
COMP 6471
Software Design Methodologies

Fall 2011

Dr Greg Butler
http://www.cs.concordia.ca/~gregb/home/comp6471-fall2011.html

Page 2

Context

Operation:
 enterItem(…)

Post­conditions:
­ . . .

Operation Contracts

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

Domain Model

Use­Case Model

Design Model
: Register

enterItem
(itemID, quantity)

: ProductCatalog

d = getProductDescription(itemID)

addLineItem(d, quantity)

: Sale

Require­
ments

Business
Modeling

Design

Sample UP Artifact Relationships

: System

enterItem
(id, quantity)

Use Case Text

System Sequence Diagrams

make
NewSale()

system
events

Cashier

Process
Sale

: Cashier

use
case

names

system
operations

Use Case Diagram

Supplementary
Specification

Glossary

starting events to
design for, and
detailed post­
condition to
satisfy

Process Sale

1. Customer
arrives ...
2. ...
3. Cashier
enters item
identifier.

inspiration for
names of
some
software
domain
objects

functional
requirements
that must be
realized by
the objects

ideas for
the post­
conditions

Register

...

makeNewSale()
enterItem(...)
...

ProductCatalog

...

getProductDescription(...)
...

1*

non­functional
requirements

domain rules

item details,
formats,
validation

Larman, Figure 17.1

This diagram from
Larman illustrates
how the design
model fits into the
other UP artifacts
we've looked at
so far.

C
om

p
64

71 GRASP*: Designing Objects
with Responsibilities

* General Responsibility Assignment Software Patterns

Page 4

Responsibilities and Methods

◆ The focus of object design is to identify classes and objects,
decide what methods belong where and how these objects
should interact.

◆ Responsibilities are related to the obligations of an object in
terms of its behaviour.

◆ Two types of responsibilities:
– doing:

◆ doing something itself (e.g. creating an object, performing a calculation)
◆ initiating action in other objects.
◆ controlling and coordinating activities in other objects.

– knowing:
◆ knowing about private encapsulated data.
◆ knowing about related objects.
◆ knowing about things it can derive or calculate.

Page 5

◆ Responsibilities are assigned to classes during
object design. For example, we may declare the
following:
– “a Sale is responsible for creating SalesLineItems” (doing)
– “a Sale is responsible for knowing its total” (knowing)

◆ Responsibilities related to “knowing” can often be
inferred from the Domain Model (because of the
attributes and associations it illustrates).

Responsibilities and Methods

Page 6

◆ The translation of responsibilities into classes and
methods is influenced by the granularity of
responsibility.
– For example, “provide access to relational databases” may

involve dozens of classes and hundreds of methods,
whereas “create a Sale” may involve only one or two
methods.

◆ A responsibility is not the same thing as a method,
but methods are implemented to fulfill responsibilities.

◆ Methods either act alone, or collaborate with other
methods and objects.

Responsibilities and Methods

Page 7

Responsibilities and Interaction
Diagrams

◆ Within the UML artifacts, a
common context where
these responsibilities
(implemented as methods)
are considered is during the
creation of interaction
diagrams.

◆ Sale objects have been
given the responsibility to
create Payments, handled
with the makePayment
method.

:Sale

:Payment

makePayment(…)

create(…)

Page 8

Patterns

◆ We will emphasize principles (expressed in patterns)
to guide choices in where to assign responsibilities.

◆ A pattern is a named description of a problem and a
solution that can be applied to new contexts; it
provides advice in how to apply it in varying
circumstances. For example,
– Pattern name: Information Expert

– Problem: What is the most basic principle by which
to assign responsibilities to objects?

– Solution: Assign a responsibility to the class that
has the information needed to fulfill it.

Page 9

Information Expert (or Expert)

◆ Problem: What is a general principle of assigning
responsibilities to objects?

◆ Solution: Assign a responsibility to the information
expert — the class that has the information
necessary to fulfill the responsibility.

◆ In the NextGen POS application, who should be
responsible for knowing the grand total of a sale?

◆ Information Expert suggests that we should look for
that class that has the information needed to
determine the total.

Page 10

◆ Do we look in the Domain Model or the
Design Model to analyze the classes that
have the information needed?

◆ A: Both. Assume there is no or minimal
Design Model. Look to the Domain Model for
information experts.

Information Expert (or Expert)

Page 11

◆ It is necessary to
know about all the
SalesLineItem
instances of a sale
and the sum of the
subtotals.

◆ A Sale instance
contains these, i.e.
it is an information
expert for this
responsibility.

Sale

date
time

1..*

*

Described-by

Contains

Product
Description

description
price
itemID

1

SalesLineItem

quantity

Information Expert (or Expert)

Page 12

◆ This is a partial
interaction diagram.

t := getTotal()

:Sale

Information Expert (or Expert)

Page 13

◆ What information is needed
to determine the line item
subtotal?

– quantity and price.

◆ SalesLineItem should
determine the subtotal.

◆ This means that Sale needs
to send getSubtotal()
messages to each of the
SalesLineItems and sum the
results.

:SalesLineItem

:Sale

1 *: st := getSubtotal()

t := getTotal()

Information Expert (or Expert)

Page 14

◆ To fulfil the
responsibility of
knowing and answering
its subtotal, a
SalesLineItem needs to
know the product price.

◆ The ProductDescription
is the information expert
on answering its price.

:SalesLineItem

:Sale

1 *: st := getSubtotal()

t := getTotal()

:ProductDescription

1.1: p := getPrice()

Information Expert (or Expert)

Page 15

◆ To fulfil the responsibility of
knowing and answering the
sale’s total, three
responsibilities were
assigned to three design
classes.

◆ The fulfillment of a
responsibility often requires
information that is spread
across different classes of
objects. This implies that
there are many “partial
experts” who will collaborate
in the task.

Class Responsibility

Sale Knows Sale total

SalesLineItem Knows line item total

ProductDescription Knows product price

Information Expert (or Expert)

Page 16

Creator

◆ Problem: Who should be responsible for creating a
new instance of some class?

◆ Solution: Assign class B the responsibility to create
an instance of class A if at least one of the following
is true:

– B aggregates A objects.
– B contains A objects.
– B records instances of A objects.
– B has the initializing data that will be passed to A when it

is created (thus B is an Expert with respect to creating A).

Page 17

◆ In the POS application,
who should be
responsible for creating
a SalesLineItem
instance?

◆ Since a Sale contains
many SalesLineItem
objects, the Creator
pattern suggests that
Sale is a good
candidate.

Sale

date
time

1..*

*

Described-by

Contains

Product
Description

description
price
itemID

1

SalesLineItem

quantity

Creator

Page 18

◆ This assignment of
responsibilities requires
that a makeLineItem
method be defined in
Sale.:Sale

:SalesLineItem

makeLineItem(quantity)

create(quantity)

Creator

Page 19

Recall

GRASP = General Responsibility Assignment Software Patterns

Principles:

◆ A responsibility is basically a contract or obligation:
A member of a given class must either do
something specific or know something specific.

◆ A responsibility is not the same as a method.
Simple responsibilities may map one-to-one, but a
complex responsibility may involve many methods.

Page 20

Recall

Information Expert:

◆ problem: What is the most basic principle by which to
assign responsibilities to objects?

◆ solution: Assign a responsibility to the class that has the
information needed to fulfill it.

Page 21

Recall

Creator:

◆ problem: Who should be responsible for creating a new
instance of some class?

◆ solution: Assign class B the responsibility to create an
instance of class A if at least one of the following is true:

– B aggregates A objects.
– B contains A objects.
– B records instances of A objects.
– B has the initializing data that will be passed to A when it is

created (thus B is an Expert with respect to creating A).

Page 22

Simple and Complex Patterns

◆ If the GRASP design patterns don't look like anything
new or surprising... Good! That's kind of the point. :-)

More generally, any design pattern will look familiar to
an experienced designer — that's what patterns are,
namely a description of a common solution to a
common problem.

◆ We'll see some much more interesting and complex
patterns (including some of the so-called "Gang of Four"
or "GoF" patterns) later on.

Page 23

Pattern or Principle?

◆ The GRASP patterns can also be considered as
general design principles.

◆ Is there a difference? The "Gang of Four" put it this
way:

One person's pattern is another

person's primitive building block.

Whether you personally prefer to see it as a pattern or
as a principle, the important thing is that you see it!

Page 24

: Sale

makePayment(cashTendered)

: Paymentcreate(cashTendered)

abstract, implies Sale objects have a
responsibility to create Payments

Assigning Responsibilities

Larman, Figure 17.2

A good time to think about
assigning responsibilities is
while creating interaction
diagrams.

Page 25

GRASP Patterns

◆ We've already seen two GRASP patterns:
– Information Expert (or just Expert)
– Creator

◆ There are seven more:
– Low Coupling
– High Cohesion
– Controller
– Polymorphism
– Pure Fabrication
– Indirection
– Protected Variations

Page 26

Low Coupling

◆ Coupling is a measure of how strongly one element is
connected to, has knowledge of, or relies upon other
elements.

◆ A class with high coupling depends on many other classes
(libraries, tools).

◆ design problems caused by high coupling:
– changes in related classes force local changes
– harder to understand in isolation; need to understand other classes
– harder to reuse because it requires additional presence of other

classes

Page 27

Low Coupling

◆ Problem: How to support low dependency, low change
impact and increased reuse?

◆ Solution: Assign a responsibility so that coupling remains low.

Page 28

◆ Assume we need to
create a Payment
instance and associate
it with the Sale.

◆ What class should be
responsible for this?

:Payment:Register :Sale

Low Coupling

Page 29

◆ Assume we need to
create a Payment
instance and associate
it with the Sale.

◆ What class should be
responsible for this?

◆ Creator suggests that
Register is a candidate.

:Payment:Register :Sale

Low Coupling

Page 30

◆ Register could send an
addPayment message
to Sale, passing along
the new Payment as a
parameter.

:Register

makePayment()

p:Payment

:Sale

1: create()

2:addPayment(p)

Sale also coupled to
knowledge of a Payment.

Low Coupling

Page 31

◆ Register could send an
addPayment message
to Sale, passing along
the new Payment as a
parameter.

◆ BUT: This assignment
of responsibilities
couples the Register
class to knowledge of
the Payment class.

:Register

makePayment()

p:Payment

:Sale

1: create()

2:addPayment(p)

Sale also coupled to
knowledge of a Payment.

Low Coupling

Page 32

◆ An alternative solution
is to have Sale create
the Payment.

◆ Either way, Sale and
Payment are coupled —
but that's okay, because
they have to be.

◆ ...but this design avoids
unnecessary coupling
between Register and
Payment.

:Register

makePayment()

:Sale

:Payment

1: makePayment()

1.1. create()

Low Coupling

Page 33

◆ Some of the places where coupling occurs:
– attributes: X has an attribute that refers to a Y instance.
– methods: e.g. a parameter or a local variable of type Y is found in

a method of X.
– inheritance: X is a subclass of Y.
– types: X implements interface Y.

In general, any reference to Y inside X represents coupling.

◆ There is no specific measurement for coupling, but in
general, classes that are generic and simple to reuse have
low coupling.

◆ There will always be some coupling among objects.
Otherwise, there would be no collaboration!

Low Coupling

Page 34

◆ Note that high coupling isn't always a bad thing. For
example, having references in your class to Java library
classes isn't a problem, because those classes are always
available (at least until you switch to C++ :-).

◆ Where high coupling becomes especially bad is when the
coupled class is unstable in some way, e.g. one which is
under active development and whose interface often
changes.

Low Coupling

Page 35

High Cohesion

◆ Cohesion is a measure of how strongly related and
focused the responsibilities of an element are.

◆ A class with low cohesion does many unrelated activities
or does too much work.

◆ A design with low cohesion is fragile, i.e. easily affected by
change.

– Low-cohesion designs are difficult to understand, reuse, and
maintain.

◆ Problem: How to keep complexity manageable?

◆ Solution: Assign a responsibility so that cohesion remains
high.

Page 36

◆ Assume we need to
create a Payment
instance and associate
it with Sale. What class
should be responsible
for this?

◆ Once again, Creator
suggests that Register
is a candidate.

High Cohesion

:Register

p:Payment

:Sale

create()

addPayment(p)

makePayment()

Page 37

◆ Assume we need to
create a Payment
instance and associate
it with Sale. What class
should be responsible
for this?

◆ Once again, Creator
suggests that Register
is a candidate.

◆ BUT: Register may
become bloated if it is
assigned more and
more system
operations.

:Register

p:Payment

:Sale

create()

addPayment(p)

makePayment()

High Cohesion

Page 38

◆ An alternative design
delegates the Payment
creation responsibility
to the Sale, which
supports higher
cohesion in the
Register.

◆ This design supports
high cohesion and low
coupling.

:Register :Sale

create()

makePayment()

:Payment

makePayment()

High Cohesion

Page 39

varying degrees of functional cohesion:

– very low cohesion: class responsible for many things in
many different areas.

e.g. a class responsible for interfacing with a data base and remote-
procedure-calls

 low cohesion: class responsible for a complex task in a
functional area.

e.g. a class responsible for interacting with a relational database

– high cohesion: class has moderate responsibility in one
functional area and collaborates with other classes to fulfill a
task.

e.g. a class responsible for one section of interfacing with a database.

High Cohesion

Page 40

Rule of thumb:

A class with high cohesion has a relative low
number of methods, with highly related
functionality, and doesn’t do much work itself.

Instead, it collaborates and delegates.

High Cohesion

Page 41

Modular Design

◆ The concept of modular design is much older than object-
oriented programming, but it's still a good idea. :-)

Modularity is the property of a system that has
been decomposed into a set of cohesive and
loosely coupled modules

- Grady Booch, 1994.

◆ Note that low (or loose) coupling and high
cohesion generally work together — each one
helps the cause of the other.

◆ Likewise, high (or tight) coupling and low cohesion
are often found together.

Page 42

Controller

◆ problem: Beyond the UI layer, what first object
should receive and coordinate a system operation?

◆ solution: Assign the responsibility to a class
representing one of the following choices:

– represents the overall system
– represents a use case scenario in which the system event

occurs

◆ some POS system event examples:
– endSale(), enterItem(), makeNewSale(), makePayment()

◆ For an example with actual code, see pp. 309-311 in
Larman.

Page 43

Which class of object should be responsible for receiving this
system event message?

It is sometimes called the controller or coordinator. It does not
normally do the work, but delegates it to other objects.

The controller is a kind of "facade" onto the domain layer from
the interface layer.

actionPerformed(actionEvent)

: ???

: Cashier

:SaleJFrame

presses button

enterItem(itemID, qty)

UI Layer

Domain
Layer

system operation message

Controller

Larman, Figure 17.21

Page 44

Controller

◆ A Controller is an object that is not part of the user
interface, and which defines the method for the system
operation.

◆ Note that classes such as "window", "view",
"document", etc. look like controllers, but typically they
don't handle system events — instead they're at a
higher level of abstraction: they receive events and
pass them to a controller.

◆ Controllers also (should) delegate almost all of their
work. The main reason for not allowing a UI object to
be a controller is to separate interface from
implementation.

Page 45

Controller
Which class should be the
controller for enterItem()?

Larman, Figure 17.22

:RegisterenterItem(id, quantity)

:ProcessSaleHandlerenterItem(id, quantity)

Page 46

:RegisterenterItem(id, quantity)

:ProcessSaleHandlerenterItem(id, quantity)

Controller
Which class should be the
controller for enterItem()?

Larman, Figure 17.22

Both possibilities are reasonable.
Which one is preferable depends
on other factors, e.g. coupling
and cohesion.

Page 47

Register

...

endSale()
enterItem()
makeNewSale()
makePayment()

makeNewReturn()
enterReturnItem()
. . .

System

endSale()
enterItem()
makeNewSale()
makePayment()

makeNewReturn()
enterReturnItem()
. . .

system operations
discovered during system
behavior analysis

allocation of system
operations during design,
using one facade controller

ProcessSale
Handler

...

endSale()
enterItem()
makeNewSale()
makePayment()

System

endSale()
enterItem()
makeNewSale()
makePayment()

enterReturnItem()
makeNewReturn()
. . .

allocation of system
operations during design,
using several use case
controllers

HandleReturns
Handler

...

enterReturnItem()
makeNewReturn()
. . .

Controller

Larman, Figure 17.23

two possible
designs

Page 48

Controller

◆ Facade (system) controllers are generally best when
there aren't too many event types.

◆ Use case controllers are invariably not domain objects,
but instead are purely software objects that have no
direct domain analogue (cf. the Pure Fabrication GRASP
pattern).

◆ Use case controllers are generally best when a Facade
controller would suffer from low cohesion or high
coupling.

◆ Typically the same controller would be used for all events
corresponding to different scenarios of the same use
case. This makes it possible to maintain state.

Page 49

Controller

◆ signs that a controller class is badly designed:
– There is only one controller class in the system, it receives all

event types, and there are many event types. This is a recipe for
very low cohesion.

– The controller itself performs most of the work needed to handle
events, rather than delegating. This usually violates the
Information Expert pattern (or principle :-), and also leads to low
cohesion.

– Many of the controller's attributes are duplicates of those in other
classes.

◆ possible fixes:
– Add more controllers if one is too big and too unfocused.
– Redesign the controller to delegate as much as possible.

Page 50

actionPerformed(actionEvent)

:Register

: Cashier

:SaleJFrame

presses button

1: enterItem(itemID, qty)

:Sale1.1: makeLineItem(itemID, qty)

UI Layer

Domain Layer

system operation message

controller

Controller

Larman, Figure 17.24

This example shows
how the UI layer
should communicate
with the domain layer.

Page 51

Cashier

:SaleJFrame

actionPerformed(actionEvent)

:Sale
1: makeLineItem(itemID, qty)

UI Layer

Domain Layer

It is undesirable for an interface
layer object such as a window to get
involved in deciding how to handle
domain processes.

Business logic is embedded in the
presentation layer, which is not useful.

SaleJFrame should not
send this message.

presses button

Controller

Don't do this!

What principles are
being violated here?

Larman, Figure 17.25

C
om

p
64

71

Use Case Realizations

Page 53

Use Case Realizations
◆ A use case realization describes the design for a given use

case, in terms of collaborating objects.

◆ UML interaction diagrams are used to illustrate use case
realizations.

◆ Each use case identifies a number of system events
(operations). These are shown in system sequence
diagrams.

◆ The system events become the starting messages that enter
the Controllers for the domain, as shown in a domain layer
interaction diagram. For example, for the POS system we
have System

makeNewSale()
enterItem(itemID, quantity)
endSale()
makePayment()

This is the starting point
of the design for this
use case!

Page 54

:RegisterenterItem

:RegisterendSale

:RegistermakePayment

1: ???

1: ???

1: ???

:RegistermakeNewSale 1: ???

makeNewSale, etc., are the system operations from the SSD

each major interaction diagram starts with a system operation
going into a domain layer controller object, such as Register

DOMAIN LAYERUI LAYER

Window objects
or

GUI widget objects
or

Web control objects

. . .

Use Case Realizations

Larman, Figure 18.2

Page 55

Use Case Realizations

Larman, Figure 18.3

: Register

: Sale

makeNewSale
create

: Register

enterItem(...)

: ProductCatalog

desc = getProductDesc(itemID)

. . .

UI LAYER

Window objects
or

GUI widget objects
or

Web control objects

. . .

DOMAIN LAYER

Page 56

Use Case Realizations

We can certainly start with the use cases themselves, but it's
probably easier to use contracts if they exist. For example,

Contract CO1: makeNewSale
Operation: makeNewSale ()
Cross References: Use Cases: Process Sale.
Pre-conditions: none.
Post-conditions:

– A Sale instance s was created.
(instance creation)

– s was associated with the Register
(association formed)

– Attributes of s were initialized

Along with the use case
text, the postcondition
state changes give us the
message interactions that
will be needed to satisfy
the requirements.

Page 57

Use Case Realizations

Contract CO2: enterItem
Operation: enterItem(itemID: ItemID, quantity: integer)
Cross References: Use Cases: Process Sale.
Pre-conditions: There is a sale underway..
Post-conditions:

– A SalesLineItem instance sli was created. (instance creation)
– [...]

Larman, Figure 18.4

1: makeLineItem(...)enterItem(id, qty)

1.1: create(...)

:Register :Sale

:SalesLineItem

Page 58

Object Design: makeNewSale

Recall the contract for makeNewSale. To design this
operation, step 1 is to choose a Controller. Some
possibilities:

Contract CO1: makeNewSale
Operation: makeNewSale ()
Cross References: Use Cases: Process Sale.
Pre-conditions: none.
Post-conditions:

– A Sale instance s was created.
(instance creation)

– s was associated with the Register
(association formed)

– Attributes of s were initialized

◆ Store
◆ Register
◆ POSSystem

◆ ProcessSaleHandler
◆ ProcessSaleSession

In this case, Register will do
well enough since there
aren't many system
operations.

Page 59

Object Design: makeNewSale

:Register

makeNewSale

:Salecreate

Our design starts out with
this application of the
Controller pattern:

Larman, Figure 18.5

Note that the
important thing
here is not so
much the specific
diagram, but how
we derived it.

Page 60

◆ Now that we have a Controller, the next step is to consider
creation of the Sale object.

◆ The Creator pattern suggests that Register is the obvious
candidate — which shouldn't be surprising, especially if you
stop to think what the word 'register' actually means. :-)

◆ When a Sale is created, it will need an empty collection in
which to store SalesLineItems. As Creator suggests, Sale
itself is the obvious place to create this.

Object Design: makeNewSale

Page 61

Object Design: makeNewSale

Larman, Figure 18.6

:Register

makeNewSale

:Salecreate

Register creates a
Sale by Creator

create lineItems :
List<SalesLineItem>

by Creator, Sale
creates an empty
collection (such as a
List) which will
eventually hold
SalesLineItem
instances

by Creator
and
Controller

this execution specification is implied to be
within the constructor of the Sale instance

Here's the full picture — but once again, the analysis is more
important than the result:

Page 62

Object Design: enterItem

Now let's look at the full set of postconditions for enterItem:

What are the design decisions to be made here?

Contract CO2: enterItem
Operation: enterItem(itemID: ItemID, quantity: integer)
Cross References: Use Cases: Process Sale.
Pre-conditions: There is a sale underway..
Post-conditions:

– A SalesLineItem instance sli was created. (instance creation)
– sli was associated with the current Sale (association formed)
– sli.quantity became quantity (attribute modification)
– sli was associated with a ProductDescription, based on

itemID match (association formed)

Page 63

Object Design: enterItem
Design questions:

◆ Which Controller class should we use?
– By the same logic as for makeNewSale, the Controller should be

Register.

◆ Should we display Item Description and Price?
– The use case says we should, but non-GUI objects such as Register

and Sale shouldn't normally be involved in output. We'll return to
this requirement later; for now, we'll just ensure that we have the
information we'd need in order to be able to display these values.

◆ How to create a new SalesLineItem?
– The postconditions require that a SalesLineItem be created. The

domain model states that a Sale contains SalesLineItems, which
suggests that a software Sale object could do likewise. The Creator
pattern tells us that it's reasonable for Sale to create the
SalesLineItem.

Page 64

Object Design: enterItem
Design questions, continued:

◆ How to find a ProductDescription?
– A SalesLineItem needs a ProductDescription to match the incoming

itemID. In other words, we must look up the itemID to find the
description. Who should be responsible for this lookup? This is a
job for Information Expert, which suggests that ProductCatalog is
the class which knows about product descriptions — so let's design
a ProductCatalog class which matches this domain concept, and
which contains a getProductDescription method.

◆ Who should instigate the ProductDescription lookup?
– Given that ProductCatalog will do the lookup, who should send it the

message asking it to do so? It's reasonable to assume that both a
Register and a ProductCatalog instance were created at startup
(this assumption should be recorded!), so we can safely have the
Register assume this responsibility. This implies the concept of
visibility, which we'll come back to shortly.

Page 65

Object Design: enterItem
Putting everything together, we get this picture:

2: makeLineItem(desc, qty)enterItem(id, qty)

1: desc = getProductDesc(id) 2.1: create(desc, qty)

1.1: desc = get(id)

:Register :Sale

:Product
Catalog

sl: SalesLineItem

lineItems :
List<SalesLineItem>: Map<ProductDescription>

2.2: add(sl)

by Expert

by Controller
by Creator

add the newly created
SalesLineItem instance to the List

Larman, Figure 18.7

Page 66

Object Design: endSale

◆ Contract CO3: endSale
◆ …
◆ Post-conditions:

– Sale.isComplete became true (attribute modification)

:Register
endSale()

s:Sale
1: becomeComplete()

By Expert.By Controller.

{
 public void becomeComplete() {
 isComplete = true;
 }
}

UML notation for a constraint

{s.isComplete = true}

C
om

p
64

71 Design Model: Determining
Visibility

Page 68

Introduction

◆ Visibility: the ability of an object to “see” or have
reference to another object.

◆ For a sender object to send a message to a receiver
object, the receiver must be visible to the sender –
the sender must have some kind of reference (or
pointer) to the receiver object.

Page 69

Visibility Between Objects

◆ The getSpecification
message sent from a
Register to a
ProductCatalog implies
that the ProductCatalog
instance is visible to the
Register instance.

:Register

:ProductCatalog

1: spec := getSpecification(itemID)

enterItem(itemID, quantity)

Page 70

Visibility

◆ How do we determine whether one resource (such as
an instance) is within the scope of another?

◆ Visibility can be achieved from object A to object B in
four common ways:
– Attribute visibility: B is an attribute of A.
– Parameter visibility: B is a parameter of a method of A.
– Local visibility: B is a (non-parameter) local object in a

method of A.
– Global visibility: B is in some way globally visible.

Page 71

◆ The ProductCatalog must
be visible to the Register.

◆ A typical visibility solution
is that a reference to the
ProductCatalog instance
is maintained as an
attribute of the Register.

:Register

:ProductCatalog

1: spec := getSpecification(itemID)

enterItem(itemID, quantity)

Visibility

Page 72

Attribute Visibility

◆ Attribute visibility from A to B exists when B is an
attribute of A.

◆ This is a relatively permanent visibility, because it
persists as long as A and B exist.

◆ In the enterItem collaboration diagram, Register
needs to send the getSpecification message to a
ProductCatalog. Thus, visibility from Register to
ProductCatalog is required.

Page 73

class Register {
…
private ProductCatalog catalog;
…

 public void enterItem (…) { … }
}

public void enterItem (itemID itemID,
 int quantity) {

…
spec = catalog.getSpecification(itemID);
…

}

:Register

:ProductCatalog

1: spec := getSpecification(itemID)

enterItem(itemID, quantity)

Attribute Visibility

Page 74

Parameter Visibility

◆ Parameter visibility from A to B exists when B is
passed as a parameter to a method of A.

◆ This is a relatively temporary visibility, because it
persists only within the scope of the method.

◆ When the makeLineItem message is sent to a Sale
instance, a ProductSpecification instance is passed
as a parameter.

Page 75

:Register

: ProductCatalog

1: spec := getSpecification(itemID)

enterItem(itemID,quantity)

:Sale

sli: SalesLineItem

2: makeLineItem(spec, quantity)

2.1: create(spec, quantity)

makeLineItem(ProductSpecification spec, int quantity) {
…
sli = new SalesLineItem(spec, quantity);
…

}

Parameter Visibility

Page 76

◆ When Sale creates a new
SalesLineItem, it passes a
ProductSpecification to its
constructor.

◆ We can assign
ProductSpecification to an
attribute in the constructor,
thus transforming parameter
visibility to attribute visibility.

// constructor
SalesLineItem(ProductSpecification spec,
 int quantity) {

…
// parameter to attribute visibility
productSpec = spec;
…

}

Parameter Visibility

Page 77

Local Visibility

◆ Locally declared visibility from A to B exists when B is
declared as a local object within a method of A.

◆ This is a relatively temporary visibility because it
persists only within the scope of the method. It can be
achieved as follows:

1. Create a new local instance and assign it to a local variable.
2. Assign the return object from a method invocation to a local

variable.

enterItem(itemID, quantity) {
…
ProductSpecification spec = catalog.getSpecification(itemID);
...

}

Page 78

Global Visibility

◆ Global visibility from A to B exists when B is global to A.

◆ This is a relatively permanent visibility because it persists
as long as A and B exist.

◆ One way to achieve this is to assign an instance to a
global variable (possible in C++ but not in Java).

C
om

p
64

71 Design Model: Creating
Design Class Diagrams

Page 80

When to create DCDs

◆ Once the interaction diagrams have been completed
it is possible to identify the specification for the
software classes and interfaces.

◆ A class diagram differs from a Domain Model by
showing software entities rather than real-world
concepts. In a sense, the Domain Model and DCD
are two different views of the same thing, but only in
a sense.

◆ The UML has notation to define design details in
static structure, or class diagrams.

Page 81

DCD and UP Terminology

◆ Typical information in a DCD includes:
– classes, associations and attributes
– interfaces (with operations and constants)
– methods
– attribute type information
– navigability
– dependencies

◆ The DCD depends upon the Domain Model and
interaction diagrams.

◆ The UP defines a Design Model which includes
interaction and class diagrams.

Page 82

Domain Model vs. Design Model
Classes

1currentSale

Sale

Date
isComplete : Boolean
timeenterItem(…)

…

Register

1

makeLineItem()

1Captures

Sale

Date
isComplete : Boolean
time

Register

1
Domain Model

Design Model

business concepts

software entities

Page 83

An Example DCD

1currentSale

Sale

Date
isComplete : Boolean
time

enterItem(…)
…

Register

1

makeLineItem()

Three section box Navigability

methods; parameters not specified Type information

Page 84

Creating a NextGen POS DCD

◆ Identify all the classes participating in the software solution. Do
this by analyzing the interaction diagrams. Draw them in a class
diagram.

◆ Duplicate the attributes from the associated concepts in the
Domain Model.

Register

Store

ProductCatalog

SalesLineItem

quantity

Sale

Payment

address
name

date
isComplete
time

amountquantity

ProductSpecification
description
price
itemID

Page 85

◆ Add method names by analyzing the interaction diagrams.
– The methods for each class can be identified by analyzing

the interaction diagrams.

Sale

date
isComplete
time

:Register :Sale
3: makeLineItem(spec, quantity)

makeLineItem()

If the message makeLineItem is
sent to an instance of class
Sale, then class Sale must
define a makeLineItem method.

Creating a NextGen POS DCD

Page 86

◆ Add type information to the attributes and methods.

Register

Store

ProductCatalog ProductSpecification

SalesLineItem

Quantity: Integer

Sale

Payment

Address: String
Name: String

date
isComplete: Boolean
time

amount… description
price
itemIDendSale()

enterItem()
makeNewSale()
makePayment()

getSpecification()

becomeComplete()
makeLineItem()
makePayment()
getTotal()

getSubtotal()

addSale()

Creating a NextGen POS DCD

Page 87

Method Names - Multiobjects

◆ The find message to
the multiobject
should be interpreted
as a message to the
container/ collection
object.

◆ The find method is
not part of the
ProductSpecification
class.

:ProductSpecification

1.1: spec := find(id)

1: spec := getSpecification(id)

:ProductCatalog

Page 88

Associations, Navigability, and
Dependency Relationships

◆ Add the associations necessary to support the required attribute
visibility.

– Each end of an association is called a role.

◆ Navigability is a property of the role, implying visibility of the
source to the target class.

– Attribute visibility is implied.
– Add navigability arrows to the associations to indicate the

direction of attribute visibility where applicable.
– Common situations suggesting a need to define an association

with navigability from A to B:
◆ A sends a message to B.
◆ A creates an instance of B.
◆ A needs to maintain a connection to B

◆ Add dependency relationship lines to indicate non-attribute
visibility.

Page 89

1currentSale

Sale

Date
isComplete : Boolean
time

endSale()
enterItem()
makePayment()

Register

1

makeLineItem()

The Register class will probably
have an attribute pointing to a
Sale object.

Navigability arrow indicates
Register objects are connected
uni-directionally to Sale objects.

Absence of navigability arrow
indicates no connection from
Sale to Register.

Creating a NextGen POS DCD

Page 90

Adding Navigability and Dependency
Relationships

1

currentSale

1

endSale()
enterItem()
makePayment()

Register

ProductSpecification

description : Text
price : Money
itemID: itemID

SaleLineItem

quantity : Integer

getSubtotal()

Payment

amount : Money

ProductCatalog

getSpecification()

Sale

becomeComplete()
makeLineItem()
makePayment()
getTotal()

Date : Date
isComplete : Boolean
time : Time

address : Address
name : Text

Store

addSale()

1

1

1

1

1

1

1

1 1 1

1

1

*

*

Uses

Houses

Looks-in

Contains

Contains

Describes

Logs-completed Paid-by

Illustrates non-attribute visibility

	Slide 1
	Fig. 17.1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Controller
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Fig. 17.2
	Slide 25
	Low Coupling
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	High Cohesion
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Fig. 17.22
	Slide 46
	Fig. 17.23
	Slide 48
	Slide 49
	Fig. 17.24
	Fig. 17.25
	Use Case Realizations
	Slide 53
	Fig. 18.2
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Object Design: endSale
	Design Model: Determining Visibility
	Introduction
	Visibility Between Objects
	Visibility
	Slide 71
	Attribute Visibility
	Slide 73
	Parameter Visibility
	Slide 75
	Slide 76
	Local Visibility
	Global Visibility
	Design Model: Creating Design Class Diagrams
	When to create DCDs
	DCD and UP Terminology
	Domain Model vs. Design Model Classes
	An Example DCD
	Creating a NextGen POS DCD
	Slide 85
	Slide 86
	Method Names -Multiobjects
	Associations, Navigability, and Dependency Relationships
	Slide 89
	Adding Navigability and Dependency Relationships

