
COMP 5541

Tools and Techniques for Software
Engineering

Lecture 0

Course Overview and Introduction



Instructor

Greg Butler
EV-3.219 gregb@encs Ph: 848-2424 ext.3031
http://users.encs.concordia.ca/~gregb

Lectures: Tuesdays 17:45 – 20:15 H-501

Scheduled Labs: H-???
Tuesdays 20:30 – 22:10

Office Hours: Tuesdays 16:00 – 17:00; at lectures;
and by appointment

Recommended Books

Roger Pressman, Software Engineering: A Practi-
tioner’s Approach, McGraw-Hill Education;

Craig Larman, Applying UML and Patterns: An Intro-
duction to Object-Oriented Analysis and Design and the
Unified Process, Prentice-Hall.



Evaluation
Quiz 1 22.5%
Quiz 2 22.5%
Project Increment 1 15%
Project Increment 2 15%
Project Increment 3 15%
Project — individual work 10%
Total 100%

Course Components

Lectures: Tuesdays 17:45 – 20:15 H-501

Labs: H-??? (2 hours per week)
Tuesdays 20:30 – 22:10

Project: Simple Spreadsheet Utility



Course Outline

Introduction to Course
Introduction to SE

• What is SE: discipline, systematic, team, bud-
get constraints, includes maintenance; process,
products, tools, people, principles

• Lifecycle overview
• Managerial and Technical Perspectives
• Dimensions of SE projects: business context,

size, novelty, type of application
• People Issues: Skills needed on a team; Com-

munication, Organization; Phases of team for-
mation; Meetings

Tying it all together

• Vision/alignment: getting every phase focussed
on same priorities

• Traceability: navigating from document to doc-
ument

• Visibility: concrete description of the process;
concrete evidence of the status of project

• Quality control: verification and validation
Requirements and Analysis

• WHAT is required
• use cases, mini-use case/functionality, scenarios
• other constraints
• documents: SRD, user manual, test cases



Course Outline (continued)

Principles of SE

• Major obstacles: complexity, re-work
• Errors will occur: prevention: rigor, models,

what-if; Review/Testing: catch errors as soon
as possible

• Rigor and Formality
• Abstraction
• Separation of Concerns

Lifecycle Models

• What is a phase: project standards, input/info
sources, output documents activities, qual-
ity/review, audience for output; entry/exit con-
ditions; example on effectiveness of reviews

• Code-and-fix
• Waterfall: an ideal: document-driven
• Incremental, iterative
• Risk-driven

Design

• HOW to meet requirements
• Activities: iteration, brainstorming, tracing sce-

narios, issue-resolution
• Information hiding, cohesion and coupling
• architectural design: components, connectors,

constraints, how to analyse; client/supplier,
peer-to-peer, uses, is a relationship; example ar-
chitectures: layers, pipe-and-filter, interactive
interface, continuous transformation

• design patterns: observer, mediator, facade; ex-
pression tree example

• documents: Design documents



Course Outline (continued)

Code and Test

• REALISATION of product
• verification and validation
• testing: top-down vs bottom-up: drivers and

stubs; black box vs white box; coverage
• reviews, walkthroughs, inspections
• documents: test plan (unit, module, integra-

tion), test cases, test results acceptance test
Formal methods

• Pros and cons: mix informal descriptions with
formal

• Z example: proofs
• Larch example: rewriting, inductive proofs

Quality

• factors-criteria-metrics
• common metrics: function points, McCabe,

Halstead
• quality control: record metrics, defect rates

from all projects



Project: Simple Spreadsheet Utility

Emphasis is on experiencing a complete software
lifecycle (not final product)

• connections/dependencies between phases
• feedback/change request, re-work
• working as a team
• standards, review and testing to ensure

quality/consistency of documents and software

Average load approx 10 hours per week (but varies)

Groups of 9-12 students
• 3 roles: Documenter, Coder, Tester
• team responsibilities
• individual responsibilities

Group dynamics are an important part
• minimise conflicts by establishing common

goals/workload at start
• be specific about task assignments/deadlines
• allow for mistakes and re-work in schedule
• assign tasks as early as possible, so individuals can

schedule their other work

Keep a diary of project activities.

URGENT: get to know your team!!!


