INTRODUCTION TO SOFTWARE ENGINEERING

Structural Testing

Daniel Sinnig, PhD Department for Computer Science
d_sinnig(@cs.concordia.ca and Software Engineering

Concordia
29-July-14 v

Introduction to Software Engineering

Introduction

29-July-14 Daniel Sinnig, PhD

Introduction to Software Engineering

Directed Graphs

* Agraph G = (V,E) is a finite (nonempty) set V of nodes and a
set E of unordered pairs of nodes, with:

- V={n{n,,..,ny,}and

- E = {el, €, wer) ep} where each (directed) edge ey = (ni, n]-) is an
ordered pair of nodes n;, n; € V (with n; as the initial or start node and
n; as the terminal node)

— Indegree (indeg) of a node 1s the number of distinct edges
that have the node as terminal node.

— Outdegree (outdeg) of the node 1s the number of distinct
edges that have the node as start node.

29-July-14 Daniel Sinnig, PhD

Introduction to Software Engineering

Control tlow graph (flow graph, Program graph)

* Given a program written in an imperative programming language, its
control flow graph (CFG) 1s a directed graph in which nodes are
statements (or statement fragments) and edges represent flow of
control.

* Formally, a CFG is a quadrupel (V, E, s, t) where:
- V={nyn,y, .., ny,}and
- E = {el, €, wer) ep} where each (directed) edge e, = (ni, nj) is an
ordered pair of nodes n;,n; € V
— s € V is the start node with indeg(s) = 0
— t € V is the terminal node with outdeg(t) = 0
— Procedure nodes: Nodes n € V with outdeg(n) = 1
— Decision nodes: Nodes n € V with outdeg(n) > 1

29-July-14 Daniel Sinnig, PhD

Introduction to Software Engineering

Exercise (5-10min):
* Draw the CFG for the following program

Program triangle2

Dim a,b,c As Integer

Dim IsATrinagle As Boolean

Output(“Enter 3 integers which are sides of a triangle”)
Input(a,b,c)

Output(“Side A is”, a)

Output(“Side B is”, b)

Output(“Side C is”,)

If(a<b+c)AND (b<a+c)AND(c<a+Db)
10 Then IsATriangle = True

11 Else IsATriangle = False

12 EndIf

13 If IsATriangle

14 Then If (a=b) AND (b =c¢)

OO W=

O

35 Then Output (“Equilateral”)

16 Else If (azb) AND (azc) AND (b=c)
17 Then Output (“Scalene”)

18 Else Output (“Isosceles”)

19 EndIf

20 EndIf

21 Else Output(“Nota a Triangle”)

22 EndIf

23 End triangle2

29-July-14 Daniel Sinnig, PhD

Introduction to Software Engineering

CFG for Block Statement

+ CFG(S1;S2;..;SN) =

CFG(S1)

CFG(S2)

!
1

CFG(SN)

|

29-July-14

Daniel Sinnig, PhD

Introduction to Software Engineering

CFG for If-then-else Statement
e CFG (if (E) S1 else S2)

|

CFG(S1)

if (E)
T~ NF

CFG(S2)
~.

B Ezrinsri)(tyblock

|

29-July-14

Daniel Sinnig, PhD

Introduction to Software Engineering

CFG for If-then Statement
. CPG(if(E)S)

if (E)
T/
CFG(S1) F

N

29-July-14 Daniel Sinnig, PhD

Introduction to Software Engineering

CFG for While Statement
* CFG for: while (e) S

while (e)
T
CFG(S)

29-July-14 Daniel Sinnig, PhD

Introduction to Software Engineering

CFG for do while Statement

* CFG for: do S while (e)

do

CFG(S)

while (e)

29-July-14

Daniel Sinnig, PhD

10
10

Introduction to Software Engineering

Recursive CFG Construction

* Nested statements: recursively construct CFG

* Example:

while (c) {
X=y+1
y=2%*z,
If (d) X =y+z;
z=1;

}

Z=X;

29-July-14 Daniel Sinnig, PhD

11

Introduction to Software Engineering

Recursive CFG Construction

* Nested statements: recursively construct CFG

while (c) { 1
X=y+1; CFG(while)
y=2%*z, |
If (d) x =y+z; CFG(z=x)
z=1; l

}

Z=X;

29-July-14 Daniel Sinnig, PhD 12

19

Introduction to Software Engineering

Recursive CFG Construction

* Nested statements: recursively construct CFG

|

while (c) { while (c)
X=y+1; T
y=2%*z; CFG(body) ||F
If (d) X =y+z;
z=1; ~

} Z=X

2= x |

29-July-14 Daniel Sinnig, PhD

13
12

Introduction to Software Engineering

Recursive CFG Construction

* Nested statements: recursively |
construct CFG Wh”f (c)
while (c) { X=y+1l
x=y+ L y =2%z
y=2%*z, ‘
If (d) x =y+z; CFG(if)
z=1;
) z=1
Z=X; 7 = x

29-July-14 Daniel Sinnig, PhD

14
11

Introduction to Software Engineering

Cyclomatic complexity of CFGs

* Number of independent paths for CFGs can be calculated by using the
cyclomatic number:

e V(CFG)=V({V,E,s,t) = e—n+2

29-July-14 Daniel Sinnig, PhD

15

Introduction to Software Engineering

Coverage Criteria

e Test coverage criteria: is a rule or collection of rules that impose test
requirements on a test set.

* (Important) white box test criteria:

Statement coverage: Every statement 1s executed at least ones (node
coverage)

Branch coverage: Every decision 1s executed at least ones (edge coverage)

Simple paths coverage: All simple paths are executed

Visit each loop coverage: Simple paths coverage + all loops are skipped and
executed ones.

All paths coverage: All paths are executed

Basis path coverage: All linear independent path are executed

Multi-condition coverage: All elements of a compound condition are
evaluated

Data flow coverage: Takes into account data definitions and uses

29-July-14

Daniel Sinnig, PhD

16

Introduction to Software Engineering

Running Example a

if (a) {
if (b) {
... //statements X 3
}
. //statements Y X 4 10
while (c) { 5
... //statements U
} VvV
} else { 6 11
if (d) { y 12 13
do {
. //statements V 7
}
while (e);
} 8 15 14
}

29-July-14 Daniel Sinnig, PhD

17

Introduction to Software Engineering

Statement coverage
e Strategy:

— Every program statement is executed at least once

— In terms of flowgraph: find a set of paths such that every node lies on at least one

path

29-July-14 Daniel Sinnig, PhD

18

Introduction to Software Engineering

Statement coverage (cont.)

e Select a test set T such that each statement of program P is
executed at least once.

read (x); read(y);
1f x > 0 then write(“1”);
else write (“27);
1f y > 0 then write(%“3”);

else write (“47);

T: {<x=-13,y =51>,<x =2,y = -3>}

29-July-14 Daniel Sinnig, PhD

19

Introduction to Software Engineering

Statement coverage

if (a) {
if (b) {
... //statements X
}
. //statements Y >
while (c) {
... //statements U
}
} else {
if (d) {
do {
. //statements V
}
while (e);
}
}

Minimum number of test cases: 2
Test cases: {<1,3,5,6,7,8,9,15>, <2,10,12,14>}

494 e
\/
1 B
Y
e
C
= =

29-July-14 Daniel Sinnig, PhD

20

Introduction to Software Engineering

Branch coverage
e Strategy:

— Every program branch 1s executed at least once

— In terms of flowgraph: find a set of paths such that every edge lies on at least one

path

29-July-14 Daniel Sinnig, PhD

21

Introduction to Software Engineering

Branch coverage
Aa

if (a) {
if (b) { b1 2 d

... //statements X
} 3
. //statements Y
while (c) { = < e
) ... //statements U =
} else { \/
if (d
() 1 i B
e

do {
. //statements V Y

} 7
while (e);
}
} P=3 i =2 X

Minimum number of test cases: 4
Test cases: {<1,3,5,6,7,8,9,15>, <1,4,6,7,15>, <2,10,12,13,12,14> <2.11>}

29-July-14 Daniel Sinnig, PhD

Introduction to Software Engineering

Simple path coverage
e Strategy:

— Every simple path (which does not contain the same edge more than once) 1s
executed once

29-July-14 Daniel Sinnig, PhD

23

Introduction to Software Engineering

Simple path coverage

if (a) {
if (b) {
... //statements X 3
} > A D
. //statements Y
while (c) { =
... //statements U v/
) (S
} else { ’
if (d) { v | P4 B
do {
. //statements V -7 =
}
while (e); | &
} s 5 “

}

Minimum number of test cases: 0
Test cases: {<1,3,5,6,7,8,9,15>, <1,3,5,6,7,15><1,4,6,7,8,9,15>, <1,4,5,6,7,15>
<2,10,12,14>,<211>}

29-July-14 Daniel Sinnig, PhD

Introduction to Software Engineering

Visit each loop coverage
e Strategy:

— Simple path coverage + additional test cases such that for each loop there 1s one
test case that:

* skips the loop entirely

* only makes one pass through the loop

— If code one contains while — do loop then simple path coverage and visit each
loop coverage are identical. Why?

29-July-14 Daniel Sinnig, PhD

25

Introduction to Software Engineering

Visit each loop coverage =

if (a) {
if (b) {
... //statements X 3
}
. //statements Y 20 4 O
while (c) { =
) ... //statements U v/
} else { S
do {
. //statements V 7 =
}
while (e); C
} s i =4 o« B

}

Minimum number of test cases: 7
Test cases: {<1,3,5,6,7,8,9,15>, <1,3,5,6,7,15><1,4,6,7,8,9,15>, <1,4,5,6,7,15>
<2,10,12,14> <2,11>, <2,10,12,13,12,14> }

29-July-14 Daniel Sinnig, PhD

Introduction to Software Engineering

All path coverage
e Strategy:

— Every possible program path is executed at least once
— In terms of flowgraph: find all paths through the flowgraph

— Only feasible for if no loops are present

29-July-14 Daniel Sinnig, PhD

27

Introduction to Software Engineering

All paths coverage

if (a) {
if (b) {
... //statements X
}
. //statements Y
while (c) {
... //statements U
}
} else {
if (d) {
do {
. //statements V
}
while (e);
}
}

Minimum number of test cases: Infinite

a D
v
B T
v
e
C
S _ B

Test cases: {<1,3,5,0,7,15>, <1,4,5,6,7,15>, {<1,3,5,6,7,(8,9)",15>, <1,4,6,7,(8,9),15>
<2,11>, <2,10,12,14>, <2,10,12,(13,12)",14>} for any n>0

29-July-14

Daniel Sinnig, PhD

28

Introduction to Software Engineering

Basis Paths Coverage
e Strategy:

— every linearly independent path 1s executed at least once

— Minimum number of test cases (McCabe Cyclomatic
Complexity):
VG)=e—n+2
V(G)= # decision points + 1 (if graph entails binary decision points
only)

29-July-14 Daniel Sinnig, PhD

29

Introduction to Software Engineering

Basis path coverage

if (a) {
if (b) { 3
... //statements X
} X 4 10
. //statements Y
while (c) { 5
... //statements U V

) 6 11
} else {
if (d) { v 12 13
do {
. //statements V 7 e

}
while (e); C
} 3 15 14

}

U

Minimum number of test cases: 6 9

Test cases: {<2,11>,<2,10,12,14>, <2,10,12,13,12,14>, <1,3,5,6,7,15>,
<1,3,5,6,7,8,9,15>, <::4:6;%5145>, <1,4,6,7,8,9,15> }

<1,4,6,7,15> 1s not linearly independent

29-July-14 Daniel Sinnig, PhD 30

Introduction to Software Engineering

The baseline method

Developed by McCabe (1987)
Systematic approach to determine the set of basis paths.
The method will return a minimal set of basis paths

However, depending on the choice of the first ‘baseline’ path,
this set may not be unique.

Mathematical background:

— A path p is a linear combination of paths py, ..., p, iff there are integers
ay, ..., Ay such that p = Y, a;p; (in the vector representation)

— A set of paths is linearly independent 1ff no path in the set 1s a linear
combination of any other paths in the set.

29-July-14 Daniel Sinnig, PhD

Introduction to Software Engineering

The baseline method (cont.)

Algorithm:
* Step 0: Initialize set of baseline paths B {}

* Step 1: Pick a functional “baseline” path (p1) through the
program (a typical run through the program).
* Step2: Add pl to B

* Step 3: While there are ‘unflipped’ (binary) decision nodes do
— Step 3.1: Pick path p from B

— Step 3.2: Generate the next baseline path pye,¢ by “flipping” the first
decision node (ng) of p. Should Pyeyt rejoin p, it must follow 1t until the
end.

— Step 3.3: Add Ppext to the set of basis paths. B
— Step 3.4: Mark ng as flipped

29-July-14 Daniel Sinnig, PhD 32

Introduction to Software Engineering

The baseline method (cont.)

e Remarks

— Multi-way decisions (e.g., switch nodes) must be “flipped” to each of
their decision outcomes

— If the CFG only contains binary decision then the minimal number of
basis paths can also be calculated as: Number of decision nodes + 1

— Criticism:

e May return infeasible paths due to data dependencies which conflict with the
independency assumption of basis paths

29-July-14 Daniel Sinnig, PhD 33

Introduction to Software Engineering

Exercise (5-10min): Determine the set of basis paths for
the following CFG. Are all paths feasible?

Program triangle2

Dim a,b,c As Integer

Dim IsATrinagle As Boolean

Output(“Enter 3 integers which are sides of a triangle”)
Input(a,b,c)

Output(“Side A is”, a)

Output(“Side B is”, b)

Output(“Side C is”, c)

9 If(a<b+c)AND(b<a+c)AND (c<a+b)
10 Then IsATriangle = True

11 Else IsATriangle = False

12 EndIf

13 If IsATriangle

14 Then If (a=b) AND (b=c)

NN W -~

15 Then Output (“Equilateral”)

16 Else If (azb) AND (azc) AND (b=c)
17 Then Output (“Scalene”)

18 Else Output (“Isosceles”)

19 EndIf

20 EndIf

21 Else Output(“Nota a Triangle”)

22 EndIf

23 End triangle2

29-July-14 Daniel Sinnig, PhD

Introduction to Software Engineering

Path Testing Process
* Input:
— Source code and a path selection criterion
* Process:
— Generation of a CFG

— Selection of Paths

— Generation of Test Input Data
— Feasibility Test of a Path
— Evaluation of Program’s Output for the Selected Test Cases

29-July-14 Daniel Sinnig, PhD

35

Introduction to Software Engineering

White Box Testing Advantages

* Structural testing methods are very amenable to:

— Rigorous definitions

* control flow, objectives, coverage criteria, relation to programming
language semantics

— Mathematical analysis
* Graphs, path analysis

— Precise measurement

* Metrics, coverage analysis

29-July-14 Daniel Sinnig, PhD

36

Introduction to Software Engineering

Problems with White-Box Testing
* Infeasible paths:

program paths that cannot be executed for any input

* No white-box strategy on its own can guarantee adequate
software testing

* Knowing the set of paths that satisties a particular strategy

doesn’t tell you how to create test cases to match the paths.

29-July-14 Daniel Sinnig, PhD

37

