
Department for Computer Science
and Software Engineering

INTRODUCTION TO SOFTWARE ENGINEERING

Daniel Sinnig, PhD
d_sinnig@cs.concordia.ca

29-July-14

Introduction to Software Testing

2

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

 What is software testing?
 “Software testing consists of the dynamic verification of the behavior

of a program on a finite set of test cases, suitably selected from the
usually infinite executions domain, against the specified expected
behavior.” – SWEBOK definition – ISO TR 19759

“Testing is the process of executing a program with the intention of
finding errors.” – Myers

3

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

 What are the goals of testing?
 • To find as many faults and detect as many failures with limited

resources
• To demonstrate correct program execution

– Show that the program is correct for a certain input.
• Set of possible inputs, which might be close to infinity
• If we test it only on one input => program is correct for that input
• If we test it for 10000 different input: The program is correct for the 10.000 input.

• To instill confidence in the correctness of the software
– Through each successful test case our confidence for the software is growing

4

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

“Testing can show the presence of bugs
 but never their absence.”

How does this quote by Dijkstra relate to the goals
of testing?

5

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Software errors, faults, failures and incidents
• An error (or mistake) is something people make. It is a slip-up or

inappropriate decision by a software developer (or other project member) that
leads to the introduction of a fault or defect.

• A fault (defect, bug) is the result of an error: inaccurate requirements text,
erroneous design, buggy source code etc. It is a flaw in any aspect of the
system that contributes, or may potentially contribute, to the occurrence of
one or more failures.

• A failure (incident) is is the program’s actual incorrect or missing behavior. It
occurs when a fault executes. A fault won’t yield a failure without the
conditions that trigger it.

• An incident is a characteristic of a failure that helps you recognize that the
program has failed.

6

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

• Testing is concerned with confirming the presence of faults

• Debugging is concerned with locating and repairing these faults

Testing vs Debugging

©Ian Sommerville 1995

7

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Test Cases

• Work product (artifact) of software development
• A good test case is one that has a high probability of

finding an as-yet-undiscovered bug.
• Each test case consists of the following (ideally):

– Identifier
– Statement of purpose
– Preconditions
– Inputs and expected outputs
– Expected post-conditions
– Execution history (date, tester, version, etc.)

8

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Identifying Test Cases
• Not all test cases are significant.
• Impossible to test everything in a reasonable amount of time or

money
– There are enormous numbers of possible tests. To test everything, you would

have to:
• Test every possible input to every variable.
• Test every possible combination of inputs.
• Test every possible sequence through the program.
• Test every hardware / software configuration, including configurations of servers not under

your control.
• Test every way in which any user might try to use the program.

9

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Identifying Test Cases
• The essence of software testing is to determine a set of test cases for

the item to be tested.
– A good test case is one that has a high probability of detecting an

undiscovered defect, not one that shows that the program works correctly

• Approaches to derive test cases:
– Functional (black-box)

• Derived from specs
• Reusable even if code changes

– Structural (white-box)
• Derived from code documentation
• Test coverage metrics

10

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Functional (black-box) testing

FUNCTION: System (Input) = Output

SYSTEM Input Output

11

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Structural (white box) testing

 The structure of the code is “visible”
 Targets the control flow within a Unit of code

12

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Specification vs. Program

Specification Program

1. Correct : both being specified and programmed
2. Faults of omission
3. Faults of commission

1
2

Universe

3

13

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

White-box Testing: Pros and Cons
• Pros:

– Easier to automate
– Allows for more efficient debugging
– Uses internals of program source to generate test cases
– Able to test program source that has not been specified
– Lends itself to the definition and use of test coverage metrics

• Cons:
– Harder to use to validate requirements. White box tests typically focus on how

something is implemented, not why it is implemented
– Cannot detect faults of omission
– Suffers from infeasible path problem

• Control flow paths that cannot be exercised by any input data

14

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Black-box Testing: Pros and Cons
• Pros:

– Functional test case independent of how the software is developed,
so if the implementation changes, the test cases are still useful

– Test case development can occur in parallel with the implementation,
thereby reducing overall project development interval

• Cons:
– Significant redundancies may exist among test cases. Without insight

into the implementation, the same code paths can get tested
repeatedly, while others are not tested at all

– Compounded by the possibility of gaps of untested software

15

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Black-box vs White-box Testing
• Considering program behaviors:

– If all specified behaviors have not been implemented, structural
test cases will never be able to recognize this

– If the program implements behaviors that have not been specified,
this will never be revealed by functional test cases (A virus is a
good example of such unspecified behavior)

• When functional test cases are executed in combination with
structural test coverage, both of two problems (redundancies and
gaps) can be recognized and resolved.
– This is also called “grey-box testing”

16

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Waterfall Model and Levels of Testing
Requirements
Specification

Preliminary Design

Detailed Design

Coding

Unit
Testing

Integration
Testing

System
Testing

17

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

• Unit testing
– Testing of individual components

• Integration testing
– Testing to expose problems arising from the combination of

components
• System testing

– Testing the complete system prior to delivery
• Acceptance testing

– Testing by users to check that the system satisfies
requirements.

– Alpha testing (in-house) and beta testing (at the customer site)

Testing levels

18

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

More types of testing
– performance testing, interoperability testing

– regression testing, reliability testing, usability testing,

– portability testing, security testing, compliance testing,
– …

19

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Dimensions of Testing

20

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Testing: Stakeholders

21

Introduction to Software Engineering

Daniel Sinnig, PhD 29-July-14

Testing vs Software Quality Assurance (SQA)
• Testing: product-oriented
• SQA: process-oriented (improving the process leads to an

improvement of the resulting product)
– Prevent errors and faults in the first place

	Introduction to Software Engineering
	 What is software testing?�
	 What are the goals of testing?�
	How does this quote by Dijkstra relate to the goals of testing?�
	Software errors, faults, failures and incidents
	Testing vs Debugging
	Test Cases
	Identifying Test Cases
	Identifying Test Cases
	Functional (black-box) testing
	Structural (white box) testing
	Specification vs. Program
	White-box Testing: Pros and Cons
	Black-box Testing: Pros and Cons
	Black-box vs White-box Testing
	Waterfall Model and Levels of Testing
	Testing levels
	More types of testing
	Dimensions of Testing
	Testing: Stakeholders
	Testing vs Software Quality Assurance (SQA)

