
Department for Computer Science

and Software Engineering

INTRODUCTION TO SOFTWARE ENGINEERING

Daniel Sinnig, PhD

d_sinnig@cs.concordia.ca

29-July-14

Structural Testing

2

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Functional Testing

• A program can be considered as a function that has

inputs as a domain and outputs as a range

• Historically functional testing emphasized the input

domain but it can be apply for range based test cases as

well

• Is not based on the structure of the program (which is

unknown)

3

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Types of functional testing

• Boundary testing

• Equivalence class testing

• Decision table testing

4

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Types of functional testing

• Boundary testing

• Equivalence class testing

• Decision table testing

5

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Program view for boundary analysis

• Many programs can be viewed

as a function F that maps

values from a set A (its

domain) to values in another

set B (its range)

• The input variables of F will

have some (possibly unstated)

boundaries: 𝐹 𝑥1, 𝑥2 : 𝐴 ⟶
𝐵, with 𝑎 ≤ 𝑥1 ≤ 𝑏 and

𝑐 ≤ 𝑥2 ≤ d

6

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Boundary Value Testing

• Boundary Value Analysis

• Robustness Testing

• Worst-Case Testing

• Special Value Testing

• Random Testing

7

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Boundary Value Testing

• Boundary Value Analysis

• Robustness Testing

• Worst-Case Testing

• Special Value Testing

• Random Testing

8

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Boundary Value Analysis

• Based on “single fault” assumption in reliability theory

– Failures are only rarely the result of the simultaneous occurrence of two

(or more) faults

• The input variable values are used at their min, min+, nom,

max-, max

• Text case generation:

– For all i

– Values of all but one variable 𝑥𝑖 at nominal

– 𝑥𝑖 assumes all 5 values from above

• n variables yield 4n+1 test cases

9

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Boundary Value Analysis (two variables)

• For two variables x1, x2, the boundary value analysis test cases

will be:

– T = { <x1nom, x2min>, <x1nom, x2min+>, <x1nom, x2nom>,

<x1nom, x2max->, <x1nom, x2max>, <x1min, x2nom>,

< x1min+, x2nom>, <x1max-, x2nom>, <x1max, x2nom> }

10

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Boundary Value Analysis(remarks)

• Can be applied to loop control variables, indices, pointers

• Choose also inputs that invoke output boundary values (values on the

boundary of output classes)

• Limitations:

– Works well for functions of several independent variables that represent

bounded physical quantities

– No consideration of the nature of the function nor the semantic meaning of

the variables

– Does not work well for Boolean variables

– Does not work well for logical variables (PIN, transaction type)

11

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Boundary Value Testing

• Boundary Value Analysis

• Robustness Testing

• Worst-Case Testing

• Special Value Testing

• Random Testing

12

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Robustness Testing

• Explicit range checking and

exception handling

• In addition to the five

values of the variable we

add two more:

– slightly greater than the

maximum (max+)

– slightly less than the

minimum (min-)

13

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Robustness testing (cont.)

• Help to test that:

– Error cases are properly handled,

– Error messages are properly displayed

– System is able to recover from the error cases

• n variables yield 6n+1 test cases

14

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Boundary Value Testing

• Boundary Value Analysis

• Robustness Testing

• Worst-Case Testing

• Special Value Testing

• Random Testing

15

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Worst-Case Testing

• Rejection of the single fault

assumption

• For each variable, we have min, min+,

max-, max and then we take the Cartesian

product of these sets to generate test

cases

• For n input variables the number of test

cases is 5n

16

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Robust Worst-Case Testing

• Add min-, max+

• For n input variables the

number of test cases is 7n

17

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Boundary Value Testing

• Boundary Value Analysis

• Robustness Testing

• Worst-Case Testing

• Special Value Testing

• Random Testing

18

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

 Special Value Testing

• Tester uses his domain knowledge, experience with same
programs

• No guidelines other than engineer’s judgment

• Also called “ad-hoc” or “seat-of-the pants” testing

• Despite all the apparent negatives, it can be useful

19

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

19

Boundary Value Testing

• Boundary Value Analysis

• Robustness Testing

• Worst-Case Testing

• Special Value Testing

• Random Testing

20

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Random Testing

• The most widely practiced way of functional testing

• Basic idea:

– Use a random number generator to produce random values (instead of

max, min, …) for test cases

– Test cases are generated randomly until at least one of each output occurs

21

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Review: Boundary Value Testing

• A testing technique in which test data are chosen to lie along

“boundaries” of the input domain [or output range] classes, data

structures, procedure parameters, etc.

• Problems:

– Serious gaps (non-completeness)

– Massive redundancy

• Avoiding these problems is the motivation for equivalence class

testing

22

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Types of functional testing

• Boundary testing

• Equivalence class testing

• Decision table testing

23

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Equivalence class testing

• A testing technique in which test data is derived by partitioning

the input domain into disjoint sub-sets (equivalence classes).

• Each of these classes is an equivalence partition where the

program behaves in an equivalent way for each class member

– where all members of a class are related (by an equivalence relation)

• Test cases are identified by using one element from each

equivalence class.

• Underlying technique: Set partitioning

24

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Set Partitioning and Equivalence Relation
• Given a set 𝐴, and a set of subsets 𝐴1, A2, … , An of 𝐴, the

subsets are a partition of A iff:
𝐴1 ∪ A2 ∪ ⋯ ∪ 𝐴𝑛 = A and i ≠ 𝑗 ⇒ 𝐴𝑖 ∩ Aj = ∅

• A relation 𝑅 ⊆ 𝐴 × 𝐴 is an equivalence relation if R is reflexive,

symmetric, and transitive.

– Reflexive: ∀𝑎 ∈ 𝐴. 𝑎, 𝑎 ∈ 𝑅

– Symmetric: ∀𝑎, 𝑏 ∈ 𝐴. 𝑎, 𝑏 ∈ 𝑅 ⇒ (𝑏, 𝑎) ∈ 𝑅

– Transitive: ∀𝑎, 𝑏, 𝑐 ∈ 𝐴. 𝑎, 𝑏 ∈ 𝑅 ∧ (𝑏, 𝑐) ∈ 𝑅 ⇒ (𝑎, 𝑐) ∈ 𝑅

• Each partition forms an equivalence class

25

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Implication for testing

• Testing based on partitioning provides a form of completeness

as the entire set of represented

• The disjointness of the sets assures a form of non-redundancy

26

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Equivalence partitioning

System

Outputs

Invalid inputs Valid inputs

27

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Choosing the equivalence relation

• Choosing the right equivalence relation is crucial.

• Often the equivalence relation is chosen based on:

– The range of the input variables (e.g., a <= x <= b)

– The expected program output (e.g., “No triangle”, “Isosceles”, etc)

– The required calculation (e.g., increasing a regulate date is computed

differently than increasing the end of a month)

– Etc.

28

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Variations of equivalence class testing

• Same two orthogonal dimensions as in boundary value analysis

• Robustness

– Robust-normal distinguishes valid data from invalid data

• Single/Multiple Fault Assumption

– Weak-strong distinguishes single from multiple fault

• Combinations give four variations.

29

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Equivalence Class Testing

• Weak Normal Equivalence Class Testing

• Strong Normal Equivalence Class Testing

• Weak Robust Equivalence Class Testing

• Strong Robust Equivalence Class Testing

30

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Running example

• Consider a two-variable function F(x1,x2) where the equivalence

classes are defined by the following intervals for x1 and x2.

– a ≤ x1 ≤ d, with intervals [a,b), [b,c), [c,d]

– e ≤ x2 ≤ g, with intervals [e,f), [f,g]

31

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Weak Normal Equivalence Class Testing

• Accomplished by using one value from each (valid) equivalence

class

• A valid equivalence class is within valid input range.

• Single fault assumption

32

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Strong Normal Equivalence Class Testing

• Based on multiple fault assumption

• Requires test cases for each element of the Cartesian product of

the “valid” equivalent classes.

– Covers all equivalence classes and requires one test case for each possible

combination of (valid) inputs

33

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Weak Robust Equivalence Class Testing

• Based on single fault assumption

• Weak normal equivalence testing + testing of invalid values such

that each invalid “range” was exercised ones.

34

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Strong Robust Equivalence Class Testing

• Based on multiple fault assumption

• Requires test cases covering each element of the Cartesian

product of all equivalence classes (valid and invalid)

35

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Limitations

• Same as those for boundary value testing

– Does not work well for Boolean variables

– Does not work well for logical variables

– When variables are not independent – i.e. are dependent

• For robust variations same as for boundary value testing

– Difficult or impossible to determine expected values for invalid variable values

36

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Guidelines for equivalence classes

• Equivalence Class Testing is appropriate when input data is defined in terms

of intervals and sets of discrete values.

• Equivalence Class Testing is strengthened when combined with Boundary

Value Testing

• Strong equivalence makes the presumption that variables are independent.

– If that is not the case, redundant test cases may be generated

• The key point in equivalence class testing is the choice of the equivalence

relation that determines the classes

– Several tries may be required before the “right” equivalence relation is discovered

– If the equivalence classes are chosen wisely, the potential redundancy among test

cases is greatly reduced.

37

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Guidelines for equivalence classes (cont.)

1. If an input condition specifies range,
– one valid and two invalid equivalence classes are needed

2. If a condition requires a specific value,
– then one valid and two invalid equivalence classes are needed

3. If an input condition specifies a member of a set,
– one valid and one invalid equivalence class are needed

4. If an input condition is Boolean,
– one valid and one invalid class are needed

38

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Exercise

The function “generate_grading” is specified as follows:

The function takes two arguments examMark (max. 75) and courseworkMark (max. 25) as

input. Based on the sum of the marks submitted the function calculates the overall course

grade as follows:

– ‘A’ – sum is greater or equal than 70

– ‘B’ – sum is greater or equal than 50 and less than 70

– ‘C’ – sum is greater or equal than 30 and less than 50

– ‘D’ – sum is less than 30

• Define suitable equivalence classes for:

– Strong normal equivalence class testing

– Strong robust equivalence class testing

39

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Types of functional testing

• Boundary testing

• Equivalence class testing

• Decision table testing

40

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Decision Table testing
• A testing technique in which test data is derived from a decision

table.

• Decision table uses a tabular format to capture the logic behind a

decision-making process

– Useful for modeling complicated logic

– Displays a combination of conditions to be met and actions to be taken

– Each column represents a unique combination (of conditions and actions)

• Example of a single condition/action:

 If there is smoke (condition) then push the fire alarm (action)

41

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Decision Table Terminology

• Condition entries restricted to binary values

– We have a limited entry table

• Condition entries have more than two values

– We have an extended entry table

42

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Constructing a Decision Table

• Determines the conditions and values each condition can take

• Find all possible actions/effects that can occur

• List all rules

• Define the actions for each rule

• Simplify the table

43

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Decision Table Structure

Condition labels Condition entries

Action labels Action entries

44

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Decision Tables, simple example.

 (On any given day.) For leisure, I generally read a good book but

I only take some leisure time after I have finished my homework.

For leisure on Fridays, I go out to see a repertoire movie, but

only if I have completed my homework before 6pm, otherwise

(because it is too late for the movie) I just read a good book at

home.

 [Solution, to be given in class]

45

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Decision Tables, simple example [Solution]

Homework done Y Y Y Y N N N N

Before 6pm N Y N Y N Y N Y

Friday N N Y Y N N Y Y

Read book   

See Movie 

No Leisure    

46

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Optimization

• Decision tables grow exponentially, if we add conditions.

– Number of columns = 2 number of conditions

• Optimizing size by

– Using “don’t care” values (*)

• May occur of a certain condition is irrelevant for an given action

– Identifying impossible situations (-)

• May occur if conditions are not independent

47

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Decision Tables, simple example [Optimized Solution]

Homework done Y Y Y N

Before 6pm N Y Y *

Friday * N Y *

Read book  

See Movie 

No Leisure 

48

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Exercise

Create a decision table for the following specification:

If there is smoke

and you have given up smoking

and someone else is not smoking

then push the fire alarm

and leave the building

but if there is no smoke

then do nothing

49

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Exercise

Create a decision table for the following specification:

If there is smoke (condition 1)

and you have given up smoking (condition 2)

and someone else is not smoking (condition 3)

then push the fire alarm (action 1)

and leave the building (action 2)

but if there is no smoke (condition 1)

then do nothing (action 1)

50

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Condition and Action Labels

There is smoke

You have given up smoking

Someone else is smoking

Push the fire alarm

Leave the building

Do nothing

51

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Condition and Action Entries

The numbers appearing in the action entry section tell

you which actions are to be taken and in what order.

There is smoke Y Y Y N

You have given up smoking Y N Y *

Someone else is smoking N * Y *

Push the fire alarm 1

Leave the building 2

Do nothing 1 1 1

52

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

soen342-f08: Propositional Logic 52

Exercise 2

Create a decision table for the following specification:

• Three types of customers are defined: a regular, a silver customer, and a gold
customer.

• A regular customer receives normal print rates ad delivery.

• A silver customer gets an 8% discount on all quotes and is placed ahead of all
regular customers in the job queue.

• A gold customer gets a 15% reduction in quoted prices and is placed ahead of
both regular and silver customers in the job queue.

• A special discount of x% in addition to other discounts can be applied to any
customer’s quote at the discretion of management.

53

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Exercise 2: Solution
Regular Customer Y Y - - - -

Silver Customer - - Y Y - -

Gold Customer - - - - Y Y

Special Discount N Y N Y N Y

No discount 

Apply 8% discount  

Apply 15% discount  

Apply additional x

percent discount

 



54

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Exercise 2: Solution (Extended entry decision table)

Customer Reg. Reg. Silver Silver Gold Gold

Special Discount N Y N Y N Y

No discount 

Apply 8% discount  

Apply 15% discount  

Apply additional x percent

discount

 



55

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Rule count

• Limited entry tables with N conditions have 2N rules

• Don't care entries (*) and impossible situations (-) reduce the number of

explicit rules by implying the existence of non-explicitly stated rules.

• Counting rules of a given decision table:

– Rules with no (*) and (-) count as ‘1’

– Roles with (*) and (-) count as 2i where i is the number of occurrences of (*) and (-)

56

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Why counting rules in a decision table?

Rule count acts as “Sanity check”:

• Less rules than combination rule count

– Indicates missing rules

• More rules than combination rule count

– Could indicate redundant rules

– Could indicate inconsistent table

57

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Rule count example 1

Homework done Y Y Y Y N N N N

Before 6pm N Y N Y N Y N Y

Friday N N Y Y N N Y Y

Rule count 1 1 1 1 1 1 1 1

Read book   

See Movie 

No Leisure    

Rule count: 8*1 = 23 

58

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Rule count example 2

Rule count: 2+1+1+4 = 23 

Homework done Y Y Y N

Before 6pm N Y Y *

Friday * N Y *

Rule count 2 1 1 4

Read book  

See Movie 

No Leisure 

59

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Rule count example 3

Rule count: 1+2+1+4 = 23 

There is smoke Y Y Y N

You have given up smoking Y N Y *

Someone else is smoking N * Y *

Rule count 1 2 1 4

Push the fire alarm 1

Leave the building 2

Do nothing 1 1 1

60

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Rule count example 4

Rule count: 6*4 = 24  23

Regular Customer Y Y - - - -

Silver Customer - - Y Y - -

Gold Customer - - - - Y Y

Special Discount N Y N Y N Y

Rule count 4 4 4 4 4 4

No discount 

Apply 8% discount  

Apply 15% discount  

Apply additional x

percent discount

 



Where is the problem?

61

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Rule count example 4 (unfolded)
Regular

Customer
Y Y Y Y Y Y Y Y

Silver Customer Y Y Y Y Y Y Y Y

Gold Customer Y Y Y Y Y Y Y Y

Special Discount N N N N Y Y Y Y N N N N Y Y Y Y N N N N Y Y Y Y

Rule count 1

No discount

Apply 8%

discount

Apply 15%

discount

Apply

additional x %

Impossible

62

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Rule count example 4 (unfolded)

Regular

Customer
Y Y Y Y Y Y Y Y Y Y N N Y Y N N Y Y N N Y Y N N

Silver Customer Y Y N N Y Y N N Y Y Y Y Y Y Y Y Y N Y N Y N Y N

Gold Customer Y N Y N Y N Y N Y N Y N Y N Y N Y Y Y Y Y Y Y Y

Special Discount N N N N Y Y Y Y N N N N Y Y Y Y N N N N Y Y Y Y

Rule count 1

No discount 

Apply 8%

discount

 

Apply 15%

discount

 

Apply

additional x%

  

Impossible                  

63

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Rule count example 4 (without redundancies)

Regular

Customer
Y Y Y Y Y Y Y Y Y Y N N Y Y N N Y Y N N Y Y N N

Silver Customer Y Y N N Y Y N N Y Y Y Y Y Y Y Y Y N Y N Y N Y N

Gold Customer Y N Y N Y N Y N Y N Y N Y N Y N Y Y Y Y Y Y Y Y

Special Discount N N N N Y Y Y Y N N N N Y Y Y Y N N N N Y Y Y Y

Rule count 1 1 1 1 1 1 1 1 1 1 1 1 1 1

No discount 

Apply 8%

discount

 

Apply 15%

discount

 

Apply

additional x%

  

Impossible                  

64

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Rule count example 4 (with redundancies + missing rules)

Regular

Customer
Y Y Y Y Y Y Y Y Y Y N N Y Y N N Y Y N N Y Y N N N N

Silver Customer Y Y N N Y Y N N Y Y Y Y Y Y Y Y Y N Y N Y N Y N N N

Gold Customer Y N Y N Y N Y N Y N Y N Y N Y N Y Y Y Y Y Y Y Y N N

Special Discount N N N N Y Y Y Y N N N N Y Y Y Y N N N N Y Y Y Y Y N

Rule count 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

No discount 

Apply 8%

discount

 

Apply 15%

discount

 

Apply

additional x%

  

Impossible 

65

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Decision Tables Advantages

• A precise yet compact way to model complicated logic (while

being able to check for completeness)

• Associate conditions with actions to perform

• Can associate many independent conditions with several actions

in an elegant way

• Completeness can be verified

• Excellent tool for designing control logic and…for deriving test

cases

66

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Decision tables vs Test cases

• With a complete decision table we have a complete set of test

cases.

• Each possible rule corresponds to a test case.

• Should we also write test cases for impossible rules?

67

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Decision Table-Based Testing

• Used to analyze complex logical relations

• They are suitable for cases where combination of actions are

taken under some conditions

68

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Key Points: Decision Table-Based Testing Technique

• To identify test cases, we interpret conditions as input and

actions as outputs then the rules are interpreted as test cases

• Steps:
– Identifying conditions and values

– Identifying maximum number of rules

– Identifying actions

– Encoding rules

– Assigning the appropriate actions for rules

– Simplify the rules (using “don’t care”)

– Validate completeness

– Derive test cases by assigning values to the variables

69

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Exercise: Decision Table

• Develop a decision table for the following description of the
insurance plan policy at the Everlasting life insurance company:

“Males between 15 and 35 years old are assigned to insurance plan A. Females
between 20 and 40 years old are assigned to insurance plan B. All males under 15
and females under 20 are assigned to insurance plan C. All males over 35 and all
females over 40 years old are assigned to insurance plan D. Clients without a
driver's license are given a 10% rebate. Clients that have been insured for more than
20 years and currently part of insurance plan D are given a 25% rebate.”

70

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

male female

age < 15

age > 35

age < 20

age > 40

insured > 20 years

has driver’s license

Plan A

Plan B

Plan C

Plan D

10% rebate

25% rebate

• Here is an example of the possible

decision table setup that you can

have.

• Of course, you could have put

“gender is male” on the left with

the other conditions.

71

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

male female

age < 15

age > 35

age < 20

age > 40

insured > 20 years

has driver’s license

Plan A

Plan B

Plan C

Plan D

10% rebate

25% rebate

• These age ranges are only relevant

for males.

• The next two are only relevant for

females.

• In such cases use “*”, e.g., …

72

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

male female

age < 15 F

age > 35 F

age < 20 *

age > 40 *

insured > 20 years *

has driver’s license F

Plan A X

Plan B

Plan C

Plan D

10% rebate X

25% rebate

“*” indicates “don’t care” entries.

