their derivatives
B. Monocarboxylates
C. Di- and tricarboxylates
D. Noncarboxylates organic anions
(organophosphates, phosphonates, sulfonates,
and sulfates)
E. Others

3.Amino acids and their
derivatives

A. Amino acids and conjugates
B. Amines, amides, and polyamines
C. Peptides
D. Other related organocations
E. Others

4.Bases and their derivatives A. (Nucleo)bases
B. Nucleosides
C. Nucleotides
D. Other nucleobase derivatives
E. Others

5.Vitamins, cofactors, and their
precursors

A. Vitamins and vitamin or cofactor
precursors
B. Enzyme and redox cofactors
C. Siderophores; siderophore-Fe complexes
D. Signaling molecules
E. Others

6.Drugs, dyes, sterols, and
toxics

A. Multiple drugs
B. Specific drugs
C. Bile salts and conjugates
D. Sterols and conjugates

VII.Macromolecules A. Carbohydrates
B. Proteins
C. Nucleic acids
D. Lipids E. Others

7.Miscellaneous compounds

Table 2: Classification of transport system substrates based on biological significance
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The second issue concerns the fact that the grouping of Saier’s classification system categories

and ChEBI ontology is not consistent. For example, there is no corresponding ChEBI term

to 2.A sugars polyols and their derivatives subcategory but rather two different terms polyol

(CHEBI:26191) and monosaccharide (CHEBI:63367). The closest common ancestor between

these two termsis organic molecular entity (CHEBI:50860).

Similarly, monosaccharide (CHEBI:63367) and carbohydrate (CHEBI:16646) share ancestor

”carbohydrates and carbohydrate derivatives” (CHEBI:78616) in the ChEBI ontology but are

not in the same major category in Saier’s classification system. Since we rely on the ChEBI

ontology in our automatic substrate assignment, we modified Saiers classification system to

be consistent with the ChEBI ontology. Fig 4 depicts Saiers classification system categories

with respect to ChEBI ontology, where the edges represent ”is a” relation. Table 3 groups the

categories according the relevant closest ancestor in agreement with ChEBI ontology.

By using the categories in Table 3, we implemented an ontology-based system (see Section 5.1)

that assigns substrate categories based on transporter protein GO annotations.
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Category and substrate type Subcategories ChEBI-ID

1.Inorganic molecules

A. Nonselective CHEBI:36914
CHEBI:24431

B. Water CHEBI:15377
C. Cations CHEBI:36915
D. Anions CHEBI:24834

2.Organic ion
A.Organic cation CHEBI:25697
B.Organic anion CHEBI:25696

3.Carbohydrates and
derivatives

A. Monosaccharide and
derivatives

CHEBI:35381
CHEBI:63367

B. Oligosaccharide and
derivatives

CHEBI:50699
CHEBI:63563

C. Polysaccharide and
derivatives

CHEBI:18154
CHEBI:65212

4.Carboxylic acid
A. Monocarboxylic acid CHEBI:25384
B. Tricarboxylic acid CHEBI:27093
C. Dicarboxylic acid CHEBI:35692

5.Organonitrogen
compound

A. Amino acid CHEBI:33709
B. Amino acid derivative CHEBI:83821
C. Peptide CHEBI:16670
D. Amine CHEBI:32952
E. Polyamine CHEBI:88061
F. Protein CHEBI:36080
G. Other Organic amino CHEBI:50047

6.Organic heterocyclic
compound

A. Nucleobase CHEBI:18282
B. Nucleoside CHEBI:33838
C. Nucleic acid CHEBI:33696
D. Nucleotide CHEBI:36976

7.Miscellaneous

A. Polyol CHEBI:26191
B. Organic phosphate CHEBI:25703
C. Amide CHEBI:32988
D. Other Organic CHEBI:50860

Table 3: Classification of transport system substrates according on ChEBI ontology
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16 CHAPTER I. DATA COLLECTION

Figure 4: Simplified view of ChEBI ontology terms

This figure shows a simplified view of the categories in Saier’s classification system with respect to ChEBI

ontology. This tree, is organized from left to right where the edges represent ”is a” relations in ChEBI ontology,

some edges were omitted to simplify the view. Each node contains the ChEBI term and the relevant ChEBI-ID.

The leafs are the categories.



Ontology-based automated substrate annotation

Here, we build automated, ontology-based substrate category annotation system. An overview

of the system is presented in Fig 5. This system take the transporter protein uniprotID as

an input, and outputs its substrate category as specified in Table 3. This section presents the

implementation and details conducted to achieve the automation.

Figure 5: Ontology-based substrate category mapping overview

The system uses the transporter protein Uniprot-ID to retrieve its GO-MF annotation from the Swiss-Prot

database. Then, for each GO-MF term in the protein annotation, it checks whether that term is a descendant

of (transporter activity GO:0005215) in GO ontology. If yes, it gets its corresponding ChEBI-ID. Next, it uses

ChEBI ontology to retrieve all of the ancestor terms of that ChEBI-ID. Then, using the categories with their

relevant ChEBI-IDs in Table 3 it gets the initial category list. This list gets filtered to keep the most concise

category, which is the output.
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Algorithm 1presents the a pre-processing step, in which we retrieve all of the descendants

of (GO:0005215 transporter activity) in Gene ontology, and get their corresponding ChEBI

mapping. CheBI mapping is only available in go-plus.owl which is downloaded in August 2018,

from http://snapshot.geneontology.org/ontology/extensions/go-plus.owl

Algorithm 1 Pre-process GO Chebi Mapping

Require: go-plus.owl file as GO ontology file
Ensure: mappingList⟨term, list⟨ChEBI ID⟩⟩ that contains the mapping between transporter

GO terms and ChEBI
1: function getTransporterGOChebi
2: geneOntology ← getOntology(”go-plus.owl”)
3: transporterRelatedGO ←getDescendants(geneOntology,”GO:0005215”)
4: mappingList← empty list⟨term, list⟨ChEBI ID⟩⟩
5: for term ∈ transporterRelatedGO do
6: allChEBI ← getChebiRelation(term,GeneOntology)
7: mappingList ← add(term, allChEBI − IDs)
8: end for
9: return mappingList
10: end function

As a result,mappingList contains 1080 descendants terms of (GO:0005215 transporter activity),

775 of them, have ChEBI mapping. Then, Algorithm 2 assigns the categories in Table 3 to the

each term by traversing ChEBI ontology. We use chebi lite.obo file that contains Chebi ids,

names, subsets and relationships to traverse the ontology, downloaded in August 2018, from:

ftp://ftp.ebi.ac.uk/pub/databases/chebi/ontology/chebi_lite.obo

Algorithm 2 calls Algorithm 3 to get the most concise categories. for example, the initial

category mapping could be:

1.A Nonselective, 4.A amino acid, 4.G Other organic amino,

6.E Other organic

and the concise category is:

4.A amino acid

Algorithm 2 will result in creating categorylist which contains descendants terms of (GO:0005215

transporter activity) and their corresponding substrate categories as in Table 3.

Next, Algorithm 4 deals with the 2,231 transporter proteins in the membrane protein dataset

(Section 4) and assign substrate categories to them. The categories are found by examining
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Algorithm 2 Traverse ChEBI ontology

Require: chebi lite.obo file as ChEBI ontology file
Require: mappinglist⟨term, list⟨ChEBI ID⟩⟩ that contains transporter GO terms and CheBI

mapping
Require: CategoryChebi⟨name,ChEBI ID⟩ that contains the ChEBI IDs of the substrate

categories
Ensure: substrate category mapping to each term in mappinglist
1: function traverseOntology(mappinglist⟨term,ChEBI⟩)
2: ChEBIOntology ← getOntology(”chebi lite.obo”)
3: categorylist⟨term, list⟨name,ChEBI ID⟩⟩ ← empty list
4: for term ∈ mappinglist⟨term, list⟨ChEBI ID⟩ do
5: conciseCategories⟨ChEBI ID⟩ ← empty list
6: for ChEBI ID ∈ term do
7: ancestors ← getAncestors(ChEBIOntology,ChEBI ID)
8: initialCategories ← CategoryChebi⟨name,ChEBI ID⟩ where
9: ChEBI ID ∈ ancestors)
10: conciseCategories ←add(getConciseCategory(initialCategories))
11: end for
12: categorylist ← add(term,unique(conciseCategories))
13: end for
14: return categorylist⟨term, list⟨name,ChEBI ID⟩⟩
15: end function

the GO MF annotation that are descendants terms of (GO:0005215 transporter activity)

of each protein and assigning their corresponding categories as determined by Algorithm 2.

Furthermore, we assign evidence of each category as determined by GO annotation in Swiss-Prot

for that sequence, this can enable us to determine the level of confidence in the substrate

assignment.

For example Uniport Q0WMZ5 has the following GO MF annotation:

GO:0015171 amino acid transmembrane transporter activity;IMP:TAIR,

GO:0042803 protein homodimerization activity; ISS:UniProtKB,

GO:0015288 porin activity; IEA:UniProtKB-KW.

only the first (GO:0015171) is descendant of (GO:0005215 transporter activity), its corresponding

category is 4.A amino acid, The annotation evidence for that term is experimental (see Section 3.1)

with code Inferred from Mutant Phenotype (IMP). Because the evidence is experimental, we

have high confidence in this assignment. This protein will get the following substrate category:

4.A amino acid;IMP:TAIR
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Algorithm 3 Get concise category

Require: initialCategoryMapping⟨name,ChEBI ID⟩ of initial category mapping
Require: ChEBIOntology as ChEBI ontology objecr
Require: mappinglist⟨term,ChEBI ID⟩ that contains transporter GO terms and CheBI

mapping
Ensure: concise category mapping to the initial category
1: function getConciseCategory(initialCategoryMapping⟨name,ChEBI ID⟩ )
2: categoryAncestors← empty listChEBI ID, list⟨ChEBI ID⟩⟩
3: for ChEBI ID ∈ initialCategoryMapping⟨name,ChEBI ID⟩ do
4: categroyAncestor← getAncestors(ChEBIOntology,ChEBI ID)
5: categoryAncestors← add( ChEBI ID,categroyAncestor)
6: end for
7: categoryPairs← getAllPairs(initialCategoryMapping⟨ChEBI ID⟩ )
8: unconciseCategories ← list⟨ChEBI ID⟩
9: for pair ∈ categoryPairs do
10: firstPairAncestors ← categoryAncestors(pair[1])
11: secondPairAncestors ← categoryAncestors(pair[2])
12: if pair[2]∈ firstPairAncestors then
13: unconciseCategories← add(pair[2])
14: else if pair[1]∈ secondPairAncestors then
15: unconciseCategories← add(pair[1])
16: end if
17: end for
18: return initialCategoryMapping⟨name,ChEBI ID⟩ where
19: ChEBI ID ̸∈ unconciseCategories⟨ChEBI ID⟩
20: end function

Algorithm 4 Automatic substrate assignment to transporter sequences

Require: info⟨uniprotID, list⟨GOMF ⟩, ...⟩ that contains the transporter GOMF annotations
Require: categorylist⟨term, list⟨name,ChEBI ID⟩⟩ that contains descendants GO terms of

(GO:0005215 transporter activity) and their corresponding substrate categories
Ensure: substrate category mapping to each transporter sequence
1: function assignSubstrate
2: uniprotCategoriesMapping ⟨uniprotID, list⟨name, evidance⟩⟩ ← empty list
3: for tuple ∈ info⟨uniprotID, list⟨GOMF ⟩, ...⟩ do
4: sequenceCategories⟨name, evidance⟩ ← empty list
5: for GOMF ∈ tuple do
6: if GOMF[term] ∈ categorylist then
7: sequenceCategories ← add (getName(categorylist,term),GOMF[evidance])
8: end if
9: end for
10: uniprotCategoriesMapping← add(uniprotID ∈ tuple,removeDuplicate(sequenceCategories))
11: end for
12: return uniprotCategoriesMapping⟨uniprotID, list⟨name, evidance⟩⟩
13: end function



5.2 Results

As a result, the number of proteins in each category is presented in Table 4.

Category and
substrate type

Subcategories Number of
Sequences

Total

1.Inorganic molecules

A. Nonselective 26

758
B. Water 26
C. Cations 603
D. Anions 103

2.Organic ion
A.Organic cation 13

120
B.Organic anion 107

3.Carbohydrates and
derivatives

A. Monosaccharide and
derivatives

126
151

B. Oligosaccharide and
derivatives

21

C. Polysaccharide and
derivatives

4

4.Carboxylic acid
A. Monocarboxylic acid 28

33B. Tricarboxylic acid 4
C. Dicarboxylic acid 1

5.Organonitrogen
compound

A. Amino acid 148

322

B. Amino acid derivative 14
C. Peptide 27
D. Amine 4
E. Polyamine 11
F. Protein 113
G. Other Organic amino 5

6.Organic heterocyclic
compound

A. Nucleobase 18

61
B. Nucleoside 16
C. Nucleic acid 3
D. Nucleotide 24

7.Miscellaneous

A. Polyol 4

101
B. Organic phosphate 23
C. Amide 7
D. Other Organic 67

Table 4: Number of sequences in each substrate category
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In Table 5 we compare the results of the dataset created by our automated ontology-based

substrate category mapping with Mishra’s et al. [4] TrSSP dataset that was mapped manually.

Out of the 900 protein sequences in TrSSP dataset, 565 are present in our transporter dataset

—the rest were filtered in the curation process (see Section 4). While direct comparison is

difficult because Mishra has only seven substrates categories, one of them is ”others”. We

grouped our organic, inorganic cations into Mishra’s cation transporter class, and our organic,

inorganic anion into TrSSP anion transporter class, and our amino acid, amino acid derivatives

into amino acid transporter class, then our monosaccharide and derivatives class into their

sugar class, our protein class has direct protein class. As a result, we found that 459 proteins

have the same mapping, Then, 50 of the proteins in TrSSP dataset do not have sufficient GO

terms, thus no mapping in our case. Finally, 48 proteins (about 8%) do not have the same

category.

Ontology-based
Transporter class TrSSP dataset Agreement No mapping Disagreement
Amino acid 65 63 0 2
Anion 53 45 1 7
Cation 193 180 5 12
Protein 40 30 10 1
Sugar 51 41 4 6
Electron 2 0 0 2
Other 149 100 30 19

Total 565 459 (82.55%) 50 (8.99%) 49 (8.81%)

Table 5: Comparison between Mishra’s TrSSP dataset and our ontology-based dataset

This table shows the number of transporter classes Mishra’s TrSSP dataset that are also in
our ontology-based dataset. Because the transporter categories are not the same between
the two datasets. we mapped our categories to TrSSP dataset categories as follows: amino
acid, amino acid derivatives (5.A,5.B) into amino acid. Our organic, inorganic anion (1.D,
2.B ) into anion transporter class. Organic, inorganic cations (1.C, 2.A ) into Mishra’s
cation class. Monosaccharide, oligosaccharide and derivatives classes (3.A,3.B) into sugar
class. Our protein (5.E) to their class. The rest of our categories are mapped to others.
Agreement indicates that ontology-based perdition dataset have the same category as
TrSSP dataset category. No mapping indicates that there is no corresponding category.
Disagreement indicates that ontology-based perdition dataset and TrSSP dataset have
different categories.
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5.3 Discussion

We have 2,231 transporter proteins in the membrane protein dataset (Section 4). 1,546 of

them have clear substrate annotation, 379 have no ChEBI mapping, and 306 have multi-class

annotations. In Table 4, we see the number of proteins assigned to each category. The category

with the largest number of proteins is 1.C (inorganic cations), with 603 transporters. This is

not surprising, as ion channel transporters comprise a large class which transport ions such as

potassium, sodium, and calcium. This is also evident in other substrate-specificity datasets,

such as the dataset used in Mishra’s et al. [4] TrSSP method , in which 296/900 proteins belong

to the cation category. The category with the second highest number is 5.A (amino acids) with

148 proteins, followed by 4.A (monosaccharide and derivatives, also known as sugars) with 126

sequences. Then 2.B (proteins), 5.F (organic anions), and 1.D (inorganic anions) with 113,

107, and 103 proteins, respectively.

In the rest of the categories, there are significantly fewer proteins. Though we did not build a

dataset for exact substrates (e.g., benzoate), and though we grouped them into larger categories

(e.g., monocarboxylic acids), we still acquired a quite small number of proteins. This further

highlights the fact that membrane protein are still not very well characterized compared to other

types of proteins. Thus, it may not be feasible at this time to proceed to the level of exact

substrate prediction. Thus, a major decision we need to make concerns how to deal with the

categories with the fewest proteins. When predicting the substrate specificity of transporters,

we need to determine how specific we can get without sacrificing the overall performance of the

system. Some of the substrate-specificity predictors (see Section ??) have opted to group the

small categories into ”others” [1] [4], while others only predict the significant categories [5] [3]

[2].
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When we compare the categories in the dataset created by our automated ontology-based

method to those of TrSSP dataset, we find that there are disagreements between the GO MF

annotation and the manually assigned transporter class in TrSSP dataset. This could be due

to the simple fact that protein annotations are created and updated regularly, or that curators

have different interpretations of the literature. Nevertheless, our ontology-based, automated

substrate annotation has an edge over all of the other substrate predictors datasets that were

built manually because it exploits the already manually annotated GO MF of Swiss-Prot entries

and uses them in automated manner. Not only this makes it more standardized and consistent,

but also easily adjusted to the ever-increasing size of biological databases.

6 Conclusion

We built two datasets. The first dataset contains the four functional classes of membrane

proteins: enzymes, receptors, transporters, and others. The second dataset contains substrate-specific

transporter proteins. Because membrane proteins are not well characterized, and because there

is not enough data to predict the exact substrates (e.g., arginine), all transporter substrate

prediction occurs at the level of substrate category or class (e.g., amino acid). Here, we assigned

the substrate categories to transporters by using our ontology-based automated substrate

annotation system, which can easily be adjusted to accumulate more or fewer categories. This

system can adapt to the exponential growth of the biological databases and assign the substrate

automatically. Not only does this automation relieve us of the huge burden of manual curation

used to build all of existent transporters substrate databases, it is is consistent with other

ontologies and is reproducible.
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