COMP 499 Introduction to Data Analytics

Lecture 2 — Numbers and Data

Greg Butler

Data Science Research Centre

and

Centre for Structural and Functional Genomics

and

Computer Science and Software Engineering Concordia University, Montreal, Canada

gregb@cs.concordia.ca

Overview of Lecture

- 1. Measurement Scales
- 2. Normalization
- 3. Accuracy & Precision
- 4. Significant Digits
- 5. Data Formats
- 6. Data Schemas
- 7. Metadata
- 8. Self-Descriptive Data

Data Scales

Categorical

Nominal

Values have *names* as in enum or scalar type equality testing allowed mode is measure of central tendency

Ordinal

Ranked values, such as *good*, *better*, *best* equality and comparison allowed median is measure of central tendency mean and deviation do not make sense

Continuous

Interval

Difference between values can be determined, eg integers has no absolute zero equality, comparison, +, - allowed mean is measure of central tendency; deviation makes sense

Ratio

Value is a ratio of continuous values, eg real number has absolute zero also \times , / allowed geometric mean is measure of central tendency

Data Scales

See video from UoVirginia: https://www.youtube.com/watch?v=zHcQPKP6NpM

Robust Statistics

median and Inter-Quartile Range (IQR) are robust to outliers

Outliers — John Tukey's Definition

Outlier is more than 1.5 times IQR from Q1 or Q3 *Extreme value* is more than 3.0 times IQR from Q1 or Q3

Plots — Categorical Data

Bar chart shows frequency, so shows modes (one or more)

Plots — Continuous Data

Histogram shows frequency, so shows modes (one or more) Box plot shows median, Q1, Q3 box and whiskers to min and max if outliers then shows fences at Q1-1.5IQR and Q3+1.5IQR Both show central tendency, variability, and skewness; not modes

Contingency Tables and Scatter Plots

Normalization

A normal form ...

is a unique representation for an entity

Examples

a string "the Happiest day of My Life" to all lower case and without leading or trailing blanks and only one blank between words "the happiest day of my life"

Normalization creates a normal form allows simple test for equality

More Examples

Names Dates Currency Metric vs Imperial measurements

Accuracy and Precision

http://www.geographer-miller.com/accuracy-vs-precision/

Significant Digits Problem

Showing more digits in a number than are meaningful Especially in decimal component

Examples

0.046 has two significant digits 4009 kg has four significant digits 7.90 has three significant digits 8200 has 2, 3, or 4 significant digits (**unclear**) 8.200 $\times 10^3$ has four significant digits 8.20 $\times 10^3$ has three significant digits 8.2 $\times 10^3$ has two significant digits

Problem

Need to know significant digits for input data Need to keep track of sig. digits in arithmetic Be careful formatting output

Reference

https://www.physics.uoguelph.ca/tutorials/sig_fig/SIG_dig.htm

Significant Digits

Decimal Point Convention

8200. means that zero's are significant, so 4 significant digits 8200 means that zero's are not significant, so 2 significant digits

Calculating Number of Significant Digits

Basically, never more than smallest number of significant digits amongst the inputs

See https://www.saddleback.edu/faculty/jzoval/worksheets_tutorials/ch1worksheets/sig_figs_in_

calc_rules_7_1_09.pdf

Data Formats

comma-separated values (csv)

Tab-separated values (tsv)

Attribute-Relation File Format (ARFF)

XML

RDF

Binary files (BLOBs)

HDF5 (Hierarchical Data Format version 5)

Data Formats — ARFF — Weka

ARFF files ASCII files: Header followed by Data

Header

- ▶ the name of the relation,
- ▶ a list of the attributes (columns in data),
- ▶ their types

```
% 1. Title: Iris Plants Database
%
% 2. Sources:
%
     (a) Creator: R.A. Fisher
%
      (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
%
       (c) Date: July, 1988
ØRELATION iris
@ATTRIBUTE sepallength NUMERIC
@ATTRIBUTE sepalwidth
                        NUMERIC
@ATTRIBUTE petallength NUMERIC
@ATTRIBUTE petalwidth
                        NUMERIC
ØATTRIBUTE class
                        {Iris-setosa, Iris-versicolor, Iris-virginica}
```

Data Formats — ARFF

Data looks like

@DATA

5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa 5.0,3.6,1.4,0.2,Iris-setosa 5.4,3.9,1.7,0.4,Iris-setosa 5.6,3.4,1.4,0.3,Iris-setosa 5.0,3.4,1.5,0.2,Iris-setosa 4.4,2.9,1.4,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa

Data Schemas

Tidy Data Schema in R

Tabular format with properties

- 1. Each variable is saved in its own column
- 2. Each observation is saved in its own row
- 3. Each type of observation is stored in its own (single) table

See video

https://www.youtube.com/watch?v=1ELALQ10-yM&list=PL9HYL-VRXOoQOWAFoKHFQAsWAI3ImbNPk&index=2

Metadata

Metadata

is data that provides information about other data

For example

Means of creation of the data Purpose of the data Time and date of creation Creator or author of the data Location on a computer network where the data was created Standards used File size Data quality Source of the data Process used to create the data

Provenance of Data

is the origin and/or history of an object (that is, data, in our case).

Self-Descriptive Data

You can make sense of the file as a stand-alone.

therefore human-readable

ARFF XML HDF