COMP 499 Introduction to Data Analytics

Lecture 9 — Exploratory Data Analysis

Greg Butler

Data Science Research Centre

and

Centre for Structural and Functional Genomics

and

Computer Science and Software Engineering Concordia University, Montreal, Canada

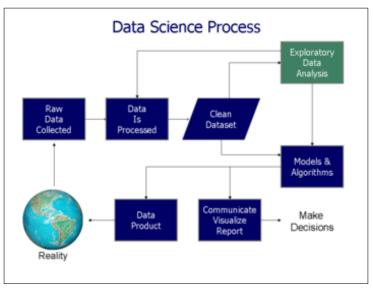
gregb@cs.concordia.ca

Exploratory Data Analysis (EDA)

Outline of Lecture

- ► EDA: Concepts, Steps, Methods
- ► Skewness and Kurtosis
- ► Regression: Curve Fitting
- ► Dimension reduction: PCA
- Clustering
- ► Feature Engineering

Data Analytics



Exploratory Data Analysis

Tukey 1977 book

John Tukey (1977), Exploratory Data Analysis, Addison-Wesley.

NIST Engineering Statistics Handbook

Exploratory Data Analysis (EDA) is an approach/philosophy for data analysis that employs a variety of techniques (mostly graphical) to

- 1. maximize insight into a data set;
- 2. uncover underlying structure;
- 3. extract important variables;
- 4. detect outliers and anomalies;
- 5. test underlying assumptions;
- 6. develop parsimonious models; and
- 7. determine optimal factor settings.

The EDA approach is not a set of techniques, but an attitude/philosophy about how a data analysis should be carried out.

https://www.itl.nist.gov/div898/handbook/eda/section1/eda11.htm

Exploratory Data Analysis

NIST Engineering Statistics Handbook

EDA is an approach to data analysis that postpones the usual assumptions about what kind of model the data follow with the more direct approach of allowing the data itself to reveal its underlying structure and model.

https://www.itl.nist.gov/div898/handbook/eda/section1/eda11.htm

Exploratory Data Analysis (EDA)

- get a general sense of the data
- interactive and visual
 - (cleverly/creatively) exploit human visual power to see patterns
 - 1 to 5 dimensions (e.g. spatial, color, time, sound)
 - e.g. plot raw data/statistics, reduce dimensions as needed
- data-driven (model-free)
- especially useful in early stages of data mining
 - detect outliers (e.g. assess data quality)
 - test assumptions (e.g. normal distributions or skewed?)
 - identify useful raw data & transforms (e.g. log(x))
- <u>http://www.itl.nist.gov/div898/handbook/eda/eda.htm</u>
- Bottom line: it is always well worth looking at your data!

Data Mining - Massey University

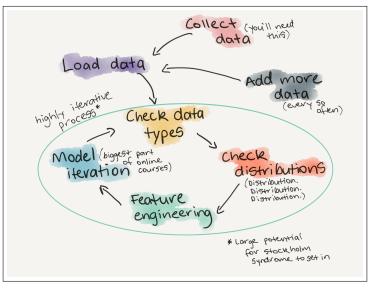
EDA Checklist

- 1. What question(s) are you trying to solve (or prove wrong)?
- 2. What kind of data do you have and how do you treat different types?
- 3. What's missing from the data and how do you deal with it?
- 4. Where are the outliers and why should you care about them?
- 5. How can you add, change or remove features to get more out of your data?

Daniel Bourke, A Gentle Introduction to Exploratory Data Analysis,

 $\tt https://towards datascience.com/a-gentle-introduction-to-exploratory-data-analysis-f11d843b8184$

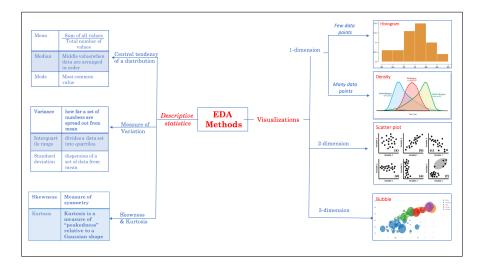
EDA Circle of Life



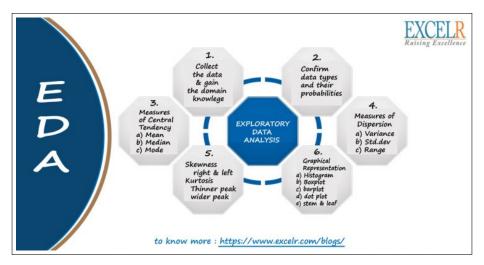
Daniel Bourke, A Gentle Introduction to Exploratory Data Analysis,

https://towardsdatascience.com/a-gentle-introduction-to-exploratory-data-analysis-f11d843b8184

EDA Methods



EDA Steps



EDA Key Concepts

What are the **key concepts** about **EDA**?

- 2 types of Data Analysis
 - Confirmatory data analysis
 - Exploratory data analysis
- 4 objectives of EDA
 - Discover Patterns
 - Spot Anomalies
 - Frame Hypothesis
 - Check Assumptions
- 2 methods for exploration
 - Univariate Analysis
 - Bivariate Analysis

- Stuff done during EDA
 - Trends
 - Distributions
 - Mean
 - Median
 - Outlier
 - Spread measurement (SD)
 - Correlations
 - Hypothesis testing
 - Visual exploration

EDA: Skewness and Kurtosis

Besides analyses to characterize central tendency and variability ... a further characterization of the data includes **skewness** and **kurtosis**.

Skewness

Skewness is a measure of symmetry, or more precisely, the lack of symmetry.

A distribution, or data set, is symmetric if it looks the same to the left and right of the center point.

Kurtosis

Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution.

That is, data sets with high kurtosis tend to have heavy tails, or outliers. Data sets with low kurtosis tend to have light tails, or lack of outliers. A uniform distribution would be the extreme case.

Detecting Skewness and Kurtosis

The **histogram** is an effective graphical technique for showing both the skewness and kurtosis of data set.

Process: Exploratory Data Analysis

Exploratory Data Analysis

Learn about the properties of the data

Steps for Exploratory Data Analysis

- Descriptive statistics: mean/median and variance, quantiles, outliers
- ► Correlation
- ► Fitting curves and distributions
- ► Dimension reduction
- Clustering

Regression: Curve Fitting

Regression Analysis

a set of statistical processes for estimating the relationships among variables

helps one understand how the typical value of the dependent variable changes when any one of the independent variables is varied,s while the other independent variables are held fixed.

Linear Regression

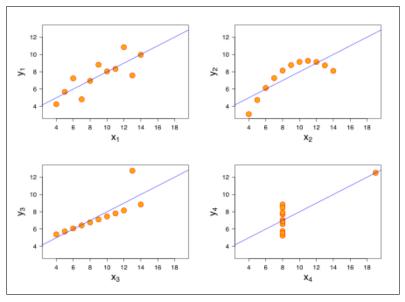
fit a line to (x,y) data y is dependent variable, x is independent variable

Curve Fitting

Can fit other forms of curves to data

Regression: Curve Fitting

Anscombe's Quartet



Dimension reduction: PCA

Principal Component Analysis (PCA)

Aim: to identify the combinations of variables that explain the variability in the data set

Method

Transform original set of correlated variables into

set of orthogonal (independent) variables

- ► linear combination of original variables
- first principal component accounts for as much of variability as possible
- second PC accounts for as much of remaining variability as possible
- ▶ etc

Map to PC for Dimension Reduction

Clustering

Clustering

brings together "similar" observations

Distances

Many potential distances Euclidean distance Manhattan distance Cosine distance

k-Means Clustering

Creates k clusters, pre-defined k Start with k random centroids Iteratively assign points to nearest centroid, and recompute centroids

Agglomerative Clustering

Start each point is cluster Iteratively merge closest clusters

Clusters define Nominal Dimension

Clustering: Consistency of Data

Cluster/sort data values

To bring together duplicate and similar data values to make it easy to see differences/errors (See OpenRefine video 1 of 3)

Cluster observations

To bring together duplicate and similar observations to make it easy to see differences/errors

Check for consistency

Differences need to be investigated

Feature Engineering

Feature

A feature is an attribute or property shared by all of the independent units on which analysis or prediction is to be done. Any attribute could be a feature, as long as it is useful to the model.

Process of Feature Engineering

- Brainstorming or Testing features;
- Deciding what features to create;
- Creating features;
- ► Checking how the features work with your model;
- Improving your features if needed;
- Go back to brainstorming/creating more features until the work is done.

See video 3, Ryan Baker, Coursera, Big Data Week 3 Feature Engineering

https://www.youtube.com/watch?v=drUToKxEAUA

Feature Creation

Aggregation

Basic aggregation operators

- ▶ sum
- ▶ mean, media, mode
- ► frequency

Other

▶ binning

Transformation

Apply a transformation to features

- normalization, unification, resolution, regularization
- ► log
- ▶ feature split
- scaling

Feature Creation: Binning

Numerical Data to Categorical Data

Example: Age

Define **bins**:

Infant for age between 0 - 4Child for age between 5 - 12Teen for age between 13 - 19YoungAdult for age between 20 - 29Adult for age between 30 - 44Mature for age between 45 - 64Senior for age between 65 - 79Elderly for age 80 and over Feature Creation: Splitting

Feature Splitting Example: Name split to FirstName, LastName

Example: Date 2019-06-21 split to Year, Month, Day

Python featuretools

description	type	name
Finds the number of 'True' values in a boolean	aggregation	num_true
Finds the percent of 'True' values in a boolean feature.	aggregation	percent_true
Time since last related instance.	aggregation	time_since_last
Returns the number of unique categorical variables.	aggregation	num_unique
Computes the average time between consecutive events.	aggregation	avg_time_between
Test if all values are 'True'	aggregation	all
Finds the minimum non-null value of a numeric feature.	aggregation	min
Computes the average value of a numeric feature.	aggregation	mean
Transform a Timedelta feature into the number of seconds.	transform	seconds
Transform a Datetime feature into the second	transform	second
For two boolean values, determine if both values are 'True'	transform	and
Transform a Datetime feature into the month.	transform	month
Calculates the sum of previous values of an instance for each value in a time-dependent entity.	transform	cum_sum
For each value of the base feature, determines the percentile in relation	transform	percentile
Compute the time since the previous instance.	transform	time_since_previous
Calculates the min of previous values of an instance for each value in a time-dependent entity	transform	cum_min

Feature Contribution

Correlation Example

 r^2 measures how much of variation is explained by linear regression

Contribution to Model

When building a model from your dataset, does the technique allow you to know the contribution of each feature?

Compare with PCA

PCA finds principal orthogonal components components are ranked by contribution components are defined as combinations of features