COMP 6471
Software Design Methodologies

Fall 2011

Dr Greg Butler
http://www.cs.concordia.ca/~gregb/home/comp6471-fall2011.html

Architectural Styles and Patterns

¢ An architectural style defines a family of architectures
constrained by
+ Component/connector vocabulary, e.g.,
+ layers and calls between them
+ Topology, e.g.,
+ stack of layers
+ Semantic constraints, e.g..

+ a laver may only talk to its adjacent lavers

+ For each architectural style, an architectural pattern can be

defined

+ It’s basically the architectural style cast into the pattern form

+ The pattern form focuses on identifving a problem, context of a
problem with its forces, and a solution with its consequences and
tradeoffs; it also explicitly highlights the composition of patterns

Catalogues of Architectural Styles
and Patterns

+ Architectural styles

+ [Garlan&Shaw] M. Shaw and D. Garlan. Software Architecture:

Perspectives on a Emerging Discipline. Prentice Hall, Englewood Cliffs, NJ,
1996

¢+ Architectural Patterns

+ [POSA] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal. Pattern-Oriented Software Architecture, A System of Patterns. John
Wilev & Sons Ltd., Chichester, UK, 1996

A Classification of Software Architectures

0 Data Flow | | F” A
o Data flowing between functional elements —
Q0 Independent Components
0 -- executing in parallel, occasionally communicating 4 =
a Virtual Machines =
0 Interpreter + program in special-purpose language
O Repositories
o Primarily built around large data collection |]
O Layered
0 Subsystems, each depending one-way on another I

subsystem

“Pure” Form of Styles

+ When we introduce a new style, we will typically first examine
1ts “pure” form.

¢ Pure data flow styles (or any other architectural style) are rarely
found in practice

+ Systems in practice
+ Regularly deviate from the academic definitions of these systems
+ Typically feature many architectural styles simultaneously

¢+ As an architect vou must understand the “pure” styles to
understand the strength and weaknesses of the style as well as the
consequences of deviating from the style

Data Flow

+ A data flow system 1s one 1 which:

*

*

The availability of data controls the computation

The structure of the design is determined by the orderly motion of
data from component to component

The pattern of data flow is explicit

This is the only form of communication between components

+ There are variety of variations on this general theme:

*

*

*

How control is exerted (e.g.. push versus pull)
Degree of concurrency between processes

Topology

Data Flow

+ Components: Data Flow Components
+ Interfaces are input ports and output ports
+ Input ports read data: output ports write data

+ Computational model: read data from input ports, compute, write data to
output ports

¢ Connectors: Data Streams
+ TUni-directional
+ Usually asyvnchronous, buffered
+ Interfaces are reader and writer roles

+ Computational model: transport data from writer roles to reader roles

¢ Systems
+ Arbitrary graphs

+ Computational model: functional composition

Patterns of Data Flow 1 Systems

¢ Data can flow in arbitrary patterns

¢ Primarily we are interested in linear
data flow patterns

¢ ..orin simple, constramed cyclical
patterns...

Characteristics of Batch Sequential
Systems

+ Components (processing steps) are imndependent programs
+ Connectors are some type of media - traditionally magnetic tape

+ Each step runs to completion before the next step begins

Data Flow via Magnetic Tape
s

=,

et
|

d “O

- e T e

= --"F-
-

=
-
-
o i

Computational Units

Characteristics of Batch Sequential
Systems

+ History
+ Mainframes and magnetic tape
+ Limited disk space
+ Block scheduling of CPU processing time

+ Business data processing

* Discrete transactions of predetermined type and occurring at periodic
intervals

+ Creation of periodic reports based on data periodic data updates

Pipes and Filters

The tape of the batch sequential system, morphed into a language and operating
system construct

Compared to the batch-sequential style. data in the pipe&filter style is processed
incrementally

data flow (pipe)

Computation v Computation Computation

(Program) (Program) (Program)

m———————————

computation (filter)

+ “The Pipes and Filters architectural pattern [style]| provides a
structure for systems that process a stream of data. Each
processing step 1s encapsulated 1n a filter component. Data 1s
passed through pipes between adjacent filters. Recombining
filters allows you to build families of related systems.” [POSA

p33]

+ Components (Filters)
+ Read streams of data on input producing streams of data on output

+ Local incremental transformation to input stream (e.g., filter, enrich,
change representation, etc.)

+ Data is processed as it arrives, not gathered then processed

+ QOutput usually begins before input is consumed
+ Connectors (Pipes)

+ Conduits for streams, e.g., first-in-first-out buffer

+ Transmit outputs from one filter to input of other

+ Invariants
+ Filters must be independent, no shared state
+ filters don’t know upstream or downstream filter identity

+ Correctness of output from network must not depend on order in which
individual filters provide their incremental processing

+ Common specializations
+ Pipelines: linear sequence of filters

+ Bounded and tvped pipes ...

4

Example Pipe-and-Filter Systems

lex/yacc-based compiler (scan, parse, generate code, ..)
Unix pipes

Image processing

Signal processing

Voice and video streaming

Data Pulling and Data Pushing

¢+ What 1s the force that makes the data flow?

+ Four choices:
+ Push: data source pushes data in a downstream direction
¢ Pull: data sink pulls data from an upstream direction

+ Push/pull: a filter is actively pulling data from a stream, performing
computations, and pushing the data downstream

+ Passive: don’t do either, act as a sink or source for data

+ Combinations may be complex and may make the “plumber’s” job more

difficult

+ if more than one filter is pushing/pulling, synchronization is needed

A Push Pipeline With an Active

Source

push

filter2

dataSink

A Pull Pipeline With an Active

i
write{data) ;

dataSource filterl
push push
write{data) f{data
o SRR e e L e e L e EEEL L. T

L f2{data)

write(data)

w

Sink

dataSource

data:=read()

dataSink filterl filter2
pull pull pull
data-=read()
data=read()
< a
| f1(data) |
j; - I

Pipe and Filter: Strengths

Overall behaviour 1s a simple composition of behaviour of individual
filters.

Reuse - any two filters can be connected if they agree on that data format
that 1s transmitted.

Ease of maintenance - filters can be added or replaced.

Prototyping e.g. Unix shell scripts are famously powerful and flexible,
using filters such as sed and awk.

Architecture supports formal analysis - throughput and deadlock detection.

Potential for parallelism - filters implemented as separate tasks. consuming
and producing data incrementally.

Pipe and Filter: Weaknesses

Can degenerate to ‘batch processing’ - filter processes all of its data before passing
on (rather than incrementally).

Sharing global data 1s expensive or limiting.
Can be difficult to design incremental filters,

Not appropriate for interactive applications - doesn’t split into sequential stages.
POSA book has specific styles for interactive systems. one of which is Model-

View-Controller.

Synchronisation of streams will constrain architecture.

Error handling 1s Achilles heel e.g. filter has consumed three quarters of its input
and produced half its output and some intermediate filter crashes! Generally restart

pipeline. (POSA)

Implementation may force lowest common denominator on data transmission e.g.
Unix seripts everything 1s ASCIL

Pipe-and-Filter vs. Batch
Sequential

+ Both decompose the task into a fixed sequence of computations
(components) interacting only through data passed from one to another

Batch Sequential Pipe-and-Filter

course grained fine grained

high latency results starts processing
external access to input localized input

N0 CONCUITENCY concurrency possible

e 4k ik W i
L _ B R I .

interactive awloward but
possible

non-interactive

Call-and-return

+ Main program/subroutines

+ Information hiding

+ ADT. object, naive client/server

Main Program + Subroutine
Architecture

+ Classic style since 60s - pre-OO.

+ Hierarchical decomposition into subroutines (Components)
each solving a well defined task/function.

+ Data passed around as parameters.

+ Main driver provides a control loop for sequencing through
subroutines.

Data Abstraction / Object Oriented

Widely used architectural style
Components:
+ Objects or abstract data types

Connections:
* Messages or function/procedure invocations
Key aspects:
* Object preserves integrity of representation - no direct access
* Representation is hidden from objects
Variations:
+ Objects as concurrent tasks

* Multiple interfaces for objects (Java !)

Note that Data Abstraction 1s different from Object-Oriented - no mheritance,

1#:Digit(code)
—

. Speaker

TI.E:EnlitTane{mde]

Send:Button

2:Send()
s

2.1:Connect(pno)
—>

- Dialer

J/ 1.1:DisplayDigit(code]

* CellularRadio

- Display

Components: Classes & Objects
Connectors: Method calls

2.1.1: InUse()

Data Abstraction & OO: Strengths

- Naturally supports information hiding, which
shields implementation changes from clients

- Encapsulation and information hiding reduce
coupling

=> Enhances maintainability

- Allows systems to be modeled as collection of
collaborating objects

=> canh be an effective means of managing system

complexity

Data Abstraction & OO: Weaknesses

- Object identity must be known for method
iInvocation

=> |dentity change of an object affects all calling

objects

- Contrast this to pipe-and-filter ...

- Concurrency problems through concurrent access

Object-Oriented
Strengths/ Weaknesses

+ Strengths:

*

Change implementation without affecting clients (assuming interface doesn’t
change)

Can break problems into interacting agents (distributed across multiple machine /
networks).

¢ Weaknesses:

*

*

To interact objects must know each other’s identity (in contrast to Pipe and Filter).

When identity changes, ohjects that explicitly invoke it must change (Java interfaces

help though).

Side effect problems: if A uses B and C uses B, then C effects on B can he
unexpected to A (and vice-versa).

Complex dvnamic interactions — distributed functionality.

Implicit Invocation

The idea behind implicit invocation is that instead of invoking a
procedure directly, a component can announce (or broadcast) one or more
Events.

Other components in the system can register an interest in an event by
associating a procedure with the event.

When the event is announced the system itself invokes all of the procedures
that have been registered for the event.

Thus an event announcement *implicitly' causes the invocation of
procedures in other modules.

Implicit Invocation Example

+ Components register interest in an event by associating a procedure with
the event.

+ When the event 1s announced the system implicitly invokes all procedures
that have been registered for the event.

+ Common style for integrating tools in a shared environment, e.g..
+ Tools communicate by broadcasting interesting events

+ Other tools register patterns that indicate which events should be routed to
them and which method/procedure should be invoked when an event
matches that pattern.

+ Pattern matcher responsible for invoking appropriate methods when each
event is announced.

+ Examples:

+ Editor announces it has finished editing a module, compiler

registers for such announcements and automatically re-compiles
module.

+ Debugger announces it has reached a breakpoint, editor registers

interest in such announcements and automatically scrolls to
relevant source line.

Implicit Invocation

+ Strengths
+ Strong support for reuse - plug in new components by registering it
for events

+ Maintenance - add and replace components with minimum affect
on other components in the system.

+ Weaknesses

+ Loss of control
+ when a component announces an event, it has no idea what components will
respond to it
+ cannot rely on order that these components will be invoked
+ cannot tell when they are finished
+ Ensuring correctness is difficult because it depends on context in which
invoked. Unpredictable interactions.

+ Sharing data - see the Observer Design Pattern

+ Hence explicit invocation 1s usually provided as well as implicit invocation.
In practice architectural styles are combined.

Event-Driven Architecture Style

Event-Driven: Communication protocols

- Synchronous communication is direct,

time synchronized. This means that all parties
iInvolved in the communication are present at the
same time.

- Examples are: A telephone conversation (not
texting), a company board meeting, a chat room
event and instant messaging.

- Asynchronous communication does not require
that all parties involved in the communication to
be present at the same time.

- Examples are: e-mail messages, discussion boards,
blogging, and text messaging over cell phones.

Event-Driven Architecture

Component: (active or passive) object, capsule, module
- Can be an instance of a class, an active class, or simply a module.
- Interface provides methods and ports.

- Publisher: individual components announce data that they wish to
share with their subscribers.

- Subscriber: individual components register their interest for
published data.

Connector: “connector”, channel, binding, callback.

- Offers one-to-one, one-to-many, many-to-one connections;

- Asynchronous event broadcast.

- Synchronous event broadcast & await reply (call-and-return)

Components do not explicitly invoke each other.
Components generate signals, also called events.

- To receive events, objects can

- Receive events at ports (statically or dynamically bound).
- Register for event notification (e.qg. via callback).

- Announcers do not know which components will be affected by
thrown events
System framework implements signal propagation

Event-Driven Architecture

Strengths

- Supports reuse

- Only little coupling

Easy system evolution

- Introduction of new component simply by registering
- Well suited for asynchronous communication

Weaknesses

- Components don’t have control over computation since they can only
generate events; the run-time system handles event dispatching. Thus
Respondents to events are not ordered.

- Exchange of data can require use of global variables or shared
repository
=> resource management can become a challenge.

- Global system analysis is more challenging.
- Asynchronous event handling

- Contrast to explicit call & use of pre-, post-conditions. E.g. how to ensure
that at least one object has processed an event.

Event-Driven Architecture: Examples

- Uls

- Macintosh computers popularized the “main event
loop” approach for Ul applications.

- Other examples include

- Constraint satisfaction systems (e.g. some database
systems).

- Daemons.

- S/W environments that make use of multiple tools:
e.g. text editor reqisters for events from debugger.

Model-View-Controller

A decomposition of an interactive system into three components:
*+ A model containing the core functionality and data,
+ One or more views displaying information to the user, and

+ One or more controllers that handle user input.

A change-propagation mechanism (1.e., observer) ensures consistency
between user interface and model. e.g..

+ If the user changes the model through the controller of one view, the other
views will be updated automatically

Sometimes the need for the controller to operate in the context of a given
view may mandate combining the view and the controller into one
component

The division into the MVC components improves maintainability

Data-Oriented Repository

+ Transactional databases

¢+ True client/server

+ Blackboard

+ Modern compiler

Repositories / Data Centred

+ Characterised by a central data store component representing systems state
and a collection of independent components that operate on the data store.

+ Connections between data store and external components vary considerably
in this style:

+ Transactional databases: Incoming stream of transactions trigger processes
to act on data store. Passive.

*+ Blackbeard architecture: Current state of data store triggers processes,
Active,

Blackboard

Characteristics: cooperating ‘partial solution solvers® collaborating burt not
following a pre-defined straregy.

Current state of the solution stored in the blackboard.
Processing triggered by the state of the blackboard.

Blackboard
(shared data)

Blackboard Style (1)

Concept: Concurrent transformations on
shared data

v

data

\ \

[Componenté] [Component‘ﬂ [Componenta

Components: processing units (typically knowledge source)

Connectors:

Topology:

blackboard
interaction style: asynchronous

one or more transformation-components may
be connected to a data-space,

there are typically no connections between
processing units (bus-topology)

Blackboard Style (2)

Behaviour Types:

a. Passive repository
Accessed by a set of components; e.g. database or server
b. Active repository

Sends notification to components when data of interest
changes; e.g. blackboard or active database

= - =

v v v

[C:omponentﬂ [Component] [Component]

Constraints:
Consistency of repository:; Various types of (transaction) consistency

Layering & Blackboard

Blackboard Style (3)

Advantages:
. Allows different control heuristics

Reusable & heterogeneous knowledge sources
. Support for fault tolerance and robustness

by adding redundant components

+ /- Dataflow is not directly visible

Disadvantages

Distributed implementation is complex
. distribution and consistency issues

Blackboard Characteristics

— Data may be structured (DB) or unstructured

- Data may be selected based on content

— Applications may insert/retrieve different data-type
per access.
This in contrast to pub-sub where data of the same type
is retrieved repeatedly

Blackboard Style (4) Quality Factors

Extensibility: components can be easily added
Flexibility: functionality of components can be easily
changed
Robustness: + components can be replicated,
— blackboard is single point of failure
Security: — all process share the same data
+ security measures can be centralized
around blackboard
Performance: easy to execute in parallel fashion

consistency may incur synchroniz.—-penalty

Blackboard Style (5) Application Conte

Rules of thumb for choosing blackboard (0.a. from Shaw):
- if representation & management of data is a central issue
- if data is long-lived
- if order of computation
— can not be determined a-priori
- is highly irregular
- changes dynamically
— if units of different functionality (typically containing
highly specialized knowledge) concurrently act on shared
data (horizontal composition of functionality)

Example application domain: expert systems

Examples of Blackboard
Architectures

+ Problems for which no determumistic solution strategy is known, but many
different approaches (often alternative ones) exist and are used to build a

partial or approximate solution.
+ Al vision, speech and pattern recognition (see POSA case study)

+ Modern compilers act on shared data: symbol table, abstract syntax tree
(see Garlan and Shaw case study)

¢ Architectural styles and patterns
¢ Data flow
¢ (Call-and-return
¢+ Interacting processes
¢ Data-oriented repository
= Data-sharing
* Hierarchical

POt Data-sharing

>

Compound documents

>

Hypertext
Fortran COMMON
LW processes

L

>

Layered Systems

+ Applicability

+ A large system that is characterised by a mix of high and low level issues,
where high level issues depend on lower level ones.

« Components

+ Group of subtasks which implement a *virtual machine® at some layver in
the hierarchy

+ Connectors

*+ Protocols / interface that define how the layvers will interact

+ Invariants

+ Limit layver (component) interactions to adjacent layvers (in practice this
may be relaxed for efficiency reasons)

+ Typical variant relaxing the pure style

+ A layver may access services of all lavers below it

+ Common Examples

+ (Communication protocols: each level supports communication at a level of
abstraction, lower levels provide lower levels of communication, the lowest
level being hardware communications.

Interpreter

Architecture 1s based on a virtual machine produced 1n
software.

Special kind of a layered architecture where a layer 1s
implemented as a true language interpreter.

Components are ‘program’ being executed, its data, the
interpretation engine and its state.

Example: Java Virtual Machine. Java code translated to
platform independent bytecodes. JVM 1s platform specific and
interprets (or compiles - JIT) the bytecodes.

Interpreter
Interpreter — More Examples

s | € State * Programming and scripting languages
i el W §
Progran Peing — Awk. Perl. ...
Imterpreced

I Rule-based systems

Computation — PI‘O]L’J% COI’HL

State achlne

Micro-coded machine

— Implement machine code in software

selected

instraction

selected data
(fetch)

outputs

Presentation package

=il

— Display a graph. by operating on the graph

Distributed Peer-to-Peer Systems

- Components

- Independently developed objects and programs
offering public operations or services

- Connectors

- Remote procedure call (RPC) over computer networks
- Configurations

- Transient or persistent connections between
cooperating components

- Underlying computational model

- Synchronous or asynchronous invocation of
operations or services

- Stylistic invariants
- Communications are point-to-point

Heterogeneous Architectures

+ In practice the architecture of large-scale system 1s a combination of
architectural styles:

+ (‘Hierarchical heterogeneous’) A Component in one stvle may have an
internal style developed in a completely different stvle (e.g, pipe component
developed in OO style, implicit invocation module with a lavered internal
structure, etc.)

*+ (‘Locational heterogeneous’) Overall architecture at same level is a
combination of different styles (e.g., repository (database) and
mainprogram-subroutine, etc.)

Here individual components may connect using a mixture of architectural
connectors - message invocation and implicit invocation.

+ (‘Perspective heterogeneons’) Different architecture in different
perspectives (e.g., structure of the logical view, structure of the physical
view, etc.)

Example of Heterogeneous Architectures:
Enterprise Architectures

+ Mulnt tier (at the highest level), distnbuted (including broker pattern), transactional databases,
event-based communication, implicit invocation, object-oniented, MVC (e g, for presentation
in the client). dataflow for workflow, etc.

Flrewall

Thin |
Clianit’

Rich |
Chent |

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

