
COMP 354
Introduction to Software Engineering

Greg Butler

Computer Science and Software Engineering
Concordia University, Montreal, Canada

Office: EV 3.219 Email: gregb@cs.concordia.ca

Winter 2015

Course Web Site:

http://users.encs.concordia.ca/˜gregb/home/comp354-w2015.html

Software Process — Introduction

The objective of software development is to efficiently and
predictably deliver a software product that meets the needs of the
community of its stakeholders.

A process is a set of ordered steps intended to reach an objective.

A software development process (or model) is an approach to
building, deploying and maintaining software. The motivation
behind defining a process for software development is to manage
the size and complexity of software systems.

Software Process — Introduction

No single approach works for all projects (no silver bullet)

Various development paradigms exist

Common principle

Breakdown of a project into manageable components.

Breakdown by Activity:
Linear Process Model
1 month requirements
1 month analysis
2 month design
2 month coding & testing

Breakdown by Functionality:
Iterative Process Model
1st iteration has 20% functionality
2nd iteration adds 30%
etc.

How to Think about SE Activity

Products/Deliverables

I what is the aim of the
phase, that is, what does it
aim to produce

Activities

I what steps are taken in the
process of producing the
deliverables

Audience
I who will use each deliverable

I how will they use each deliverable

I what information will they extract
from each deliverable

I is it easy for them to
find/understand this information

How to Review
I what steps can you take to ensure

the quality of each deliverable

I during the production of the
deliverable

I after the production of the
deliverable

Typical Activities in Software Development

Requirements

Design

Specification & Modeling

Implementation

Quality Assurance

System Deployment

Maintenance

Documentation

All of these activities must be managed, that involves ...

planning, coordination, scheduling, cost estimation, measurement,
reviewing

Requirements Activity

Concerned with ...
Understanding the problem
What do users want?
What do users need?

Describe in user-oriented language

why?

Requirements form contract between the client and the developer

Design Activity

Concerned with ...
How will the software work?
How will users interact with the system?
How will data be stored and managed?
What parts (if any) should be done by hardware?
What components (methods, classes, packages, etc.) will we need?
How will the components be connected?

Bridge between requirements and implementation

Design must meet the requirements
Design must be technically feasible

Specification & Modeling Activity

Precise description of ...

What each component does
How components are structured (static models)
How each component communicates with other components
(dynamic models)

Allows many people to work cooperatively on a large project

Implementation Activity

Write the code

Or ...
In some cases, coding may not even be necessary, because suitable
code can be found in libraries or COTS (commercial, off-the-shelf
software).

Quality Assurance Activity

Reviews

Inspections

Tests
unit tests ensures that components work independently
integration tests ensure that components work together
system tests ensure that the whole system works correctly

System Deployment Activity

Move the software to client sites

Upgrade from previous versions

Populate databases, etc

Ensure that it works on site
Single deployment (customized software)
multiple deployment (shrink-wrap software)

Maintenance Activity

Changes made to the software after delivery

correct errors
provide upgrades and enhancements
adapt to new hardware
improve quality without changing functionality

Up to 80% of total costs

Depends on the availability of up-to-date documentation

Documentation Activity

All tasks must be documented

Documentation is ...
very important
very difficult

Poor documentation may lead to failure

Linear vs. Iterative Development Process

Linear Development

Code and Fix
Waterfall development model

Iterative Development

Evolutionary development model
Spiral development model
Iterative and incremental development

I Rapid development model

I Agile development model

I Cleanroom development model

(UnifiedProcess)

Code and Fix

Used in the earliest days of software development

Two steps

1. Write some code
2. Fix the problems with the code

Advantage

No overhead as it does not entail any activities other than
implementation.

Disadvantages

Does not adhere to solid engineering principles (such as planning,
analysis, design, quality control)
Code deterioration
Often poor match to users needs

Waterfall development model

Winston R. Royce (1970)

Winston R. Royce (1970) “Managing the Development of Large
Software Systems”

Linear
The model follows a linear path of development

Phases
Development is seen as flowing steadily downwards
(like a waterfall)
through the activities (called “phases”)

Waterfall development model

Waterfall development model

Origins in the manufacturing and construction industries

Typically requirements are very well defined
Product is delivered in a single version
Changes are either very costly or simply impossible.

Software system is developed as a whole

... and not in incremental releases

Proceeds from one phase to the next in a sequential manner

Move on to a new phase only

... once the preceding phase has been fully completed (and
perfected)

Document-driven
Each phase produces a document needed by the subsequent phase

Waterfall development model — Strengths

Facilitates strong management control (plan, staff, track).

Documents provide a tangible record of accomplishment

Easy to understand and easy to use

Milestones are well-understood by the team (at the end of each
phase)

Provides requirements stability

Applicable if both functional and nonfunctional requirements are
well defined and the product is planned to be delivered in a single
version.

Waterfall development model — Weaknesses

Limited stakeholder feedback
little opportunity for customer to preview the system.
Only feedback once the system is delivered (“sign-off”)

All requirements have to be known upfront

Often not feasible as requirements tend to change throughout
development
Lack of flexibility of changing requirements

Risks are not explicitly addressed

As such, they can be encountered late in the development

Can give a false impression of progress

Documents say what people want to hear, not what is actually
happening

Integration is one big-bang at the end

Waterfall development model — Add feedback

Waterfall development model — Protype then do again

Spiral development model

Boehm (1986)

Barry Boehm (1986) “A Spiral Model of Software Development
and Enhancement”

First to address the importance of iteration

Requirements are defined in as much detail as possible

Each iteration follows the waterfall model
(and is essentially a mini-project)

Spiral development model

Spiral development model

An iteration contains the following activities

1. Determine objectives; Specify constraints: Define the problem
addressed by the current iteration.

2. Generate alternatives: Define solution(s). Identify and resolve
risks. Risks are addressed in order of priority.

3. Develop and verify product: Work through requirements
analysis, architecture, design, implementation and testing,
producing a prototype.

4. Plan: Prepare for the next iteration.

5. Review

Spiral development model

Each iteration has a purpose

Examples:

I Feasibility

I Concept

I Top-level requirements specification

Risk-driven nature allows any appropriate mix of:

Specification-oriented, prototype-oriented, simulation-oriented or
other approach of software development
Customization of budget, schedule, effort according to risk

Review ensures ...
... that all concerned parties are committed to the next phase

Spiral development model

The spiral model is based on risks.

A risk is a potentially adverse circumstance which may impair the
development process or the quality of products.

In risk management we identify risks and respond to them before
they endanger the whole project.

1. identify the risk

2. assess their likelihood and potential impact

3. address the risk by devising a plan to deal with it

4. eliminate the risk by implementing the plan

Spiral development model

Distance
The distance from the origin represents the cost accumulated by
the project
The angular coordinate indicates the accomplished progress within
each iteration

Development involves a number of iterations

each produces a prototype
(whose strengths and weaknesses are evaluated)
until eventually an operational prototype is delivered

Interim prototypes may or may not be deliverables

In its pure form, the model does not have phased releases.

Spiral development model

Strengths

Explicit integration of risk management
Applicable for development and maintenance projects
Early attention on options involving reuse of existing software

Weaknesses
Replying on risk-assessment expertise

I People-dependent

I Often expensive and lengthy

Evolutionary development model

Evolutionary prototype

Robust prototype which will eventually evolve into the operational
system

Exploratory (throw-away) prototype

Inexpensive prototype which will eventually be discarded rather
than becoming part of the final delivered software

Iterative and incremental development

Main idea
Build a system through repeated development cycles and in
relative small portions.

As a result, the system is successively enlarged and refined though
multiple iterations.
An iteration represents a complete development cycle and it
includes its own treatment of all activities (normally in varying
workloads);
Each activity produces a set of artifacts
Outcome of each iteration is tested and integrated into the
executable system

Iterative and incremental development

Incremental development

The complete set of features and high-level requirements is
elicited, analyzed and allocated to individual small scale projects
before full-scale development begins

Allocation done ...
Based on criticality of requirements
Based on stakeholders preference

Executable of each iteration is a production subset of the final
system

Made available to stakeholders in order to obtain feedback

Full functionality and the ability to test all requirements ...

... cannot be completed until all increments are complete by which
time the system is ready for production.

Iterative and incremental development

Rapid development model

Emphasizes very short development cycles

Agile development model

Light-weight (agile) method (to be discussed on the next slides)

Cleanroom development model

Prevention of defects by deploying formal methods and stepwise
refinement (functional decomposition)

Heavy-weight vs Light-weight Development

Heavy-weight

Characteristics
Pre-planned approach
Heavy regulations and control
Low degree of adaptation
Infrequent stakeholder
feedback
Heavily documented
Large increments

Applicability

Large projects using large
teams
Command controlled
environments

Light-weight

Characteristics
Frequent stakeholder implication
Low degree of documentation
Complete teamwork and excellent
communication
Small increments

Applicability

Smaller projects using small teams
Collaborative environments

Agile Development Model

Light-weight development model

Advocate short iterations and rapid customer feedback through:

Adding a customer representative to the agile team

Progress review at the end of each iteration by stakeholders and
the customer representative

Follow the “Agile Manifesto” (next slides)

Several instances of the agile model exist, perhaps most popular is
extreme programming (XP)

Agile Manifesto
Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.
Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.
Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.
Business people and developers must work together daily throughout the
project.
Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.
The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation.
Working software is the primary measure of progress.
Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.
Continuous attention to technical excellence and good design enhances agility.
Simplicity — the art of maximizing the amount of work not done — is essential.
The best architectures, requirements, and designs emerge from self-organizing
teams.

At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

Extreme Programming

programming in pairs

extensive code review

unit testing of all code (actually test-driven development)

avoiding programming of features until they are actually needed

a flat management structure

simplicity and clarity in code

frequent communication with stakeholders.

The Unified Process

Created by Rational (IBM) in 1997

Technically not a process

... but a framework from which an iterative and incremental
development process can be derived

Defines 4 sequential phases

Inception Defines the scope of the project

Elaboration Implements core architecture and critical (high risk,
high value) use cases. So as to “drive-down” the risk
of the entire project.

Construction Implements secondary (non-critical) use cases.
Alpha-testing

Transition Deploys the system into “production”. Beta-testing

The Unified Process

The Unified Process — Key Principles

Risk driven
Major risks “mitigated” during inception.
All risks mitigated by end of elaboration.

Use case driven
Use cases capture the functional requirements
use cases define the contents of the iterations
Each iteration realizes one or many use cases

Architecture-centric
Elaboration constructs a working architecture.

