
COMP 6471
Software Design Methodologies

Fall 2011

Dr Greg Butler
http://www.cs.concordia.ca/~gregb/home/comp6471-fall2011.html



Course Introduction
• Course People

• Course Components

• What the course is
• What the course is not

• The KenKen Game Case Study

• Larman’s Design Process 

• What is OO Analysis and Design
• Design Pattern Example - Command



Course People
Instructor: Dr Greg Butler gregb@cs EV3.21
Office Hours: Mondays 16:00 to 17:00
Or by appointment
But ask questions in class please

TAs: Elias Bou-Harb

Labs: ???

mailto:gregb@cs


Course Components

Lectures: Mondays 17:45 to 20:15 H-603

Assignments: 6, every 2 weeks, worth 60%

Quizzes: 2, weeks 6 and 12, worth 40%

You must pass the quizzes!!!



Course Objectives

• Software architecture

– Its role in the software process

– Its role in software design

• Software architecture

– Importance

– describing/modeling software architecture

– Common styles of software architecture

• Layers

– Especially in web applications



Course Objectives

• “Think in Objects”

• Analyze requirements with 
use cases

• Create domain models

• Apply an iterative & agile 
Unified Process (UP)

• Relate analysis and 
design artifacts

• Read & write high-
frequency UML

• Practice

• Apply agile modeling

• Design object solutions
– Assign responsibilities to 

objects

– Design collaborations

– Design with patterns

– Design with architectural 
layers

– Understand OOP (e.g., 
Java) mapping issues



What the course is:

A (second) look at OO design!

Software architecture: where global 
decisions are made!

Design process: domain model, use cases, 
design

Emphasis: models, architectural patterns, 
GRASP principles, design patterns, 
responsibility, collaboration

Closely follows textbook!



What the course is not:

Not A course in UML, Java
• You should know the basics of these
• And become expert (as needed) yourself

Not A course in tools: Eclipse, XDE, JUnit
• You can work through tutorials yourself

Not A course in UI design, DB design

Not A course in software engineering, software 
management, software reuse, …



The Kenken Game Case Study



The Kenken Game Case Study



The KenKen Game Case Study

KenKen for 4-by-4 games and 6-by-6 games 

Components/Stages ( Last to First):
• Game – UI to let user play, get advice 
• Game – automatically/intelligently solve games 
• Game – UI to let users play game
• Game – solve games by brute force-and-ignorance (BFI) 
• Generate games – ie add arithmetic

• Generate game layouts 



Software Architecture

Formal definition IEEE 1471-2000

▫  Software architecture is the fundamental 
organization of a system, embodied in its 
components, their relationships to each other 
and the environment, and the principles 
governing its design and evolution



Software Architecture

Software architecture encompasses the set of 
significant decisions about the 
organization of a software system

▫ Selection of the structural elements and their 
interfaces by which a system is composed

▫ Behavior as specified in collaborations 
among those elements

▫ Composition of these structural and 
behavioral elements into larger subsystems

▫ Architectural style that guides this 
organization



Software Architecture

• Perry and Wolf, 1992
▫ A set of architectural (or design) elements that have a particular form

• 
•Boehm et al., 1995

▫  A software system architecture comprises 
� A collection of software and system components, connections, and constraints  
 A collection of system stakeholders' need statements
 A rationale which demonstrates that the components, connections, and constraints define a 

system that, if implemented, would satisfy the collection of system stakeholders' need 
statements

 
Clements et al., 1997 

▫ The software architecture of a program or computing system is the structure 
or structures of the system, which comprise software components, the 
externally visible properties of those components, and the relationships 
among them



Common Software Architectures
Layered architecture

Eg, client-server, 3-tier

Model-View-Control architecture

Broker

Interpreter

Pipeline



Larman’s Design Process

Operation: 
    enterItem(…)

Postconditions:
 . . .

Operation Contracts

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

Domain Model

UseCase Model

Design Model
: Register

enterItem
(itemID, quantity)

: ProductCatalog

d = getProductDescription(itemID)

addLineItem( d, quantity )

: Sale

Require
ments

Business 
Modeling

Design

Sample UP Artifact Relationships

: System

enterItem
(id, quantity)

Use Case Text

System Sequence Diagrams

make
NewSale()

system 
events

Cashier

Process 
Sale

: Cashier

use 
case 

names

system 
operations

Use Case Diagram

Supplementary
Specification

Glossary

starting events to 
design for, and 
detailed post
condition to 
satisfy

Process Sale

1. Customer 
arrives ...
2. ...
3. Cashier 
enters item 
identifier.

inspiration for 
names of 
some 
software 
domain 
objects

functional 
requirements 
that must be 
realized by 
the objects

ideas for 
the post
conditions

Register

...

makeNewSale()
enterItem(...)
...

ProductCatalog

...

getProductDescription(...)
...

1*

nonfunctional 
requirements

domain rules

item details, 
formats, 
validation



Domain Model

Catalog

VideoDescription

title
subjectCategory

VideoRental

dueDate
returnDate
returnTime

CashPayment

amount : Money

Video

ID

Stocks‚

Rents

Rents-from 

Pays-for 

Initiates 

Owns-a 

                        Described-by f

Membership

ID
startDate

1
1

1..*

1

1

1

1..*

1

1

*

1

1

1

*
1*

Pays-for-overdue-charges 

RentalTransaction

date

LoanPolicy

perDayRentalCharge
perDayLateCharge

               Determines-rental-charge 

1

Defines®

1..*

*

1..*

1

1

* *

VideoStore

address
name
phoneNumber

Customer

address
name
phoneNumber

1

1

1..*

Records-rental-of 

0..1

1

Has  Maintains

*

1

1



Use Case Model

Requirements

Partial artifacts, refined in each iteration.

UseCase Model

text
use

cases

:System

foo( x )

system
operation
contracts

system
sequence
diagrams

bar( y )

use
case

diagrams

system
operations



Typical Software Architecture Layers

UI
(AKA  Presentation, View)

Application
(AKA Workflow, Process,
Mediation, App Controller)

Domain
(AKA Business, 

Application Logic, Model)

Technical Services
(AKA Technical Infrastructure, 
Highlevel Technical Services)

Foundation
(AKA Core Services, Base Services,

Lowlevel Technical Services/Infrastructure)

width implies  range of applicability 

! GUI windows
B reports
B speech interface
B HTML, XML, XSLT, JSP, Javascript, ... 

B handles presentation layer requests
B workflow
B session state
B window/page transitions
B consolidation/transformation of disparate 

data for presentation     

> handles application layer requests
> implementation of domain rules
> domain services (POS, Inventory)

 services may be used by just one 
application, but there is also the possibility 
of multiapplication services   

9 (relatively) highlevel technical services 
and frameworks 

9 Persistence, Security

9 lowlevel technical services, utilities, 
and frameworks

9 data structures, threads, math, 
file, DB, and network I/O

more
app 

specific

de
pe

n
de

nc
y

Business Infrastructure
(AKA Lowlevel Business Services)

> very general lowlevel business services 
used in many business domains

> CurrencyConverter



Typical Software Architecture Layers (Simplified)

Domain

UI

Swing
not the Java 
Swing libraries, but 
our GUI classes 
based on Swing

Web

Sales Payments Taxes

Technical Services

Persistence Logging RulesEngine



What is Design?
Developing a blueprint (plan) for a 

mechanism that performs the required 
task, 

… taking into account all the constraints, & 

… making trade-offs between constraints 
when they are in conflict.



What is OO Analysis and Design
• Object-Oriented 

Analysis

– Important domain 
concepts or objects?

– Vocabulary?

– Visualized in the UP 
Domain Model

• Object-Oriented 
Design

– Design of software 
objects

– Responsibilities
– Collaborations

– Design patterns

– Visualized in the UP 
Design Model



Important Concepts

Model
• Abstraction hiding (unimportant) details
• Eg, cover of Larman’s book

GRASP Principle
• for assigning responsibility

Design pattern
• Solution to design problem in context

• Eg, Command pattern



Responsibility-Driven Design (RDD)

• Detailed object design is usually done 
from the point of view of the metaphor of:
– Objects have responsibilities

– Objects collaborate

• Responsibilities are an abstraction.
– The responsibility for persistence.

• Large-grained responsibility.

– The responsibility for the sales tax calculation.
• More fine-grained responsibility.



The 9 GRASP Principles

1. Creator
2. Expert
3. Controller
4. Low Coupling
5. High Cohesion
6. Polymorphism
7. Pure Fabrication
8. Indirection
9. Protected Variations



•Present solutions 
to common 
software problems 
arising within a 
certain context

Overview of Patterns

•Capture recurring structures & 
dynamics among software 
participants to facilitate reuse of 
successful designs

The Proxy Pattern

1 1
Proxy

service

Service

service

AbstractService

service

Client

•Help resolve 
key software 
design 
forces

•Flexibility
•Extensibility
•Dependability
•Predictability
•Scalability
•Efficiency

•Generally codify expert 
knowledge of design strategies, 
constraints & “best practices”



Command Pattern

• You have commands that need to be
– executed,
– undone, or

– queued

• Command design pattern separates
– Receiver from Invoker from Commands

• All commands derive from Command and 
implement do(), undo(), and redo()

• Also allows recording history, replay


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

