COMP 499 Introduction to Data Analytics

Lecture 2 - Numbers and Data

Greg Butler

Data Science Research Centre
and
Centre for Structural and Functional Genomics
and
Computer Science and Software Engineering
Concordia University, Montreal, Canada
gregb@cs.concordia.ca

Overview of Lecture

1. Measurement Scales
2. Normalization
3. Accuracy \& Precision
4. Significant Digits
5. Data Formats
6. Data Schemas
7. Metadata
8. Self-Descriptive Data

Data Scales

Categorical

Nominal

Values have names as in enum or scalar type
equality testing allowed
mode is measure of central tendency
Ordinal
Ranked values, such as good, better, best
equality and comparison allowed
median is measure of central tendency
mean and deviation do not make sense

Continuous

Interval
Difference between values can be determined, eg integers has no absolute zero
equality, comparison, + , - allowed
mean is measure of central tendency; deviation makes sense

Ratio

Value is a ratio of continuous values, eg real number has absolute zero
also \times, / allowed
geometric mean is measure of central tendency

Data Scales

See video from UoVirginia: https://www. youtube.com/watch?v=zHcQPKP6NpM

Robust Statistics

median and Inter-Quartile Range (IQR) are robust to outliers
Outliers - John Tukey's Definition
Outlier is more than 1.5 times IQR from Q1 or Q3
Extreme value is more than 3.0 times IQR from Q1 or Q3

Plots - Categorical Data

Bar chart shows frequency, so shows modes (one or more)

Plots - Continuous Data

Histogram shows frequency, so shows modes (one or more) Box plot shows median, Q1, Q3 box and whiskers to min and max if outliers then shows fences at Q1-1.5IQR and Q3+1.5IQR
Both show central tendency, variability, and skewness; not modes
Contingency Tables and Scatter Plots

Normalization

A normal form ...
is a unique representation for an entity
Examples
a string " the Happiest day of My Life " to all lower case and without leading or trailing blanks and only one blank between words
"the happiest day of my life"
Normalization creates a normal form
allows simple test for equality
More Examples
Names
Dates
Currency
Metric vs Imperial measurements

Accuracy and Precision

Accurate
http://www.geographer-miller.com/accuracy-vs-precision/

Significant Digits

Problem
Showing more digits in a number than are meaningful Especially in decimal component

Examples

0.046 has two significant digits

4009 kg has four significant digits
7.90 has three significant digits

8200 has 2, 3, or 4 significant digits (unclear)
8.200×10^{3} has four significant digits
8.20×10^{3} has three significant digits
8.2×10^{3} has two significant digits

Problem

Need to know significant digits for input data Need to keep track of sig. digits in arithmetic Be careful formatting output

Reference

https://www.physics.uoguelph.ca/tutorials/sig_fig/SIG_dig.htm

Significant Digits

Decimal Point Convention
8200. means that zero's are significant, so 4 significant digits 8200 means that zero's are not significant, so 2 significant digits

Calculating Number of Significant Digits

Basically, never more than smallest number of significant digits amongst the inputs

See https://www.saddleback.edu/faculty/jzoval/worksheets_tutorials/ch1worksheets/sig_figs_in_ calc_rules_7_1_09.pdf

Data Formats

comma-separated values (csv)
Tab-separated values (tsv)

Attribute-Relation File Format (ARFF)

XML

RDF

Binary files (BLOBs)

HDF5 (Hierarchical Data Format version 5)

Data Formats - ARFF - Weka

ARFF files
ASCII files: Header followed by Data

Header

- the name of the relation,
- a list of the attributes (columns in data),
- their types

```
% 1. Title: Iris Plants Database
%
% 2. Sources:
% (a) Creator: R.A. Fisher
% (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
% (c) Date: July, }198
%
@RELATION iris
@ATTRIBUTE sepallength NUMERIC
@ATTRIBUTE sepalwidth NUMERIC
@ATTRIBUTE petallength NUMERIC
@ATTRIBUTE petalwidth NUMERIC
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}
```


Data Formats - ARFF

Data looks like

@DATA
5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2, Iris-setosa 4.7,3.2,1.3,0.2, Iris-setosa 4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2, Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1, Iris-setosa

Data Schemas

Tidy Data Schema in R

Tabular format with properties

1. Each variable is saved in its own column
2. Each observation is saved in its own row
3. Each type of observation is stored in its own (single) table See video
https://www.youtube.com/watch?v=1ELALQ10-yM\&list=PL9HYL-VRXOoQOWAFoKHFQAsWAI3ImbNPk\&index=2

Metadata

Metadata
is data that provides information about other data
For example
Means of creation of the data
Purpose of the data
Time and date of creation
Creator or author of the data
Location on a computer network where the data was created Standards used
File size
Data quality
Source of the data
Process used to create the data

Provenance of Data

is the origin and/or history of an object (that is, data, in our case).

Self-Descriptive Data

You can make sense of the file as a stand-alone.
therefore human-readable

ARFF
XML
HDF

