COMP 499 Introduction to Data Analytics

Lecture 5 — Descriptive Analytics

Greg Butler

Data Science Research Centre

and

Centre for Structural and Functional Genomics

and

Computer Science and Software Engineering Concordia University, Montreal, Canada

gregb@cs.concordia.ca

Overview of Lecture

Descriptive Analytics is describing your data; that is, data from past activities

- 1. Five Numbers
- 2. Python pandas describe()
- 3. Plots: Bar Chart, Histogram, Box Plot
- 4. Pareto Diagrams
- 5. Violin Plot
- 6. Normalization and Z-scores
- 7. Comparing Two Attributes
- 8. Correlation is not Causality

Describing Data

Four Features to Describe Data Sets

Center: the point where about half of the observations are on either side.

Spread: the variability of the data.

Shape: described by symmetry, skewness, number of peaks, etc.

Unusual features: gaps where there are no observations and outliers.

Five Numbers of Robust Statistical Descriptors

Five Number Summary

- ▶ maximum
- ▶ third quartile Q₃
- ▶ median
- first quartile Q_1
- ▶ minimum

Descriptors

What Else to Describe?

- number of observations
- number of entries
- number of unique entries
- number of missing entries
- number of outliers
- number of extreme values

Python pandas describe

Describing a numeric series.

```
>>> s = pd.Series([1, 2, 3])
>>> s.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
dtype: float64
```

Describing a categorical series.

```
>>> s = pd.Series(['a', 'a', 'b', 'c'])
>>> s.describe()
count 4
unique 3
top a
freq 2
dtype: object
```

Python pandas describe

Describing all columns of a DataFrame regardless of data type.

<pre>>>> df.describe(include='all')</pre>			
	categorical	numeric	object
count	3	3.0	3
unique	3	NaN	3
top	f	NaN	С
freq	1	NaN	1
mean	NaN	2.0	NaN
std	NaN	1.0	NaN
min	NaN	1.0	NaN
25%	NaN	1.5	NaN
50%	NaN	2.0	NaN
75%	NaN	2.5	NaN
max	NaN	3.0	NaN

Bar Chart

Bar Chart

Histogram

Histogram

Box Plot

Box Plot

Box Plot

Box Plot

Pareto Diagram

Pareto Diagram

Order by decreasing frequency

Violin Plot

Violin Plot

shows frequency too

Normalization and Z-scores

Normalization of Numbers means getting them on the same scale

so they can be compared *apples* to *apples*

eg use frequency rather than count

eg use Z-scores of a normal distribution to allow for different mean and variance

Adapted from Frank E. Harrell Jr. on graphics:

http://biostat.mc.vanderbiltedu/twiki/pub/Main/StatGraphCourse/graphscourse.pdf

Two categorical variables

- Use frequency table
 - One categorical variable and other continuous variable
- · Box plots of continuous variable values for each category of categorical variable
- · Side-by-side dot plots (means + measure of uncertainty, SE or confidence interval)
 - Do not link means across categories!

Two continuous variables

- Scatter plot of raw data if sample size is not too large
- · Prediction with confidence bands

Compare categorical and categorical

Compare categorical and continuous

Compare continuous and continuous

Correlation is not Causality

These are different concepts and correlation does not imply causality