
COMP 6471
Software Design Methodologies

Fall 2011

Dr Greg Butler
http://www.cs.concordia.ca/~gregb/home/comp6471-fall2011.html

A Classification of Software Architectures

Components: Classes & Objects
Connectors: Method calls

Data Abstraction & OO: Strengths

• Naturally supports information hiding, which
shields implementation changes from clients

• Encapsulation and information hiding reduce
coupling

=> Enhances maintainability

• Allows systems to be modeled as collection of
collaborating objects

=> can be an effective means of managing system
complexity

Data Abstraction & OO: Weaknesses

• Object identity must be known for method
invocation

=> Identity change of an object affects all calling
objects

▫ Contrast this to pipe-and-filter …

• Concurrency problems through concurrent access

The idea behind implicit invocation is that instead of invoking a
procedure directly, a component can announce (or broadcast) one or more
Events.

Other components in the system can register an interest in an event by
associating a procedure with the event.

When the event is announced the system itself invokes all of the procedures
that have been registered for the event.

Thus an event announcement ``implicitly'' causes the invocation of
procedures in other modules.

Implicit Invocation

Event-Driven Architecture Style

Event-Driven: Communication protocols

• Synchronous communication is direct,
 time synchronized. This means that all parties
involved in the communication are present at the
same time.
▫ Examples are: A telephone conversation (not

texting), a company board meeting, a chat room
event and instant messaging.

▫
• Asynchronous communication does not require

that all parties involved in the communication to
be present at the same time.
▫ Examples are: e-mail messages, discussion boards,

blogging, and text messaging over cell phones.

Event-Driven Architecture
• Component: (active or passive) object, capsule, module

▫ Can be an instance of a class, an active class, or simply a module.
▫ Interface provides methods and ports.
▫ Publisher: individual components announce data that they wish to

share with their subscribers.
▫ Subscriber: individual components register their interest for

published data.
• Connector: “connector”, channel, binding, callback.

▫ Offers one-to-one, one-to-many, many-to-one connections;
▫ Asynchronous event broadcast.
▫ Synchronous event broadcast & await reply (call-and-return)

• Components do not explicitly invoke each other.
• Components generate signals, also called events.
• To receive events, objects can

▫ Receive events at ports (statically or dynamically bound).
▫ Register for event notification (e.g. via callback).

• Announcers do not know which components will be affected by
thrown events

• System framework implements signal propagation

Event-Driven Architecture
Strengths

• Supports reuse
▫ Only little coupling

• Easy system evolution
▫ Introduction of new component simply by registering

• Well suited for asynchronous communication
•

Weaknesses
• Components don’t have control over computation since they can only

generate events; the run-time system handles event dispatching. Thus
Respondents to events are not ordered.

• Exchange of data can require use of global variables or shared
repository
=> resource management can become a challenge.

• Global system analysis is more challenging.

• Asynchronous event handling

• Contrast to explicit call & use of pre-, post-conditions. E.g. how to ensure
that at least one object has processed an event.

Event-Driven Architecture: Examples

• UIs
▫ Macintosh computers popularized the “main event

loop” approach for UI applications.

• Other examples include
▫ Constraint satisfaction systems (e.g. some database

systems).
▫ Daemons.
▫ S/W environments that make use of multiple tools:

e.g. text editor registers for events from debugger.

Distributed Peer-to-Peer Systems

• Components
▫ Independently developed objects and programs

offering public operations or services
• Connectors

▫ Remote procedure call (RPC) over computer networks
• Configurations

▫ Transient or persistent connections between
cooperating components

• Underlying computational model
▫ Synchronous or asynchronous invocation of

operations or services
• Stylistic invariants

▫ Communications are point-to-point

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

