
Department for Computer Science 

and Software Engineering 

INTRODUCTION TO SOFTWARE ENGINEERING 

Daniel Sinnig, PhD 

d_sinnig@cs.concordia.ca 

29-July-14 

Structural Testing 



2 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Introduction 

“ Testing is simple – all a tester needs to do is find a 

graph and cover it ” 

 [Beizer, Software Testing Techniques book] 



3 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Directed Graphs 

• A graph 𝐺 = 𝑉, 𝐸  is a finite (nonempty) set V of nodes and a 

set E of unordered pairs of nodes, with:  

– 𝑉 = 𝑛1, 𝑛2, … , 𝑛𝑚  and 

– 𝐸 = 𝑒1, 𝑒2, … , 𝑒𝑝  where each (directed) edge 𝒆𝒌 = 𝒏𝒊, 𝒏𝒋  is an 

ordered pair of nodes 𝒏𝒊, 𝒏𝒋 ∈ 𝑽  (with 𝑛𝑖 as the initial or start node and 

𝑛𝑗 as the terminal node) 

– Indegree (indeg) of a node is the number of distinct edges 

that have the node as terminal node. 

– Outdegree (outdeg) of the node is the number of distinct 

edges that have the node as start node.  

 



4 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Control flow graph (flow graph, Program graph) 
• Given a program written in an imperative programming language, its 

control flow graph (CFG) is a directed graph in which nodes are 

statements (or statement fragments) and edges represent flow of 

control.  

• Formally, a CFG is a quadrupel 𝑉, 𝐸, 𝑠, 𝑡  where:  

– 𝑉 = 𝑛1, 𝑛2, … , 𝑛𝑚  and 

– 𝐸 = 𝑒1, 𝑒2, … , 𝑒𝑝  where each (directed) edge 𝑒𝑘 = 𝑛𝑖 , 𝑛𝑗  is an 

ordered pair of nodes 𝑛𝑖 , 𝑛𝑗 ∈ 𝑉 

– 𝑠 ∈ 𝑉 is the start node with 𝑖𝑛𝑑𝑒𝑔 𝑠 = 0 

– 𝑡 ∈ 𝑉 is the terminal node with 𝑜𝑢𝑡𝑑𝑒𝑔 𝑡 = 0 

– Procedure nodes: Nodes 𝑛 ∈ 𝑉 with 𝑜𝑢𝑡𝑑𝑒𝑔(𝑛)  =  1 

– Decision nodes: Nodes 𝑛 ∈ 𝑉 with 𝑜𝑢𝑡𝑑𝑒𝑔 𝑛 >  1 

 



5 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Exercise (5-10min):  

• Draw the CFG for the following program 



6 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

CFG for Block Statement 
 

• CFG( S1; S2; …; SN ) = 

CFG(S2) 

CFG(S1) 

CFG(SN) 

… 



7 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

CFG for If-then-else Statement 
• CFG ( if (E) S1 else S2 ) 

if (E) 

CFG(S2) 

T F 

CFG(S1) 

Empty 

basic block 



8 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

CFG for If-then Statement 
• CFG( if (E) S ) 

if (E) 

T 

F CFG(S1) 



9 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

CFG for While Statement 
• CFG for:  while (e) S 

while (e) 

T 

F CFG(S) 



10 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

10 

CFG for do while Statement 

• CFG for:  do S while (e)  

CFG(S) 

T 

F 

while (e) 

do 



11 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Recursive CFG Construction 

• Nested statements: recursively construct CFG 

• Example: 

 while (c) { 

 x = y + 1; 

 y = 2 * z; 

 if (d)  x = y+z;  

 z = 1; 

} 

z = x; 



12 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

12 

Recursive CFG Construction 

• Nested statements: recursively construct CFG 

CFG(z=x) 

CFG(while) 

while (c) { 

 x = y + 1; 

 y = 2 * z; 

 if (d)  x = y+z;  

 z = 1; 

} 

z = x; 



13 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

13 

Recursive CFG Construction 

• Nested statements: recursively construct CFG 

z=x 

while (c) 

T 

F CFG(body) 

while (c) { 

 x = y + 1; 

 y = 2 * z; 

 if (d)  x = y+z;  

 z = 1; 

} 

z = x; 



14 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

14 

Recursive CFG Construction 

• Nested statements: recursively  

construct CFG 

z = x 

while (c) 

F 

y = 2*z 

CFG(if) 

z = 1 

x = y+1 while (c) { 

 x = y + 1; 

 y = 2 * z; 

 if (d)  x = y+z;  

 z = 1; 

} 

z = x; 



15 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Cyclomatic complexity of CFGs 
• Number of independent paths for CFGs can be calculated by using the 

cyclomatic number:  

• 𝑉 𝐶𝐹𝐺 =  𝑉 𝑉, 𝐸, 𝑠, 𝑡 =  𝑒 − 𝑛 + 2 

 

 

 



16 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Coverage Criteria 
• Test coverage criteria: is a rule or collection of rules that impose test 

requirements on a test set.  

• (Important) white box test criteria:  

– Statement coverage: Every statement is executed at least ones (node 
coverage) 

– Branch coverage: Every decision is executed at least ones (edge coverage) 

– Simple paths coverage: All simple paths are executed 

– Visit each loop coverage: Simple paths coverage + all loops are skipped and 
executed ones.  

– All paths coverage: All paths are executed 

– Basis path coverage: All linear independent path are executed 

– Multi-condition coverage: All elements of a compound condition are 
evaluated 

– Data flow coverage: Takes into account data definitions and uses 

 



17 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Running Example 

if (a) { 
   if (b) { 
     ... //statements X 
   } 
   ... //statements Y 
   while (c) { 
     ... //statements U 
   } 
} else { 
   if (d) { 
     do { 
        ... //statements V 
     } 
   while (e); 
   } 
} 

a

b

c

d

e

X

Y

U

V

1 2

3

4

5

6

8

9

15

10

1112 13

14

7



18 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Statement coverage 

• Strategy:  

– Every program statement is executed at least once 

– In terms of flowgraph: find a set of paths such that every node lies on at least one 

path 



19 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Statement coverage (cont.) 

• Select a test set T such that each statement of program P is 

executed at least once. 

 

read(x); read(y); 

    if x > 0 then write(“1”); 

    else               write(“2”); 

    if y > 0 then  write(“3”); 

    else                write(“4”); 

 

T: {<x = -13, y = 51>, <x = 2, y = -3>} 



20 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Statement coverage 

if (a) { 
   if (b) { 
     ... //statements X 
   } 
   ... //statements Y 
   while (c) { 
     ... //statements U 
   } 
} else { 
   if (d) { 
     do { 
        ... //statements V 
     } 
   while (e); 
   } 
} 

Minimum number of  test cases: 2 

Test cases: {<1,3,5,6,7,8,9,15>, <2,10,12,14>} 

a

b

c

d

e

X

Y

U

V

1 2

3

4

5

6

8

9

15

10

1112 13

14

7



21 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Branch coverage 

• Strategy:  

– Every program branch is executed at least once 

– In terms of flowgraph: find a set of paths such that every edge lies on at least one 

path 



22 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Branch coverage 

if (a) { 
   if (b) { 
     ... //statements X 
   } 
   ... //statements Y 
   while (c) { 
     ... //statements U 
   } 
} else { 
   if (d) { 
     do { 
        ... //statements V 
     } 
   while (e); 
   } 
} 

Minimum number of  test cases: 4 

Test cases: {<1,3,5,6,7,8,9,15>, <1,4,6,7,15>, <2,10,12,13,12,14>,<2,11>} 

a

b

c

d

e

X

Y

U

V

1 2

3

4

5

6

8

9

15

10

1112 13

14

7



23 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Simple path coverage 

• Strategy:  

– Every simple path (which does not contain the same edge more than once) is 

executed once 



24 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Simple path coverage 

if (a) { 
   if (b) { 
     ... //statements X 
   } 
   ... //statements Y 
   while (c) { 
     ... //statements U 
   } 
} else { 
   if (d) { 
     do { 
        ... //statements V 
     } 
   while (e); 
   } 
} 

Minimum number of  test cases: 6 

Test cases: {<1,3,5,6,7,8,9,15>, <1,3,5,6,7,15><1,4,6,7,8,9,15>, <1,4,5,6,7,15> 

                     <2,10,12,14>,<2,11>} 

a

b

c

d

e

X

Y

U

V

1 2

3

4

5

6

8

9

15

10

1112 13

14

7



25 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Visit each loop coverage 

• Strategy:  

– Simple path coverage + additional test cases such that for each loop there is one 

test case that:  

• skips the loop entirely  

• only makes one pass through the loop 

 

– If code one contains while – do loop then simple path coverage and visit each 

loop coverage are identical. Why?  



26 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Visit each loop coverage 

if (a) { 
   if (b) { 
     ... //statements X 
   } 
   ... //statements Y 
   while (c) { 
     ... //statements U 
   } 
} else { 
   if (d) { 
     do { 
        ... //statements V 
     } 
   while (e); 
   } 
} 

Minimum number of  test cases: 7 

Test cases: {<1,3,5,6,7,8,9,15>, <1,3,5,6,7,15><1,4,6,7,8,9,15>, <1,4,5,6,7,15> 

                     <2,10,12,14>,<2,11>, <2,10,12,13,12,14>} 

a

b

c

d

e

X

Y

U

V

1 2

3

4

5

6

8

9

15

10

1112 13

14

7



27 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

All path coverage 

• Strategy:  

– Every possible program path is executed at least once 

– In terms of flowgraph: find all paths through the flowgraph  

– Only feasible for if no loops are present 



28 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

All paths coverage 

if (a) { 
   if (b) { 
     ... //statements X 
   } 
   ... //statements Y 
   while (c) { 
     ... //statements U 
   } 
} else { 
   if (d) { 
     do { 
        ... //statements V 
     } 
   while (e); 
   } 
} 

Minimum number of  test cases: Infinite 

Test cases: {<1,3,5,6,7,15>, <1,4,5,6,7,15>, {<1,3,5,6,7,(8,9)n,15>, <1,4,6,7,(8,9)n,15> 

                     <2,11>, <2,10,12,14>, <2,10,12,(13,12)n,14>} for any n>0 

a

b

c

d

e

X

Y

U

V

1 2

3

4

5

6

8

9

15

10

1112 13

14

7



29 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Basis Paths Coverage 

• Strategy:  

– every linearly independent path is executed at least once 

– Minimum number of test cases (McCabe Cyclomatic 

Complexity): 

  V(G) = e – n + 2 

  V(G)= # decision points + 1 (if graph entails binary decision points 

only) 



30 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Basis path coverage 
if (a) { 
   if (b) { 
     ... //statements X 
   } 
   ... //statements Y 
   while (c) { 
     ... //statements U 
   } 
} else { 
   if (d) { 
     do { 
        ... //statements V 
     } 
   while (e); 
   } 
} 

a

b

c

d

e

X

Y

U

V

1 2

3

4

5

6

8

9

15

10

1112 13

14

7

Minimum number of  test cases: 6 

Test cases:  {<2,11>,<2,10,12,14>, <2,10,12,13,12,14>, <1,3,5,6,7,15>,              

         <1,3,5,6,7,8,9,15>, <1,4,6,7,15>, <1,4,6,7,8,9,15> } 
 

<1,4,6,7,15> is not linearly independent 
 



31 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

The baseline method 

• Developed by McCabe (1987) 

• Systematic approach to determine the set of  basis paths. 

• The method will return a minimal set of  basis paths 

• However, depending on the choice of  the first ‘baseline’ path, 

this set may not be unique.  

• Mathematical background:  

– A path 𝑝 is a linear combination of  paths 𝑝1, … , 𝑝𝑛 iff  there are integers 

𝑎1, … , 𝑎𝑛  such that 𝑝 =  𝑎𝑖𝑝𝑖
𝑛
𝑖=1  (in the vector representation) 

– A set of  paths is linearly independent iff  no path in the set is a linear 

combination of  any other paths in the set.  



32 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

The baseline method (cont.) 

Algorithm: 

• Step 0: Initialize set of  baseline paths B {} 

• Step 1: Pick a functional “baseline” path (p1) through the 
program (a typical run through the program).  

• Step 2: Add p1 to B 

• Step 3: While there are ‘unflipped’ (binary) decision nodes do  
– Step 3.1: Pick path p from B 

– Step 3.2: Generate the next baseline path 𝑝𝑛𝑒𝑥𝑡 by “flipping” the first 
decision node (𝑛𝑑) of  p. Should 𝑝𝑛𝑒𝑥𝑡 rejoin p, it must follow it until the 
end.  

– Step 3.3: Add 𝑝𝑛𝑒𝑥𝑡 to the set of  basis paths. B  

– Step 3.4: Mark 𝑛𝑑 as flipped 

 



33 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

The baseline method (cont.) 

• Remarks 

– Multi-way decisions (e.g., switch nodes) must be “flipped” to each of  

their decision outcomes 

– If  the CFG only contains binary decision then the minimal number of  

basis paths can also be calculated as: Number of  decision nodes + 1 

– Criticism:  

• May return infeasible paths due to data dependencies which conflict with the 

independency assumption of  basis paths   

 



34 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Exercise (5-10min): Determine the set of basis paths for 

the following CFG. Are all paths feasible? 

  

 



35 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Path Testing Process 

• Input:  

– Source code and a path selection criterion 

• Process: 

– Generation of a CFG 

– Selection of Paths 

– Generation of Test Input Data 

– Feasibility Test of a Path 

– Evaluation of Program’s Output for the Selected Test Cases 

 



36 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

White Box Testing Advantages  

• Structural testing methods are very amenable to: 

– Rigorous definitions 
• control flow, objectives, coverage criteria, relation to programming 

language semantics 

– Mathematical analysis 
• Graphs, path analysis 

– Precise measurement 
• Metrics, coverage analysis 

 



37 

Introduction to Software Engineering 

Daniel Sinnig, PhD 29-July-14 

Problems with White-Box Testing 
• Infeasible paths: 

program paths that cannot be executed for any input 

• No white-box strategy on its own can guarantee adequate 
software testing 

• Knowing the set of paths that satisfies a particular strategy 
doesn’t tell you how to create test cases to match the paths. 

 


