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A Classification of Software Architectures



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  

Components: Classes & Objects
Connectors: Method calls



  

Data Abstraction & OO: Strengths

• Naturally supports information hiding, which 
shields implementation changes from clients 

• Encapsulation and information hiding reduce 
coupling

=> Enhances maintainability

• Allows systems to be modeled as collection of 
collaborating objects

=> can be an effective means of managing system 
complexity



  

Data Abstraction & OO: Weaknesses

• Object identity must be known for method 
invocation

=> Identity change of an object affects all calling 
objects

▫ Contrast this to pipe-and-filter …

• Concurrency problems through concurrent access



  



  

The idea behind implicit invocation is that instead of invoking a
procedure directly, a component can announce (or broadcast) one or more
Events.
 
Other components in the system can register an interest in an event by
associating a procedure with the event. 

When the event is announced the system itself invokes all of the procedures 
that have been registered for the event. 

Thus an event announcement ``implicitly'' causes the invocation of 
procedures in other modules.

Implicit Invocation



  



  



  

Event-Driven Architecture Style



  

Event-Driven: Communication protocols

• Synchronous communication is direct,
 time synchronized. This means that all parties 
involved in the communication are present at the 
same time. 
▫ Examples are: A telephone conversation (not 

texting), a company board meeting, a chat room 
event and instant messaging.

▫  
• Asynchronous communication does not require 

that all parties involved in the communication to 
be present at the same time. 
▫ Examples are: e-mail messages, discussion boards, 

blogging, and text messaging over cell phones. 



  

Event-Driven Architecture
• Component: (active or passive) object, capsule, module

▫ Can be an instance of a class, an active class, or simply a module.
▫ Interface provides methods and ports.
▫ Publisher: individual components announce data that they wish to 

share with their subscribers.
▫ Subscriber: individual components register their interest for 

published data.
• Connector: “connector”, channel, binding, callback.

▫ Offers one-to-one, one-to-many, many-to-one connections;
▫ Asynchronous event broadcast.
▫ Synchronous event broadcast & await reply (call-and-return)

• Components do not explicitly invoke each other.
• Components generate signals, also called events.
• To receive events, objects can

▫ Receive events at ports (statically or dynamically bound).
▫ Register for event notification (e.g. via callback).

• Announcers do not know which components will be affected by 
thrown events

• System framework implements signal propagation



  

Event-Driven Architecture
Strengths

• Supports reuse
▫ Only little coupling

• Easy system evolution
▫ Introduction of new component simply by registering

• Well suited for asynchronous communication
•

Weaknesses
• Components don’t have control over computation since they can only 

generate events; the run-time system handles event dispatching.  Thus 
Respondents to events are not ordered.

• Exchange of data can require use of global variables or shared 
repository 
=> resource management can become a challenge.

• Global system analysis is more challenging.

• Asynchronous event handling

• Contrast to explicit call & use of pre-, post-conditions. E.g. how to ensure 
that at least one object has processed an event.



  

Event-Driven Architecture: Examples

• UIs
▫ Macintosh computers popularized the “main event 

loop” approach for UI applications.

• Other examples include
▫ Constraint satisfaction systems (e.g. some database 

systems).
▫ Daemons.
▫ S/W environments that make use of multiple tools: 

e.g. text editor registers for events from debugger.



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  

Distributed Peer-to-Peer Systems

• Components
▫ Independently developed objects and programs 

offering public operations or services
• Connectors

▫ Remote procedure call (RPC) over computer networks
• Configurations

▫ Transient or persistent connections between 
cooperating components

• Underlying computational model
▫ Synchronous or asynchronous invocation of 

operations or services
• Stylistic invariants

▫ Communications are point-to-point
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