
COMP 354
Introduction to Software Engineering

Greg Butler

Computer Science and Software Engineering
Concordia University, Montreal, Canada

Office: EV 3.219 Email: gregb@cs.concordia.ca

Winter 2015

Course Web Site:

http://users.encs.concordia.ca/˜gregb/home/comp354-w2015.html



Software Process — Recap

The objective of software development is to efficiently and
predictably deliver a software product that meets the needs of the
community of its stakeholders.

A process is a set of ordered steps intended to reach an objective.

A software development process (or model) is an approach to
building, deploying and maintaining software. The motivation
behind defining a process for software development is to manage
the size and complexity of software systems.



The Unified Process

Created by Rational (IBM) in 1997

Some of the roots in “spiral model” of Barry Boehm
Core initial development around 1995-98
Phillippe Kruchten chief architect of UP/RUP

Iterative, not agile

Risk-driven development

early iterations focusing on creation of the core architecture and
driving down the high risks

2-6 week iterations



The Unified Process — Key practices and guidelines

Short time-boxed iterations

Develop high-risk elements in early iterations

Deliver value to customer

Accommodate change early in project

Work as one team



The Unified Process

Technically not a process

... but a framework from which an iterative and incremental
development process can be derived

Defines 4 sequential phases

Inception Defines the scope of the project

Elaboration Implements core architecture and critical (high risk,
high value) use cases. So as to “drive-down” the risk
of the entire project.

Construction Implements secondary (non-critical) use cases.
Alpha-testing

Transition Deploys the system into “production”. Beta-testing



The Unified Process



The Unified Process — Key ideas and practices

An iterative process framework

Project lifecycle phases

Identifies workers, activities, artifacts

Promotes certain practices

I Develop software iteratively

I Manage requirements

I Use component-based architectures Visually model software

I Verify software quality

I Control changes to software



The Unified Process — Characteristics

I Iterative process framework, typically customized to be a
process description for the organization

I All work products (“artifacts”) are optional and their order
arbitrary.

I Products serve as common vocabulary for the team.

I RUP is a process framework and licensed product (tool plus
web pages)

I Artifacts are information abstractions, e.g. Vision or Risk List,
organized in disciplines, e.g. Requirements Discipline



The Unified Process — Disciplines within iterations

Example disciplines

Requirements, Design, Project Management, Implementation

Development Case of UP

UP tailored for each project, choose sets of practices and work
products to create (“less is better”)

Disciplines addressed in each iteration

but to varying degree



The Unified Process — Life cycle in four phases

Inception

Business case, vision, identify high risks & 10% of key reqs in
detail, estimate elaboration effort

Elaboration
Core & architecturally significant parts coded/tested, key risks
identified/mitigated, 80% of major reqs evolved/defined

Construction
Builds remaining system in short iterations, efficient and
predictable due to solid elaboration

Transition
Exposes release candidate for review/feedback, then deployment



The Unified Process — Some prominent work products

Vision
summary of objectives, features, business case

Software Architecture Document
Short learning aid to understand the system

Test Plan
summary of goals and methods of testing

Iteration Plan
detailed plan for the next iteration

Change Request

uniform way to track all requests for work, e.g. defects



The Unified Process — Some guidelines

I Attack risks early and continuously before they will attack you

I Stay focused on developing executable software in early
iterations

I Prefer component-oriented architectures and reuse of existing
components

I Baseline an executable architecture early



The Unified Process — Six Best Practices

Time-boxed iterations
Avoid attempting large, up-front requirements

Strive for cohesive architecture and reuse existing components

On large projects: reqs & core architecture developed by small
co-located team; then early team members divide into sub-project
leaders

Continuously verify quality

Test early, often, and realistically by integrating all software each
iteration



The Unified Process — Six Best Practices

Visual modeling

Prior to programming, do at least some visual modeling to explore
creative design ideas

Manage requirements

Find, organize, and track requirements iteratively through skillful
means. Use tools.

Manage change

Disciplined configuration management and version control, change
request protocol, base-lined releases at the end of each iteration



The Unified Process — Is it Agile?

UP can be used in a very traditional waterfall style or in an agile
manner

Martin Fowler
“You can use RUP as a agile process, or as a heavyweight process
— it all depends on how you tailor it in your environment.”

Craig Larman

is a strong proponent of using the RUP in an agile manner



The Unified Process — Overview



The Unified Process



The Unified Process —- Larman Perspective



The Unified Process — Key Principles

Risk driven
Major risks “mitigated” during inception.
All risks mitigated by end of elaboration.

Use case driven
Use cases capture the functional requirements
use cases define the contents of the iterations
Each iteration realizes one or many use cases

Architecture-centric
Elaboration constructs a working architecture.



The Unified Process — Key Points

Framework offering guidance

with many optional artifacts

Roles

Iterations
with all disciplines used differently in different stage of the project

Architecture Centric

Use case driven



How does UP address the major problems in SE?

Requirements

Architecture

Change

Complexity


