
Advances in DNA sequencing technologies have trans­
formed our capacity to investigate the composition and 
dynamics of complex microbial communities that inhabit 
diverse environments, from mammalian gastrointestinal 
tracts to deep ocean sediments. These developments 
have led to vast increases in the number of microbiome 
studies being performed in many fields of science, from 
clinical research to biotechnology. With this transforma­
tion, researchers are often left holding massive amounts 
of data and are confronted with a bewildering array of 
computational tools and methods for analysing their 
data. Conducting a robust experiment is not trivial in 
microbiome research, and as with any study, experimen­
tal methods, environmental factors and analysis methods 
can affect results. Standards for data collection and ana­
lysis are still emerging in the field, yet many compelling 
results can be achieved with current practices.

Microbiome analysis methods and standards are rapidly 
advancing. In particular, recommendations concerning 
differential abundance testing using exact sequence variants 
rather than operational taxonomic units (OTUs) and per­
forming a correlation analysis have evolved quickly in the 
past 2 years. We can expect a similar pace of development 
in several other areas, including metagenomic taxonomy 

and functional assignment; integration of data sets from 
multiple sequencing runs; and further improvement in 
machine learning, compositional data analysis and multi-​
omics analyses. However, many of the most fundamental 
issues that concern microbiome studies arise from statis­
tical and experimental design issues. The most important 
challenge for the field is to integrate new approaches that 
are unique to microbiome studies, while remember­
ing standard practices that are broadly applicable to all 
scientific studies.

Although it is impossible to be fully comprehensive in 
one article, this Review aims to provide straightforward 
guidelines for designing and executing a microbiome 
experiment and analysing the resulting data, with a 
particular focus on human, model organism and envi­
ronmental microbiomes. We direct the reader to more 
specialized reviews on specific topics where these exist.

Experimental design
Designing an experiment that generates meaningful data 
is an important first step in your analysis. Typical scien­
tific questions, such as those addressed in case–control 
and longitudinal interventions or studies, can all be stud­
ied in the context of the microbiome. Researchers can 

Exact sequence variants
For marker gene sequencing, 
the exact DNA sequence for 
each read is used instead of 
operational taxonomic unit 
clustering.

Operational taxonomic 
units
(OTUs). A group of closely 
related individuals or 
sequences (often 97% 
sequence similarity threshold).

Machine learning
The use of algorithms to learn 
from and make predictions 
about data.
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Abstract | Complex microbial communities shape the dynamics of various environments, ranging 
from the mammalian gastrointestinal tract to the soil. Advances in DNA sequencing technologies 
and data analysis have provided drastic improvements in microbiome analyses, for example, in 
taxonomic resolution, false discovery rate control and other properties, over earlier methods. In this 
Review , we discuss the best practices for performing a microbiome study , including experimental 
design, choice of molecular analysis technology , methods for data analysis and the integration of 
multiple omics data sets. We focus on recent findings that suggest that operational taxonomic 
unit-based analyses should be replaced with new methods that are based on exact sequence 
variants, methods for integrating metagenomic and metabolomic data, and issues surrounding 
compositional data analysis, where advances have been particularly rapid. We note that although 
some of these approaches are new , it is important to keep sight of the classic issues that arise during 
experimental design and relate to research reproducibility. We describe how keeping these issues in 
mind allows researchers to obtain more insight from their microbiome data sets.
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identify potential differences in microbial community 
structure, composition and genetics or functional vari­
ation either between separate communities or over time. 
Notably, the general approach to microbiome analysis is 
applicable regardless of sample origin (Box 1). However, 
specific details of the analysis may depend on the sam­
ple origin; for example, 16S ribosomal RNA (rRNA) 
amplicon regions have variable success among different 
sample types in recapitulating results from metagenomic 
sequencing data1.

Other primary considerations when assessing dif­
ferent sample types are experimental design and sam­
ple collection. We have observed many confounding 
issues during human microbiome studies, and therefore 
we emphasize the importance of experimental design 
when performing these studies, though often many of 
the same considerations apply to animal models and 
environmental samples (Box 2).

Meticulous experimental design is crucial for obtain­
ing accurate and meaningful results from microbiome 
studies. Many confounding factors, if not controlled, 
can obscure patterns in microbiome data (Fig. 1). Careful 
curation of metadata, appropriate controls, including 
extraction and reagent blanks, and thoughtful study 
designs that isolate and interrogate variables of interest 
are all essential.

First, the scope of the experiment must be defined 
and an appropriate experimental design selected for 
the question of interest. For example, cross-​sectional 
studies are useful for finding differences in microbial 
communities between different human populations, 
such as healthy individuals and those with diseases, 
or individuals living in different geographic regions. 
However, owing to the large variation in the microbiome 
between individuals and the profound influence of life­
style2,3, diet4, medication5,6 and physiology, differences 
between populations may arise from factors other than 
the disease of interest. For example, initial reports of 
changes in the microbiome in individuals with diabe­
tes were confounded by effects of the drug metformin5. 
Longitudinal studies, especially prospective longitudinal 

studies that collect baseline samples before disease 
onset, can help resolve these issues, although they are 
more expensive. For ease in downstream statistical 
analyses, longitudinal studies should plan the timing 
of sample collection carefully: for human studies, this 
may mean collecting samples at identical time points 
for each subject. Interestingly, community instability 
rather than the specific taxa present at a single time 
point can be a strong predictor of disease activity7. For 
example, individuals with inflammatory bowel disease 
exhibit greater microbiome fluctuations than control 
cohorts7. Interventional studies, including double-​blind 
randomized control studies, are especially useful for 
identifying specific effects of a course of treatment on 
the microbiome and disease state. Designing a study 
with an analysis plan and specific experimental ques­
tions to interrogate can help determine the sample size. 
For example, to test the effects of a new broad-​spectrum 
antibiotic on the mouse gut microbiota, more samples 
may be required to look at shifts in specific taxa com­
pared with assessing how alpha diversity (a quantitative 
measure of community diversity) changes with anti­
biotic treatment, as baseline microbiota composition 
varies between mice. The antibiotic may be expected to 
decrease alpha diversity in all mice, but it could perturb 
their microbial community composition in different 
ways. For any study design, appropriate methods to 
assess statistical power should be employed in order  
to discern technical variability and real biological results8. 
However, statistical power and effect size analysis remain 
a challenge in microbiome research9. Some methods that 
are currently used for power and effect size analysis are 
based on PERMANOVA8, Dirichlet Multinomial10 or 
random forest analysis11. As these methods are further 
developed to integrate metagenomics, metatranscrip­
tomics, metaproteomics and metabolomics data sets, 
study design and selection of appropriate sample size will 
also improve. For specific experimental design consid­
erations, we recommend reviewing the design of other 
successful studies with similar sample types and desired 
outcomes. We expand on important considerations for 
microbiome experimental design below.

Defining controls and exclusion criteria. Defining 
clear inclusion and exclusion criteria limits confounding 
covariates. For instance, variability in recovery time from 
antibiotics among individuals12 suggests that individuals 
who were treated with antibiotics in the preceding  
6 months should be excluded from most microbiome 
studies. Similarly, recovery of the skin microbiome after 
hand washing takes ~2 hours13.

In case–control experimental designs, controls must 
be appropriately selected and matched. Age and sex are 
common control criteria, despite the relatively weak 
effect of sex on most human microbiomes across body 
sites14,15, while other variables such as medication and 
diet are often more important confounders to control 
for. The relative effect sizes of these microbiome vari­
ables are still emerging9. Collection of comprehensive 
clinical data is crucial for identifying confounders that 
cannot be controlled. This topic has been extensively 
reviewed in ref.16. Environmental studies must also 
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Metadata
Information about the data. In 
many studies, this is structured 
as a matrix with samples as 
rows and metadata categories 
(age, sex, longitude, season, 
disease state, average monthly 
rainfall, and so on) as columns.

Alpha diversity
A measure of within-​sample 
diversity.

Effect size analysis
Quantification of the 
magnitude of an effect of a 
particular metadata category 
(treatment group, sex and 
sequencing plate) on the data.
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account for similar confounders, as plot-​to-plot varia­
tion is a widely recognized confounding phenomenon 
in the ecological literature that should be addressed with 
nested statistical tests17.

Animal models. The predominant animal models for 
studying the microbiome are rodents, such as mice. 
Other models with varying microbial complexity, such 
as bobtail squid, insects or zebrafish, are often useful for 
studying specific interactions between hosts and micro­
organisms (for example, how the microbiome and the  
host genetics influence each other)18. Nevertheless, 
rodents are often preferred because they are well char­
acterized and have many physiological similarities to 
humans. Rodent microbiome studies require particu­
larly careful design. As rodents are coprophagic, cage 
mate faecal microbiomes become more homogeneous 
over time, so experiments must be replicated across mul­
tiple cages to control for cage effects19. Parental effects 
also necessitate randomizing littermates between cages 
and allowing for normalization. Single housing stresses 
mice20 and is thus often technically or ethically infeasible. 
Even genetically identical rodents may differ in their 
microbiomes owing to environmental factors, including 
diet, litter, vendor, shipment and facility21,22. Additionally, 
early life microbial exposures greatly impact the estab­
lished microbiota and can influence immune system 
development23. Similar considerations apply to other 
co-​housed model organisms, such as zebrafish24.

Technical variation. Technical variability among 
experimental methods ranging from DNA extraction to 
sequencing is high25,26. The same reagent kits must be 
used for all samples in a study27, and multiple baseline 
samples should be collected to assess intrinsic variabil­
ity among time points in longitudinal studies. The use 
of blanks during sampling, DNA extraction, PCR and 
sequencing is essential for detecting contamination. 
Reads that are derived from microorganisms intro­
duced as contaminants or that grow during shipping 

can sometimes be reduced during analysis28, though 
samples should be at −80 °C when possible29. For field 
studies or other situations where freezing is not possible, 
ambient storage methods, such as storage in 95% ethanol 
or commercial products such as RNAlater or the 
OMNIgene Gut kit, can be used30. Mock communities 
(reference samples with a known composition) are 
useful for standardizing analyses31, as is including the 
same standard specimens in each DNA sequencing 
run32. In general, reconciling microbiome data that were 
generated using different methods remains an unsolved 
challenge.

Depending on the scope of their experiment (which 
includes the overall experimental design, sample types 
and source, sequencing method, and other factors 
that are discussed below), researchers can aim to gain  
a broad, community-​level overview of their samples, a 
detailed genomic-​level understanding or even a char­
acterization of the functional variation in microbial 
communities.

Sequencing targets and methods
Different methods for surveying microbial com­
munities, including marker gene, metagenome and 
metatranscriptome sequencing, can produce varying 
results. All widely used methods have strengths and 
weaknesses, so the question, hypothesis, sample type 
and analysis goals should inform the choice of method 
(Table 1). Here, we discuss the trade-​offs between cost, 
robustness, resolution and difficulty for marker gene, 
metagenome and metatranscriptome sequencing. We 
outline the best workflow for each method in Fig. 2. 
To attain a high-​level, but low-​resolution overview, 
the preferred method is marker gene sequencing. 
Metagenomic sequencing provides more detail by 
analysing the total DNA in a sample, allowing strain-​
level resolution and detection of genes that can provide 
information on molecular functions. We also discuss 
metatranscriptomic sequencing of total RNA, which is 
used to characterize gene expression in the microbial 
community.

Marker gene analysis. Marker gene sequencing uses 
primers that target a specific region of a gene of interest 
in order to determine microbial phylogenies of a sample. 
This region typically contains a highly variable region 
that can be used for detailed identification that is flanked 
by highly conserved regions that can serve as binding 
sites for PCR primers. Marker gene amplification and 
sequencing (such as 16S rRNA for bacteria and archaea 
and internal transcribed spacer (ITS) for fungi) are well-​
tested, fast and cost-​effective methods for obtaining a 
low-​resolution view of a microbial community. This 
approach works well for samples contaminated by host 
DNA, such as tissue and low-​biomass samples. However, 
because DNA sequences vary in these primer-​amplified 
regions, primers do not have equal affinity for all possi­
ble DNA sequences and consequently induce bias during 
PCR amplification. Other sources of inherent bias in 
marker gene sequencing include variable region selec­
tion, amplicon size33 and the number of PCR cycles34. 
Low-​biomass samples are particularly susceptible to bias 

Box 1 | good working practices

it is crucial for microbiome analyses to be reproducible. similar microbiome studies can 
often have conflicting results, and without proper documentation of sample collection, 
data processing and analysis methods, it is difficult to re-​examine the data and 
reconcile these differences. as the field evolves, it will be necessary to re-​visit early 
experiments and potentially re-​analyse the data with updated tools. reproducibility is 
paramount for this process to be possible and efficient. when collecting samples, 
details of the collection process should be recorded in the experimental metadata to 
ensure that as much variability as possible is accounted for. additionally, the Genome 
standards Consortium minimum information standards (Mixs) for marker genes 
(MiMarKs) and metagenomes (MiMs)152 should be followed. these unified standards 
enable comparisons across data sets. During bioinformatics processing, researchers 
should track all the commands that they run and all software versions that they use and 
deposit their raw data and metadata in public repositories. we recommend using tools 
such as Jupyter Notebooks or r Markdown to facilitate this and then storing the 
notebooks in a revision control management system such as GitHub. some software 
packages, such as QiiMe 2 (ref.59) and Galaxy, automatically track this information for 
researchers through an integrated data provenance tracking system. Qiita and eBi are 
powerful meta-​analysis and data archiving tools, respectively, and when combined, 
allow a researcher to analyse their microbiome data in the context of tens of thousands 
of other samples, which enables the data to be re-​used by future researchers.

Marker genes
Conserved genes (commonly 
16S ribosomal RNA (rRNA), 
internal transcribed spacer 
(ITS) and 18 S rRNA) that 
typically contain a highly 
variable region that can be 
used for detailed identification 
that is flanked by highly 
conserved regions that can 
serve as binding sites for PCR 
primers.

Nested statistical tests
Statistical tests that address 
variables related to the main 
effect. For example, soil plot 
would be a nested factor for 
testing the effects of a fertilizer 
on the soil microbiota.

Coprophagic
Involving the consumption of 
faeces. Many animal species 
eat faeces to more efficiently 
break down plant matter by 
digesting the material twice.

Reads
Inferred sequences of base 
pairs in a single DNA fragment.

Metatranscriptome
The total content of gene 
transcripts from a community 
of organisms.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Nature Reviews | Microbiology

R e v i e w s

http://jupyter.org
https://rmarkdown.rstudio.com/
https://github.com
https://qiime2.org
https://usegalaxy.org/
http://qiita.microbio.me
http://www.ebi.ac.uk/ena/data/view/ERP107810


introduced by overamplification — as the PCR cycle 
number increases, contaminating microorganisms are 
increasingly over-​represented35. Optimizing primer 
selection can help mitigate bias, but this requires a 
priori knowledge of microbial community composition 
to assess taxonomic resolution and coverage of the target 
community36. However, even well-​optimized primers 
are often limited to genus level taxonomic resolution. 
Marker gene sequencing generally correlates well with 
genomic content37–41 and is applicable to the broadest 
range of sample types and study designs.

Whole metagenome analysis. Metagenomics is the 
method of sequencing all microbial genomes within a 
sample. Metagenomic sequencing yields more detailed 
genomic information and taxonomic resolution than 
marker gene sequencing alone, but it is relatively expen­
sive to prepare, sequence and analyse the samples. This 
method captures all DNA present in the sample, including 
viral and eukaryotic DNA. Given adequate sequencing 
depth (the number of sequencing reads per sample), 
taxonomic resolution to species or strain level42 and the 
assembly of whole microbial genomes from short DNA 
sequence reads are possible43. However, de novo annota­
tion of functional genes is not possible in such settings. 
Metagenomic sequencing profiles the functional capa­
city of an entire community at the gene level44, moving 
well beyond the limits of marker gene analysis. However, 
biases that are introduced by library construction, 
assembly and reference databases for annotation are less 
understood than biases that exist in well-​characterized 
marker gene approaches. As the metagenomics field 
matures, these annotation steps will continue to be 
improved and validated. For a comprehensive review on 
metagenomics, we direct the reader to ref.45.

Metatranscriptome analysis. Metatranscriptomics 
uses RNA sequencing to profile transcription in micro­
biomes, providing information on gene expression 
and the active functional output of the microbiome. 
Metatranscriptomics differs from both marker gene and 
metagenomic sequencing that sequence DNA in a sam­
ple regardless of cell viability or activity. Although there 
are methods for depleting relic DNA from dead cells46, 
sequencing microbial RNA provides better insight into 
the functional activity of a microbial community, though 
it is biased towards organisms with higher rates of tran­
scription. It is worth noting that propidium monoazide 
(PMA) depletion of relic DNA is an alternative method 
to identify live microorganisms47. Host RNA contami­
nation, particularly from the highly abundant rRNAs, 
is also an important consideration, and methods to 
exclude rRNAs from samples should be considered48. 
RNA must be carefully preserved to avoid degradation 
in all cases, though certain sample types may warrant 
specialized protocols for RNA purification. For exam­
ple, soil samples require removal of enzyme-​inhibiting 
humic substances49,50. Despite these technical difficul­
ties, metatranscriptomic data can offer unique insight; 
transcriptomes vary more within individuals than 
metagenomes51, and metatranscriptomics can reveal 
microbial community responses to perturbations such 
as xenobiotic exposure52. For a comprehensive review 
on metatranscriptomics analysis of the microbiome, we 
direct the reader to ref.53.

Analyses
Ideally, each microbiome study would analyse sam­
ples with all three of the methods discussed above. In 
most cases, however, there is not enough sample mat­
erial or enough project funding for performing all three 

Box 2 | considerations for different microbiomes

although microbiome data analysis methods are widely applicable to many sample types and environments, 
experimental design and method selection require careful consideration for different sample types. First, one must 
consider the composition of the sample and feasibility of use for different methods. For samples that are heavily 
contaminated with non-​microbial DNa, such as tissue, shotgun metagenomic sequencing may not be feasible without 
non-​microbial DNa depletion. Depending on the experimental question, samples heavily contaminated with relic DNa 
from dead microorganisms, such as soil samples, may require physical removal of relic DNa by propidium monoazide46  
or other methods before DNa extraction. the amount of sample to collect is also determined by sample type. whereas a 
high-​biomass faecal sample may only require a swab, samples with low microbial density may necessitate larger volumes 
and potentially concentration for sufficient DNa extraction. For example, ocean microbiome samples are usually large 
volumes of water run though a filter to trap and concentrate the target organisms before DNa extraction84. though in all 
cases, appropriate controls should be included, and low-​biomass environments, such as blood, spinal fluid or laboratory 
clean rooms, particularly necessitate controls that have gone through the entire sampling process to fully characterize 
contaminants. DNa contaminants can be found in numerous reagents, including swabs, DNa extraction kits and PCr 
reagents27. Furthermore, the method of sample preservation is dictated by both analysis method and sample type. For 
example, metatranscriptomics requires an rNase inhibitor, and metabolomics requires sample preservation that does not 
interfere with metabolite extraction or data collection.

in addition to sampling considerations, study design and metadata collection also require careful tailoring to sample 
type and environment. For example, animal studies require an evaluation of co-​housing cage effects and should stratify 
experimental groups into multiple cages. Fresh samples should be collected, and the mouse of origin should be recorded 
in the metadata. environmental samples require collection of metadata related to environmental conditions, such as pH, 
salinity, elevation, and depth for soil samples. the manner of collection is highly dependent on sample type and cannot 
be detailed for all possible samples in this review. we recommend consulting well-​validated protocols related to the 
sample type of interest. in any case, methods of collection, preservation and storage in a study should remain consistent 
across all samples to avoid introducing confounding variation. sample composition can be affected by outgrowth of 
certain microorganisms during storage at room temperature28.

Humic substances
Produced by biodegrading 
organic matter; humic 
substances are the main 
component of humus (soil).

Metagenomes
The collection of genetic 
material from a community of 
organisms, for example, the 
genetic material from all 
microorganisms in the human 
gut microbiome.
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analyses, and in some cases, the samples might not be 
amenable to one of the sequencing methods. It is there­
fore paramount that the researcher chooses the method 
of sequencing that is most effective for answering their 
specific questions. If there are no budget constraints, 
we recommend performing metagenomics rather 
than marker gene sequencing. However, it is common 
practice to perform marker gene sequencing to gain a 
low-​resolution understanding of the microbial com­
munity composition. Next, depending on the focus of 
the study, the researcher can move on to metagenomic 
and metatranscriptomic sequencing, though this may 
require a second study for appropriate sample collection 
and processing.

Marker gene analyses. As noted above, marker gene 
approaches are sensitive to technical factors such as 
primer choice54, so well-​validated protocols such as those  
used with the diverse sample set in the Earth Microbiome 
Project should be used55. The first step in analysing 
marker gene amplicon data is to remove sequencing 
errors: despite very low sequencing error rates (for 
example, in Illumina sequencing, the rate is ~0.1% per 
nucleotide56), most of the apparent sequence diversity 
arises from sequencing errors57,58. Until recently, this 
problem was addressed by clustering similar sequences 
into OTUs59,60. Clustering sequences into OTUs, termed 
OTU picking, consolidates similar sequences (usually 
with a 97% similarity threshold) into single features, 

merging sequence variants, including those introduced 
by sequence error, into a single OTU that can be used 
in subsequent analysis. However, this method misses 
subtle and real biological sequence variation, such as 
SNPs that would be consolidated into single OTUs61. 
Oligotyping62 improves upon traditional OTU picking by 
including position-​specific information from 16S rRNA 
sequencing to identify subtle nucleotide variation and 
by discriminating between closely related but distinct 
taxa. Algorithms such as Deblur63 and DADA2 (ref.64) 
use error profiles to resolve sequence data into exact 
sequence features (the marker gene sequence) called 
sub-​OTUs (sOTUs). The resulting output from these  
methods is a table of DNA sequences and counts of  
these different sequences per sample rather than OTU 
groups. We recommend that these methods replace 
OTU-​based approaches for all applications, except 
when it is necessary to combine sequence data that were 
generated using different technologies (that is, Illumina 
sequencing and 454 pyrosequencing) or with different 
primer sets, when mapping to a common reference 
database of full-​length sequences is often still needed65.

One key analysis step is to assign taxonomic names 
to microbial sequences in the data. Taxonomy is typi­
cally assigned by machine learning approaches such as 
the RDP classifier66, a naive Bayesian classifier, which uses 
naive Bayes models that are trained on oligonucleotide 
frequencies at the genus level to achieve ~80% accu­
racy in genus-​level assignments. Popular microbiome 

Age, gender, diet and lifestyle

Case

Control Sample site

Coprophagy

Cage effects

Diet Facility Shipment

a  Confounder controls b  Longitudinal sampling

c  Technical variation d  Animal models

BlanksPrimers Reagents

Autumn

Seasonal
change

Spring

WinterSummer

Fig. 1 | Experimental design considerations for microbiome experiments. Conducting a robust microbiome 
experiment warrants careful attention to numerous factors. a | Stratification by potential confounders (for example, age, 
gender, diet, lifestyle factors and medications) can help resolve differences in microbiota between groups of interest that 
might otherwise be masked by a confounder effect5. b | Longitudinal studies are especially powerful as they both control 
for confounding factors and allow for the assessment of community stability7. c | For all studies, standardizing technical 
factors and sample processing are essential to control for variation introduced by kit reagents, primers, sample storage and 
other factors. The collection and curation of metadata about all aspects of each sample, from clinical variables to sample 
processing, are crucial for data interpretation; without metadata, it is difficult to draw meaningful conclusions from 
sequencing data. d | Similar considerations apply to animal studies, though the additional impact of coprophagy must be 
addressed in experimental design.

Naive Bayesian classifier
A simple probabilistic classifier 
used in machine learning that 
is based on applying Bayes’ 
theorem assuming strong 
independence between the 
features.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Nature Reviews | Microbiology

R e v i e w s



analysis packages, such as QIIME59 and Mothur60, pro­
vide support for taxonomic classification. In principle, 
exact matching to reference databases (three of the most 
characterized and frequently used are Greengenes, RDP 
and Silva) should provide better specificity in taxonomic 
assignment, but the sensitivity of this approach is poor 
given the large number of unknown taxa. Furthermore, 
de novo phylogenetic trees that are constructed from short 
marker gene sequences are typically poorly resolved, so 
insertion of marker gene sequences into a characterized 
reference tree that is based on full-​length sequences67 is 
desirable given the importance of phylogenetic metrics68. 
Unclassified microorganisms should be checked for orga­
nelle sequences, and for many studies, chloroplast-​derived 
and mitochondrial sequences should be excluded before 
proceeding with analysis (although for intestinal samples, 
these sequences can be useful for identifying consumed 
foods and thus should not be disregarded completely).

Predictive functional profiling38–41 is a technique 
for linking marker gene data with available microbial 
genomes to make predictions about metagenomic 
content and thus the putative biological functions of a 
microbial community. This analysis generally requires 
a reference-​based OTU table. Methods based on evo­
lutionary models (for example, PICRUSt39) provide 
confidence intervals on these predictions of gene 
content, which will tend to be wider in regions of the tree 

distant from reference genome sequences and narrower 
where many reference genomes are available. Thus, 
the availability of sufficient closely related reference 
genomes is a main factor that influences the accuracy 
of these results. Another limitation for predictive func­
tional profiling is that some families of bacteria possess 
a very similar 16S rRNA variable region, despite being 
phenotypically and genotypically divergent.

Most statistical analyses that are applied to microbiome 
data that are generated from marker gene sequencing can 
also be applied to other types of omics analyses and are 
described below in the higher-​level analyses section.

Metagenome and metatranscriptome analyses. 
Surveying the complete nucleic acid profile of a sample 
yields rich information that can be used to investigate a 
broad range of taxonomic, functional and evolutionary 
aspects of microbial communities — even contaminants 
can provide important details69. As with marker gene-​
based surveys, the analytical methods must be carefully 
chosen to consider the sample origin and the specific 
hypotheses under investigation. Here, we discuss the 
best approaches to perform these analyses.

Read-​based profiling takes the unassembled DNA 
or mRNA sequence reads and compares them against 
reference databases to assign taxonomy or anno­
tate genes. With the ever-​increasing size of modern 

Table 1 | Pros and cons of genomic analyses for evaluating microbial communities

Method Pros cons

Marker gene 
analysis

• Quick , simple and inexpensive sample preparation 
and analysis55,59

• Correlates well with genomic content37–41

• Amenable to low-​biomass and highly host-​
contaminated samples

• Large existing public data sets for 
comparison16,55,160

• No live, dead or active discrimination
• Subject to amplification biases34

• Choice of primers and variable region 
magnifies biases33,54,159

• Requires a priori knowledge of microbial 
community36

• Resolution typically limited to genus level 
at best

• Appropriate negative controls required
• Functional information is limited39,40

Whole 
metagenome 
analysis

• Can directly infer the relative abundance of 
microbial functional genes; microbial taxonomic 
and phylogenetic identity to species and strains 
level is attainable for known organisms42

• Does not assume knowledge of microbial 
community (that is, captures phages, viruses, 
plasmids, microbial eukaryotes, etc.)

• No PCR-​related biases
• Can estimate in situ growth rates for target 

organisms with sequenced genomes161

• Can allow assembly of population-​averaged 
microbial genomes43,162

• Can be mined for novel gene families

• Relatively expensive, laborious and 
complex sample preparation and analysis

• Contamination from host-​derived DNA 
and organelles may obscure microbial 
signatures

• Viruses and plasmids are not typically well 
annotated by default pipelines

• Deep sequencing depths are typically 
required relative to other methods

• No live, dead or active discrimination
• Population-​averaged microbial genomes 

tend to be inaccurate owing to assembly 
artefacts

Metatranscriptome 
analysis

• Can estimate which microorganisms in a 
community are actively transcribing when paired 
with marker gene analysis

• Inherently discriminates between active 
live organisms versus dormant or dead 
microorganisms and extracellular DNA

• Captures dynamic intra-​individual variation51

• Directly evaluates microbial activity , including 
responses to intervention and event exposure52

• Most expensive, laborious and complex 
sample preparation and analysis163

• Host mRNA contamination and rRNA 
must be removed48,164,165

• Requires careful sample collection and 
storage

• Data are biased towards organisms with 
high transcription rates

• Requires paired DNA sequencing to 
decouple transcription rates from 
bacterial abundance changes

rRNA , ribosomal RNA.
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query data sets and databases, methods are continu­
ally being refined to improve the speed of read-​based 
profiling. Many tools utilize k-​mers, assigning tax­
onomy to short DNA fragments of length k, such as 
Kraken70, or employ the Burrows–Wheeler trans­
form, which compresses the database by merging 
similar sequences (for example, Bowtie2 (ref.71) and 
Centrifuge72). For a more comprehensive guide to tool 
selection, we direct the reader to ref.73. Marker gene 
methods (such as MetaPhlAn2 (ref.74) and TIPP75) 
use specific genomic regions for taxonomy assign­
ment, focusing on universal, single-​copy elements. 
Beyond taxonomy assignment, other tools, such as 
HUMAnN2 (ref.44), can also be used for annotating 
genes and metabolic pathways. Some tools, including 
MEGAN76, incorporate both of these functionalities 

and can be a preferred method when both annota­
tions are desired. Because each read is considered 
independently, read-​based methods scale efficiently 
to large, complex data sets, such as soil microbiome 
data sets. It is important to note that as taxonomic or 
functional assignment depends on homology between 
the single read and a reference, database choice is 
crucial. For well-​characterized environments such 
as the human gut, curated genome databases such as 
RefSeq77 and protein family databases such as Pfam78 or 
UniRef79 increase the accuracy of results and decrease 
computational costs. For samples from poorly charac­
terized environments, the use of large databases such 
as NCBI nr and nt and IMG/M80 should be considered 
because the databases are larger, despite the increased 
computational complexity and decreased assignment 
specificity. Specialized databases must be used to 
annotate specific taxonomic or functional categories, 
such as PHASTER81 for bacteriophages, Resfams82 for 
antibiotic resistance genes and FOAM for environmen­
tal samples83. Additionally, numerous metagenomic 
data catalogues are available for many sample types, 
including Tara for ocean samples84, the BGI catalogue 
for mouse gut samples85 and MetaHit for human  
gut samples86.

Another method for analysing metagenome and 
metatranscriptome sequencing reads is to assemble 
the short reads into longer sequences (contigs). These 
contigs can be further sorted or binned by similarity 
to assemble partial to full genomes of microorganisms. 
This allows data exploration beyond taxa and gene 
annotation, enabling the prediction of multi-​gene bio­
synthetic pathways or even metabolic reconstructions 
with tools such as antiSMASH87. However, assembly-​
based analyses are not universally applicable; higher 
biodiversity, the presence of many related strains in sam­
ples, or low coverage yields fragmented assemblies and 
can obscure taxa from downstream analyses. For exam­
ple, soil samples are often difficult to assemble owing to 
the high microbial diversity and uneven distribution88. 
For samples that avoid these complications, metagenome 
assemblies provide valuable bespoke reference databases 
for read-​based and assembly-​based metatranscriptome 
analyses89,90, thus recovering the ‘microbial dark matter’ 
that is absent in curated databases91. Recommended tools 
for assembly-​based analyses include metaSPAdes92 and 
MEGAHIT93. A comprehensive discussion of these 
and other tools can be found in ref.94. To assemble partial 
to full genomes of individual microorganisms, contigs 
are sorted (binned) into separate putative genomes with 
tools such as MaxBin2 (ref.95) and CONCOCT96, which 
evaluate nucleotide composition and abundance patterns 
across samples to perform sorting (binning). To evalu­
ate the quality of these binned and assembled genomes, 
single-​copy gene profiling tools such as CheckM97 that 
use common single-​copy genes to estimate genome com­
pleteness and contamination can be used. Additionally, 
visualization tools like VizBin98 display clustering of 
metagenomic sequences without alignment to a refer­
ence database, allowing researchers to visually inspect the 
sequence clustering of related organisms and assist with 
evaluating bin quality. Employing integrated workflow 

Fig. 2 | best workflow for 16S ribosomal rNA , metagenomic and 
metatranscriptomic sequencing. After careful design and sample collection, 
microbiome data are generated from 16S ribosomal RNA (rRNA), metagenomic or 
metatranscriptomic sequencing. After performing 16S rRNA sequencing, we recommend 
using Deblur63 to resolve sequence data into single-​sequence variants called 
sub-operational taxonomic units (sOTUs). Although DADA2 and Deblur achieve similar 
results, Deblur is an order of magnitude faster than DADA2, is parallelizable and shows 
greater stability (that is, it obtains the same sOTUs across different samples)63. 
Metagenomics and metatranscriptomics first require preprocessing to remove either 
host DNA or rRNA and host RNA. The resultant sequencing data can be analysed by 
either read-​based profiling using state-​of-the-​art tools, such as Kraken70, MEGAN76 or 
HUMAnN44, or by assembly-​based analyses, with tools such as metaSPAdes92 and 
MEGAHIT93. For each of these three methods, higher-​level analyses (for example, alpha 
and beta diversity , taxonomic profiling and machine learning) are subsequently used to 
find overall patterns in microbiome variation. Random forests regression has been 
effective in many applications, ranging from dating time since death of a corpse128 to 
providing an index for microbiome maturation129. SourceTracker130, a Bayesian estimator 
of the sources that make up each unknown community , is useful for classifying microbial 
samples according to environment of origin131. ITS, internal transcribed spacer.

K-​mers
All possible sequences of 
length k from a read obtained 
through DNA sequencing.
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tools to automate data processing, such as Anvi’o99, 
ATLAS100 or MetAMOS101, is highly recommended 
because assembly-​based methods are complex.

In order to compare samples with varying sequenc­
ing read counts, various methods of normalization 
can be employed. Common methods of normalization 
include read counts per million (counts are scaled by 
the total number of reads), transcripts per kilobase 
million (counts scaled by number of reads and length 
of reads) and converting the data to relative abundance. 
Additionally, there are various tools for performing 
normalization, including edgeR102 and DESeq2 (ref.103).

New tools for both read-​based and assembly-​based 
approaches are under rapid development. When possi­
ble, specific analytical decisions should be made based 
on performance on well-​studied or synthetic data 
sets (such as the Critical Assessment of Metagenomic 
Information104) that are most similar to the microbial 
community of interest.

Higher-​level analyses
Processing microbiome data generates a matrix that 
relates feature abundance (taxa or genes) to samples. 
This output is deceptively simple; microbiome data are 
highly dimensional, often representing thousands of dif­
ferent taxa, and sparse, with many zeros present in the 
matrix, requiring careful statistical treatment to extract 
meaningful results.

Overall patterns in microbiome variation are 
typically assessed by alpha and beta diversity. Alpha 
diversity quantifies feature diversity within individual 
samples and can be compared across sample groups. 
For example, when comparing a sample from an 
individual with a disease to a healthy control, the 
researcher can use alpha diversity to compare the mean 
species diversity between the two samples. Measures  
of species richness (for example, the number of 
observed species or the Chao1 abundance estimator, 
which estimates true species diversity) and phylogenetic 
measures (Faith’s phylogenetic diversity) are sensitive to 
the number of sequences per sample, whereas measures 
that combine richness and evenness (Shannon index) are 
much less so. However, it should be noted that these 
methods have been evaluated exclusively for 16S rRNA 
data and may not apply to other microbiome data types. 
Beta diversity compares feature dissimilarity between 
each pair of samples, generating a distance matrix of 
beta diversity distances between all pairs of samples. 
Metric selection can influence the results obtained68,105 
and should be chosen with biological data interpre­
tation in mind. Quantitative metrics (Bray–Curtis, 
Canberra and weighted UniFrac) use feature abun­
dance data in calculations, whereas qualitative metrics 
(binary-​Jaccard and unweighted UniFrac) only con­
sider the presence or absence of features. Phylogenetic 
measures such as UniFrac typically provide interpreta­
ble biological patterns106, though these metrics require 
a phylogenetic tree and thus cannot be used for direct 
comparison with omics data that lack trees. Software 
for performing alpha and beta diversity calculations 
includes QIIME59, Mothur60 and the R package vegan107. 
The non-​parametric permutation tests PERMANOVA 

and ANOSIM are used for assessing significant beta 
diversity clustering between groups, but PERMANOVA 
may perform better on data sets with varying disper­
sions within groups108. Calculation of meaningful alpha 
and beta diversity measures requires the researcher to 
control for the sampling effort (that is, the number 
of sequences per sample obtained), as this can differ 
by orders of magnitude. The current best solution for 
UniFrac is rarefaction109, though for the special case of 
pairwise differential abundance testing, the full sample 
set should be used110.

For visualizing beta diversity data, ordination tech­
niques, such as principal coordinates analysis (PCoA) 
or principal component analysis (PCA), are commonly 
used. These methods reduce large and complex distance 
matrices into visually manageable two-​dimensional or 
three-​dimensional representations of sample distances. 
Samples can then be coloured by various metadata 
categories to visualize clustering in an unsupervised 
manner. EMPeror offers an interactive framework for 
manipulating PCoA plots111.

Another common analysis approach is to look at 
differentially abundant microorganisms or functional 
elements (for example, genes and pathways) in the 
comparison groups of interest (that is, treatment versus 
control). Identifying microbial taxa that explain differ­
ences between communities is particularly challenging 
because microbiome data sets are high-​dimensional (that 
is, they include thousands of taxa), sparse and compo­
sitional. Compositionality is the crux of the problem112; 
when the proportion of one microorganism increases, 
the proportions of others must decrease for the pro­
portions to sum to 1. For example, suppose a patient 
is administered a drug that increases the growth rate 
in only a single microbial genus while not affecting the 
growth of others. Although the other microorganisms 
are not impacted by the drug, they would have decreased 
in relative abundance owing to the outgrowth of the 
single microbial genus. This poses challenges for many 
classical methods, such as parametric statistical tests (for 
example, Student’s t-​test and ANOVA) and measures of 
correlation, including Spearman’s rank correlation, often 
leading to completely unacceptable false discovery rates 
above 90%109,113,114. Recently, compositionally aware 
methods have addressed this problem of composition­
ality and relative abundance. One approach is to force 
strong biological assumptions on the statistical test: for 
example, Lovell’s proportionality metric detects only pos­
itive correlations115. Other tools that are widely applicable 
and have been optimized for microbiome data, such as 
SparCC116 and SPEIC-​EASI117, assume that few species 
are correlated, so most correlation coefficients are zero. 
BAnOCC118 is another tool for addressing the composi­
tionality problem that makes no assumptions about the 
data. We recommend another approach that does not 
assume few species are correlated, which is to test for 
differences between microbial communities using the 
isometric log ratio transform (ilr). The ilr approach controls 
for false positives owing to proportionality by testing for 
the changes in log ratios between microbial abundances, 
commonly referred to as balances. Balances can be con­
structed using previous knowledge such as evolutionary 

Beta diversity
A measure of similarity 
between samples.

Faith’s phylogenetic 
diversity
An alpha diversity metric that 
uses a phylogenetic tree to 
compute sample diversity.

Shannon index
A commonly used index to 
characterize species diversity 
in a community.

False discovery rates
A method of understanding the 
rate of type I errors in null 
hypothesis testing when 
performing multiple 
comparisons.

Isometric log ratio 
transform
(ilr). Converts a vector of 
proportions into a vector of log 
ratios using a tree as a 
reference. The computed log 
ratios consist of the difference 
of mean logarithms of species 
proportions between adjacent 
clades within the tree.
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history106,119,120 or microbial niche differentiation in 
response to environmental factors such as pH (ref.121). 
After the ilr is applied, standard statistical tools, such as 
multivariate response, linear regression and classifica­
tion, can effectively test for differences in the balances 
or log ratios between microorganisms rather than the 
raw microbial abundances, controlling for composition­
ally. Other recent methods use absolute quantification to 
address compositionality by complementing sequencing 
with microbial cell counts in each sample122,123.

Machine learning is emerging as an especially useful 
technique for determining how microbiome data can be 
used to separate samples based on the current state (usually  
determined by metadata categories, such as healthy 
state versus diseased state)124,125 or, excitingly, to predict 
a future state126,127. For instance, it is possible to model 
the severity and susceptibility of gingivitis based on an 
individual’s oral microbiota126. Random forests regression, 
a machine learning technique, has been effective in many 
applications, ranging from dating time since death of a 

corpse128 to providing a model for determining microbi­
ome maturation in child development129. SourceTracker130, 
a Bayesian estimator of the microbial sources that make 
up an unknown community, is useful for classifying 
microbial samples according to environment of origin131. 
Importantly, machine learning analyses need a substantial 
sample size and should always be coupled with cross val­
idation, independent test sets or other experimental and 
biological confirmation to ensure robust findings.

Integrating other omics data
Knowing the composition of a microbial community is 
no longer a sufficient research goal; we want to know 
the function of the community. Integrating other data 
types — including marker gene sequencing, metagen­
omics, metatranscriptomics, metaproteomics, metab­
olomics and other techniques — for a given study is 
crucial for a comprehensive understanding of the com­
position and function of microbial communities. For 
example, changes in the metabolite profile of a microbial 

Random forests regression
A machine learning technique 
that uses decision trees to 
perform classification.
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Fig. 3 | integrating omics data with microbiome data. The central dogma of molecular biology of progression from 
genes to downstream metabolic products is reflected by the compendia of corresponding ‘omes’ co-​occurring within the 
cell. Linking the knowledge from different omics studies constitutes a multi-​omics analysis. Panels around the cell 
represent some integration examples of various omics data with marker gene sequencing: a | Three-​dimensional 
visualization of mapped molecular and microbial (or any other) features aids our understanding of spatial correlation 
thereof. b | Sparse canonical correlation analysis140 identifies linear combinations of the two sets of variables that are highly 
correlated with each other. c | Correlation network analysis shows clustering of a particular microorganism with 
metabolites that are potentially produced and/or processed by it. d | Metabolic activity networks help to predict microbial 
community structure and function by mathematical modelling of the molecular mechanisms of particular organisms.  
e | Procrustes analysis enables the direct comparison of different omics data sets with the same internal structure on a 
single principal coordinates (PC) analysis plot to reveal trends in the data. f | Multiple co-​inertia analysis (MCIA) enables 
multidimensional comparisons through graphical representation so that the similarity of different omics data can be more 
easily understood. GSSG, oxidized glutathione; RNA-​Seq, RNA sequencing.
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community reflect changes in its biosynthetic activity, 
mRNA and protein expression, and protein activity132. 
Multi-​omics analysis integrates chemical and biologi­
cal knowledge to provide a more complete picture of a 
biological system and is an active area of research with 
largely untested methods (Fig. 3).

Integrating multi-​omics data types is inherently dif­
ficult. For example, gene expression and metabolism 
operate on different timescales133, and microorganisms 
produce many metabolites, often only in response to 
molecular signals from other species134. Also, metagen­
omic and metabolomic data sets (where the data matrices 
are composed mostly of zeros) are much sparser than 
metaproteomic data sets, and this may pose technical 
problems for some methods. Although the integration 
of different omics data sets is a work in progress, tools 
that integrate these data sets are becoming increasingly 
available. For example, XCMS Online integrates metab­
olomic data with metabolic pathways, as well as tran­
scriptomic and proteomic data135. Traditional correlation 
methods such as Pearson and Spearman could enable 
pairwise correlation between features across omics data 
sets. However, these are prone to false positives owing 
to the sparsity and high dimensionality of microbiome 
and metabolome data sets. Procrustes analysis136 uses 
dimensionally reduced data to test whether patterns 
(distances) between samples in one data set are observed 
in the other, essentially correlating ordination spaces 
rather than individual features (tested using Mantel137 or 
PROcrustes randomization TEST). Other methods inte­
grate omics data sets by not only taking into account the 
relationships between samples but also associating sam­
ples to particular metadata categories of interest (such 
as examining healthy versus diseased groups or control 
versus treatment groups). These methods include co-​
inertia analysis, which uses dimensionality reduction to 

associate sample patterns in two data sets and relevant 
metadata138, and partial least-​squares139, as well as related 
methods such as canonical correlation analysis140 or 
robust sparse canonical correlation analysis, which is a 
variation of the method to deal with sparse omics data141.

Advanced integrative analysis tools include molec­
ular networking with Global Natural Product Social 
(GNPS)142 to identify metabolites and pathway annota­
tions143 and general systems biology tools, exemplified by 
XCMS Online135. Increasingly, multi-​omics studies are 
investigating temporal patterns in addition to spatial pat­
terns. Spatial mapping144, which can now be performed 
with the tool ‘ili144, adds a powerful dimension to multi-​
omics studies through visual representations that are 
readily amenable to human interpretation.

Integration with other omics data can be performed 
using various statistical methodologies145. However, these 
techniques have been shown to perform suboptimally 
on microbiome data sets114. Furthermore, simply finding 
correlations in various omics data by itself is only the first 
step. Establishing causation and correlation across data 
sets is the next challenge. Box 3 gives an example of the 
integration of metabolome and microbiome data sets 
and corresponding approaches to move beyond correlation 
and determine causation. Correction for multiple compari­
sons is crucial in multi-​omic analyses; data sets can contain 
thousands of different microorganisms and metabolites, so 
significant correlations are expected by random chance. 
Measures to correct significance testing for multiple com­
parisons include the false discovery rate (for example, 
Benjamini–Hochberg correction) or, for more conservative 
corrections, the family-​wise error (for example, Bonferroni 
correction). The use of these methods to penalize multiple 
comparisons in conjunction with statistical models that 
incorporate sparsity and compositionality114 can reduce 
false discovery rates in large multi-​omic comparisons.

Box 3 | Metabolomics and the microbiome

Microbially produced metabolites influence host physiology, can shape microbial community dynamics and are involved 
in both health and disease. these metabolites can have both beneficial (for example, short-​chain fatty acids153) and 
detrimental (for example, the genotoxin colibactin154) effects on the host. However, identifying a metabolite as sourced 
from the microbiome is particularly challenging. even more challenging is identifying which microorganism or collection 
of microorganisms produced or modified a particular metabolite. Here are several strategies to address this problem:

•	Compare metabolites from natural samples to those from cultured isolates of microbiome-​isolated microorganisms. 
One useful approach is matching tandem mass spectrometry data from cultured isolates to data from clinical or 
environmental samples, showing that a particular metabolite signature can be sourced from the cultured 
microorganism155.

•	Map metabolites detected in a microbiome sample to paired genome or metagenomic data. some metabolites are 
unique to particular microbial taxa. Detection of these metabolites in a natural sample can enable determination of 
their likely source by mining paired genomic data for genes known to produce that metabolite. For example, 
2,3-butanedione, a unique fermentation product, is a microbial metabolite produced by Streptococcus spp. Detection of 
this metabolite in clinical samples along with the biosynthetic genes facilitates mapping of reads to the biochemical 
pathway back to the genome of the organism of origin146.

•	Build co-​occurrence networks of microorganisms and metabolites. Co-​occurrence or correlation methods associate 
microorganisms with metabolite features. this is an active area of research, but available algorithms that have been 
optimized for detecting correlations between microorganisms in sparse microbiome data include sparCC116, 
CCLasso156 and others114,157. However, this approach warrants caution because of the high false discovery rates across 
the large multivariate data sets.

•	Germ-​free versus specific pathogen-​free murine models. these comparisons identify metabolites from the microbiome 
as metabolites detected in colonized mice but not in uncolonized mice are likely produced by microorganisms. 
Gnotobiotic mice (mono-​colonized or with defined communities) help identify specific microorganisms that produce 
metabolites of interest158.

Family-​wise error
The probability of making one 
or more type I errors (false 
discoveries) when performing 
multiple hypotheses tests.
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Despite these challenges, the future potential for 
omics data integration is promising. In particular, there 
are numerous examples where metagenome, metatran­
scriptome and metabolome data have been successfully 
integrated, illuminating gene regulation in microbiomes37 
and correlating the presence of microorganisms with 
metabolites146. Such studies have provided insights 
beyond the capacity of single omics studies, such as 
studies of gut bacterial metabolism of xenobiotics52 and 
how antibiotic-​induced microbiome depletion creates a 
favourable metabolomic environment for Clostridium  
difficile147. Comparatively, the integration of metapro­
teomics data with microbiome data is a relatively new 
field of investigation, though there are many recent 
examples of successful integration ranging from iden­
tifying biomarkers of Crohn’s disease148 to examining 
microbial protein production in layers of permafrost149. 
Additionally, tool development for metaproteomics anno­
tations and analysis is ongoing150,151. Overall, integrating 
omics data can provide a more holistic and mechanistic  
understanding of microbiomes — from DNA identifica­
tion to functional production of metabolites and proteins —  
and ideally lead to more actionable scientific insights.

Conclusions
In this Review, we discuss how all stages of conduct­
ing a microbiome study, from designing the experi­
ment to collecting and storing the samples to obtaining 
insight from graphical displays of the sequence data, 
can substantially impact the results and their biologi­
cal interpretation. As the effects of many of these tech­
nical steps are large compared with the real biological 
variability to be explained, standardization is necessary 
in order to compare and combine separate studies, and 
the first efforts to do this and to provide recommen­
dations and best practices, such as the International 
Human Microbiome Standards and the Microbiome 
Quality Control (MBQC) project, are already under­
way. Including bioinformatics pipelines and controls 

into these standardization efforts, and in particular 
using cloud-​enabled reproducible computing resources 
that run open-​source code on publicly available data to 
reproduce scientific claims of publications, is a rapidly 
emerging area that will bring consistency and com­
parability to the microbiome field. An important part 
of such efforts will be spike-​in standards (which have 
already been so important to standardizing microar­
rays) and standardized, biologically realistic samples 
that can be used to quantify systems-​level accuracy in 
microbiome assays.

This article is focused primarily on DNA-​level analy­
ses at the whole-​community level, but as expression-​level 
profiling and single-​cell profiling techniques continue to 
advance, many similar considerations will apply to those 
types of data also. Avoiding the mistakes that have been 
repeated frequently in other expensive assays, such as 
inadequate sample size and validation, and employing 
best practices for standards, sample handling, composi­
tional data analysis and other frequent pitfalls will acce­
lerate progress in these areas. Using standardized and 
well-​characterized sample sets, such as those developed in 
the MBQC project and in the Earth Microbiome Project, 
can greatly shorten the time needed to understand the 
value and unique insights provided by a new technique.

As the field trends towards ever-​larger data sets, 
understanding subtle confounding factors long known to 
epidemiologists and taking more care with longitudinal 
study designs will become increasingly important. The 
value of interventional studies over observational studies 
is considerable, especially when human, animal model 
and in vitro data can be correlated across scales and sys­
tems. Increased standardization of techniques and dis­
semination of methods with low noise and bias will 
greatly increase the ability of the microbiome field to 
deliver on the promise of translatability from lab-​scale 
studies to the clinic, field or natural environment.
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