
COMP 6471
Software Design Methodologies

Fall 2011

Dr Greg Butler
http://www.cs.concordia.ca/~gregb/home/comp6471-fall2011.html

Larman’s Design Process

Operation:
 enterItem(…)

Postconditions:
 . . .

Operation Contracts

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

Domain Model

UseCase Model

Design Model
: Register

enterItem
(itemID, quantity)

: ProductCatalog

d = getProductDescription(itemID)

addLineItem(d, quantity)

: Sale

Require
ments

Business
Modeling

Design

Sample UP Artifact Relationships

: System

enterItem
(id, quantity)

Use Case Text

System Sequence Diagrams

make
NewSale()

system
events

Cashier

Process
Sale

: Cashier

use
case

names

system
operations

Use Case Diagram

Supplementary
Specification

Glossary

starting events to
design for, and
detailed post
condition to
satisfy

Process Sale

1. Customer
arrives ...
2. ...
3. Cashier
enters item
identifier.

inspiration for
names of
some
software
domain
objects

functional
requirements
that must be
realized by
the objects

ideas for
the post
conditions

Register

...

makeNewSale()
enterItem(...)
...

ProductCatalog

...

getProductDescription(...)
...

1*

nonfunctional
requirements

domain rules

item details,
formats,
validation

Domain Model

Catalog

VideoDescription

title
subjectCategory

VideoRental

dueDate
returnDate
returnTime

CashPayment

amount : Money

Video

ID

Stocks�

Rents

Rents-from

Pays-for

Initiates

Owns-a

 Described-by f

Membership

ID
startDate

1
1

1..*

1

1

1

1..*

1

1

*

1

1

1

*
1*

Pays-for-overdue-charges

RentalTransaction

date

LoanPolicy

perDayRentalCharge
perDayLateCharge

 Determines-rental-charge

1

Defines®

1..*

*

1..*

1

1

* *

VideoStore

address
name
phoneNumber

Customer

address
name
phoneNumber

1

1

1..*

Records-rental-of

0..1

1

Has Maintains

*

1

1

C
om

p
64

71 Domain Model: Visualizing
Concepts

Page 5

Domain Models

◆ A Domain Model illustrates meaningful concepts in a
problem domain.

◆ It is a representation of real-world things, not
software components.

◆ It is a set of static structure diagrams; no operations
are defined.

◆ It may show:
– concepts
– associations between concepts
– attributes of concepts

Page 6

Domain Analysis

• Domain analysis
– The wider business context for the system

• Requirements
• Specification
• Architecture
• …

If software spends most of its time being changed and maintained,
it’s important to understand the context in which it lives

– Changes will move the application around this contextual space
– Need to understand where it might go
– Changes are determined by the business context

Page 7

What is a Domain?

Two categories
◆ A collection of current and future (software)

applications that share a set of common
characteristics

◆ A well-defined set of characteristics that accurately,
narrowly, and completely describe a family of
problems for which computer application solutions
are being, and will be sought

E. Berard. Essays in Object-Oriented Software Engineering. Prentice Hall, 1992.

Page 8

Domain Expert

◆ an individual who is both experienced and
knowledgeable about a particular application
domain

◆ must have detailed knowledge about available
COTS products and the interface standards
they adhere to

◆ there must be at least one domain expert for
each application domain

Page 9

Domain Analyst

◆ responsible for the development of the
appropriate domain analysis classification
scheme and the criteria for selection of
potentially reusable components

– Determining opportunities for the composition of
components into higher-level structures is also an
important part of the domain analysis process.

– The domain analyst will interact with the domain
expert as part of this process.

Page 10

Learning from Domain Experts

Page 11

Domain Analysis Tasks

◆ characterize and understand the problem space
– goal: factor out commonalties

◆ characterize and understand the solution space
– both looking at what it is now and what it should

be after factoring commonalties

◆ create a model of the Domain
– Domain Engineering extends the domain analysis to include

the actual design and construction of the new solution space

Page 12

Domain Classifications

These classifications can help form the basis for
developing an organizational reuse strategy.

categories:

– domain-independent software
– domain-specific software
– application-specific software

Page 13

Domain Independent Software

e.g. graphical user interface functions, math
libraries, abstract data types

– these account for about 20% of a typical
application

◆ therefore efforts at software reuse in this category can
hope to reduce development effort by up to 20%

– horizontal reuse - can be shared among many
domains

Page 14

Domain Specific Software

e.g. aircraft navigation and control, geographical
information management, library management,
text editing, etc. — in general, code common to
any program in a given domain

– can account for up to 80% of the code
◆ software reuse in this category can hope to reduce

development effort by up to 80%

– vertical reuse - reuse is within the domain only

– largest payoff points to concentration on vertical reuse

Page 15

Application Specific Software

code for a single, specific application

– handles the unique details of a customer's
requirements specification

– typically accounts for about 15% of an application
◆ custom code, therefor little potential for reuse

Page 16

Domain Modelling

After domain analysis the next step is to create a model of the
domain.

The idea is to capture the business and understand it — don’t just
concentrate on this application, study all applications in this
business first.

Together,they describe the environment in which the software has to live
and work — and the context that will exert pressure on it to change.

In an object-oriented world, we capture the objects, relationships and
processes in the business:

– the people and roles in the organization
– the tasks they need to perform
– the interactions between these tasks

This provides good documentation for the business.

Page 17

 Applications Live in the
Domain

Page 18

OO Analysis and Domain
Analysis

While OO analysis is focused on the features and
functionality of a single system to be generated,
a domain analysis focuses on the common and
variant features across a family of systems.

Use cases and sequence diagrams are good for
both OO and domain models.

– actors and their tasks
– sequences of actions and states

Class diagrams are good for OO models.
– the “things” in the system, seen through the users’

eyes

Page 19

Domain Analysis Summary

◆ Domain analysis focuses on problems, not solutions.

◆ Domain analysis is about understanding the context
for the application.

– Understand all the applications, not just this one.
– Talk to domain experts and watch them at work.
– Think like the customer as far as possible.

Domain models, software architectures and re-usable
components are artifacts of domain engineering.

Page 20

Domain Models

◆ A Domain Model is a
description of things in
the real world.

◆ A Domain Model is not
a description of the
software design.

◆ A concept is an idea,
thing, or object.

Item

Store

*

1

address
name

Stocked-in

Page 21

Conceptual Classes in
the POS Domain

A central distinction
between object-
oriented and structured
analysis:

division by concepts
(objects) rather than
division by functions.

Store Register Sale

Partial Domain Model.

Page 22

Strategies to Identify Conceptual
Classes

◆ Use a conceptual class category list.
– Make a list of candidate concepts.

◆ Use noun phrase identification.
– Identify noun (and noun phrases) in textual

descriptions of the problem domain, and consider
them as concepts or attributes.

– Use Cases are an excellent description to draw for
this analysis.

Page 23

Use a Conceptual Class
Category List

Concept Category Example

physical or tangible objects Register

specifications, designs, or
descriptions of things ProductDescription

places Store

transactions Sale, Payment

transaction line items SalesLineItem

roles of people Cashier

containers of other things Store, Bin

(See pp. 140-141 in Larman 3rd ed.)

Page 24

Finding Conceptual Classes with
Noun Phrase Identification

1. This use case begins when a
Customer arrives at a cash
register with items to
purchase.

2. The Cashier starts a new
sale.

3. Cashier enters an item
identifier.

…

◆ Fully addressed Use Cases
are an excellent description
to draw for this analysis.

◆ Some of these noun phrases
are candidate concepts;
some may be attributes of
concepts.

◆ A mechanical noun-to-
concept mapping is not
possible, as words in a
natural language are
(sometimes) ambiguous.

Page 25

The Need for Specification or
Description Conceptual Classes

◆ What's wrong with this
picture?

Item

description
price
serial number
itemID

Page 26

The Need for Specification or
Description Conceptual Classes

◆ What's wrong with this
picture?

◆ Consider the case
where all items are sold,
and thus deleted from
the computer memory.

◆ How much does an item
cost?

Item

description
price
serial number
itemID

Page 27

◆ The memory of the
item’s price was
attached to inventoried
instances, which were
deleted.

◆ Notice also that in this
model there is
duplicated data
(description, price,
itemID).

The Need for Specification or
Description Conceptual Classes

Item

description
price
serial number
itemID

Page 28

Add a specification or
description concept when:

– Deleting instances of things
they describe results in a
loss of information that
needs to be maintained, due
to the incorrect association
of information with the
deleted thing.

– It reduces redundant or
duplicated information.Item

serial number

Describes

ProductDescription

description
price
itemID

1

*

The Need for Specification or
Description Conceptual Classes

Page 29

The NextGen POS (partial)
Domain Model

Register Item Store Sale

Sales
LineItem Cashier Customer Ledger

Cash
Payment

Product
Catalog

Product
Description

Page 30

Adding Associations

Register Sale
Records-current

11

An association is a relationship
between concepts that indicates
some meaningful and interesting
connection.

association name

this optional arrow
indicates (only!) which
way to read the
association name

Page 31

Finding Associations – Common
Associations List

Category Examples
A is a physical part of B Drawer - Register
A is a logical part of B SalesLineItem - Sale
A is physically contained in/on B Register - Store
A is logically contained in B ItemDescription - Catalog
A is a description of B ItemDescription - Item
A is a line item of a transaction
or report B SalesLineItem - Sale
A is known/logged/recorded/
captured in B Sale - Register
A is a member of B Cashier - Store
...

(See pp. 155-156 in Larman 3rd ed.)

Page 32

Multiplicity

◆ Multiplicity defines how
many instances of a
type A can be
associated with one
instance of a type B, at
a particular moment in
time.

◆ For example, a single
instance of a Store can
be associated with
“many” (zero or more)
Item instances.

Store Item
1 *

Stocks

Multiplicity

Page 33

Thing

Thing

Thing

Thing

Thing

Zero or more;
“many”

One or more

One to forty

Exactly five

Exactly three, five
or eight.

*

1..*

1..40

5

3, 5, 8

Multiplicity

Page 34

Naming Associations

◆ Name an association based
on a ClassName-
VerbPhrase-ClassName
format. Use specific terms
rather than general ones (e.g.
"Paid-by" instead of "Uses")

◆ Association names should
start with a capital letter.

◆ A verb phrase should be
constructed with hyphens.

◆ The default direction to read
an association name is left to
right, or top to bottom.

Store

Register

Sale Payment

Contains

Captures

Paid-by

1

1..*

1 1

1..*

1

Page 35

Multiple Associations Between
Two Types

◆ It is not uncommon to have
multiple associations
between two types.

◆ In the example, not every
flight is guaranteed to land at
an airport.

Flies-to

Flies-from
* 1

* 0..1

Flight Airport

Page 36

Adding Attributes

◆ An attribute is a logical data
value of an object.

◆ An attribute should be added
when requirements suggest
or imply a need to remember
information.

◆ For example, a sales receipt
normally includes a date and
time.

◆ The Sale concept would need
date and time attributes.

Sale

date
startTime: Time

Attributes

Page 37

Valid Attribute Types

◆ Keep attributes simple.
◆ The type of an attribute

should not normally be a
complex domain concept,
such as Sale or Airport.

◆ Attributes in a Domain Model
should preferably be

– pure data values: Boolean,
Date, Number, String, …

– simple attributes: color,
phone number, zip code,
universal product code
(UPC), ...

Cashier

name
currentRegister

Cashier

name

Register

numberuses
1 1

Not a simple
attribute

Page 38

Domain Model Conclusion

Payment Customer

Register

Cashier

Manager

Store

Product
Description

Product
Catalog

Paid-by Initiated-by

1

1

1

1

amount

Captured-on

1 1

1

1

Records-sales-on

Started-by
1 1

Houses1

1..*

address
name

Stocks

1 *

Item

Contains

1 1..*

Describes

*

0..1

Records-sale-of

1..*

* Described-by
1

1..*

1
Contained-in

*

1
Logs-completed

1

*
Used-by

description
price
itemID

Sales
LineItem

quantity

Sale

date
time

C
om

p
64

71

Refining the Domain Model

(a brief return to Week 2, Chapter 16 and Chapter
31)

Association Classes

Example:

– Authorization services assign a merchant ID to each store for
identification during communications.

– A payment authorization request from the store to an
authorization service requires the inclusion of the merchant ID
that identifies the store to the service.

– Consider a store that has a different merchant ID for each
service (e.g. ID for Visa is XXX, ID for MC is YYY, etc.).

– Question: Where in the conceptual model should the merchant
ID attribute reside?

• Where in the conceptual
model should the
merchant ID attribute
reside?

• Placing the merchantID in
the Store is incorrect,
because a Store may
have more than one
value for merchantID.

• ...but the same is true
with placing it in the
AuthorizationService

Store

address
merchantId
name

AuthorizationService

address
merchantId
name
phoneNumber

Association Classes

principle:

In a conceptual model, if a class C can simultaneously have many
values for the same kind of attribute A, do not place attribute A in
C. Instead, place it in another type that is associated with C.

Store

address
name

AuthorizationService

address
name
phoneNumber

ServiceContract

merchantID

Authorizes-payment-via

* 1..*

Purchases

1..* *

Sells

Association Classes

◆ The merchantID is an attribute related to the association
between the Store and AuthorizationService; it depends on their
relationship.

◆ ServiceContract may then be modeled as an association class.

Store

address
name

AuthorizationService

address
name
phoneNumber

ServiceContract

merchantId

Authorizes-payment-via

* 1..*

An association class.
Its attributes are related
to the association. Its
lifetime is dependent on
the association.

Association Classes

◆ Association classes are in some sense similar to description
classes, as discussed in week 2.

◆ The difference is in what they represent: a description class
models the description of an item (e.g. the price of an item in the
POS system), while an association class models an association
between two or more other classes.

Association Classes

Guidelines for Association
Classes

Consider using an association class when:

– An attribute is related to an association.

– Instances of the association class have a lifetime
dependency on the association.

– There is a many-to-many association between two concepts.

The presence of a many-to-many association between two concepts
is a clue that a useful associative type may exist.

Company Person

Employment

salary

Employs

* *

A person may have
employment with several
companies.

Roles as Concepts vs.
Roles in Associations

In a conceptual model, a real-world role may be

– modeled as a discrete concept

or
– expressed as a role in an association

Each approach has its own advantages.

(Recall that a "role" in modelling terms is the name given to one end
of an association.)

Roles in Associations

a relatively accurate way to express the notion that the same
instance of a person takes on multiple (and dynamically
changing) roles in various environments

Store Person*Employs-to-handle sales

*1

manager

Manages

worker

manager

Employs-to-manage

1 *

Roles as Concepts

◆ modeling roles as concepts provides ease and flexibility in
adding unique attributes, associations, and additional semantics

◆ also easier, because Java, C++ etc. don't provide an easy way
to dynamically change the class of an existing object

Store Manager*

Employs

Employs

Cashier
*

1

1

1

*

Manages

Derived Elements
• a derived element can be computed from existing attributes

• derived elements should be shown (only) when doing so
makes the diagram easier to understand

Sale
SalesLineItem

1 1..*
/quantity

Derivable from the number of
instances of Items associated with
the line item.

Sale

Date
/total
time

Can be derived from
SalesLineItem and
ProductSpecification
information.

Recursive or Reflexive
Associations

A concept may have an association to itself;
this is known as a recursive or reflective
association.

Person

*2
parent

Creates

child

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

