
COMP 6471
Software Design Methodologies

Fall 2011

Dr Greg Butler
http://www.cs.concordia.ca/~gregb/home/comp6471-fall2011.html

Week 7 Outline
• Software Architecture

• Layered Architecture

• Model-View-Control

Course Objectives

• Software architecture

– Its role in the software process

– Its role in software design

• Software architecture

– Importance

– describing/modeling software architecture

– Common styles of software architecture

• Layers

– Especially in web applications

 P. Molli 4

Software Architecture
 A software architecture is a description of the subsystems

and components of a software system and the relationships
between them.

 Subsystems and components are typically specified in
different views to show the relevant functional and non-
functional properties of a software system.

 The software system is an artifact. It is the result of the
software design activity.

 P. Molli 5

Component

 A component is an encapsulated part of a software system.
A component has an interface.

 Components serve as the building blocks for the structure
of a system.

 At a programming-language level, components may be
represented as modules, classes, objects or a set of related
functions.

 P. Molli 6

Subsystems

 A subsystem is a set of collaborating components
performing a given task. A subsystem is considered a
separate entity within a software architecture.

 It performs its designated task by interacting with other
subsystems and components…

 P. Molli 7

Architectural Patterns

An architectural pattern express a fundamental structural
organization schema for software systems.

It provides a set of predefined subsystems, their
responsibilities, and includes rules and guidelines for
organizing the relationships between them.

 P. Molli 8

Design patterns

A design pattern provides a scheme for refining the
subsystems or components of a software system, or the
relationships between them.

It describes a commonly-recurring structure of
communicating components that solves a general
design problem within a particular context.

 P. Molli 9

Idioms

An Idiom is a low-level pattern specific to a programming
language.

An idiom describes how to implement particular aspects of
components or the relationships between them using the
features of the given language.

 P. Molli 10

Framework

A framework is a partially complete software (sub-)system that
is intended to be instantiated.

It defines the architecture for a family of (sub-)systems and
provides the basic building blocks to create them. It also
defines the places where adaptations for specific functionality
should be made.

Software Architecture

Formal definition IEEE 1471-2000

▫ Software architecture is the fundamental
organization of a system, embodied in its
components, their relationships to each other
and the environment, and the principles
governing its design and evolution

Software Architecture

Software architecture encompasses the set of
significant decisions about the
organization of a software system

▫ Selection of the structural elements and their
interfaces by which a system is composed

▫ Behavior as specified in collaborations
among those elements

▫ Composition of these structural and
behavioral elements into larger subsystems

▫ Architectural style that guides this
organization

Software Architecture

• Perry and Wolf, 1992
▫ A set of architectural (or design) elements that have a particular form

•
•Boehm et al., 1995

▫ A software system architecture comprises
� A collection of software and system components, connections, and constraints
 A collection of system stakeholders' need statements
 A rationale which demonstrates that the components, connections, and constraints define a

system that, if implemented, would satisfy the collection of system stakeholders' need
statements

Clements et al., 1997

▫ The software architecture of a program or computing system is the structure
or structures of the system, which comprise software components, the
externally visible properties of those components, and the relationships
among them

Need for Software Architectures
Scale
Process
Cost
Schedule
Skills and development teams
Materials and technologies
Stakeholders
Risks

Why is Software Architecture Important

Representations of software architecture are an enabler for
communication between all parties (stakeholders) interested in the
development of a computer-based system.

The architecture highlights early design decisions that will have a
profound impact on all software engineering work that follows and, as
important, on the ultimate success of the system as an operational
entity.

Architecture “constitutes a relatively small, intellectually graspable
model of how the system is structured and how its components work
together” -- L. Bass

UP: Software Architecture is Early

Architecture represents the set of
earliest design decisions

Hardest to change
Most critical to get right

Architecture is the first design artifact
where a system’s quality attributes are
addressed

UP: Software Architecture is Early

UP: Inception, Elaboration, Construction, Transition

UP Inception is feasibility phase
Develop architecture addressing all high risks

UP Elaboration
Full description of Architecture

 Working prototype of architecture

Software Architecture Drives

Architecture serves as the blueprint for the
system but also the project:

Team structure
Documentation organization
Work breakdown structure
Scheduling, planning, budgeting
Unit testing, integration

Architecture establishes the communication
and coordination mechanisms among
components

Software Architecture versus Design

Architecture: where non-functional decisions
are cast, and functional requirements are
partitioned

Design: where functional requirements are
accomplished

System Non-Functional Quality Attributes

End User’s view

Performance

Availability

Usability

Security

Developer’s view

Maintainability

Portability

Reusability

Testability

Business Community view

Time To Market

Cost and Benefits

Projected life time

Targeted Market

Integration with Legacy System

Roll back Schedule

Modularization
The principal problem of software systems is
complexity.

It is not hard to write small programs.

Decomposing the problem (modularization)
is an effective tool against complexity.

The designer should form a clear mental
model of how the application will work at a
high level, then develop a decomposition to
match the mental model.

Modularization
Cohesion within a module is the degree to
which communication takes place among
the module’s elements.

Coupling is the degree to which modules
depend directly on other modules.

Effective modularization is accomplished by
maximizing cohesion and minimizing
coupling.

Developing a Software Architecture

Develop a mental model of the application.
As if it were a small application, e.g., personal finance
application ...

“works by receiving money or paying out money, in
any order, controlled through a user interface”.

Decompose into the required components.
Look for high cohesion & low coupling, e.g., personal
finance application ...

decomposes into Assets, Sources, Suppliers, &
Interface.

Repeat this process for the components.

A Classification of Software Architectures

Common Software Architectures
Layered architecture

Eg, client-server, 3-tier

Model-View-Control architecture

Broker

Interpreter

Pipeline

Typical Software Architecture Layers

UI
(AKA Presentation, View)

Application
(AKA Workflow, Process,
Mediation, App Controller)

Domain
(AKA Business,

Application Logic, Model)

Technical Services
(AKA Technical Infrastructure,
High­level Technical Services)

Foundation
(AKA Core Services, Base Services,

Low­level Technical Services/Infrastructure)

width implies range of applicability

K GUI windows
B reports
B speech interface
B HTML, XML, XSLT, JSP, Javascript, ...

B handles presentation layer requests
B workflow
B session state
B window/page transitions
B consolidation/transformation of disparate

data for presentation

> handles application layer requests
> implementation of domain rules
> domain services (POS, Inventory)

­ services may be used by just one
application, but there is also the possibility
of multi­application services

9 (relatively) high­level technical services
and frameworks

9 Persistence, Security

9 low­level technical services, utilities,
and frameworks

9 data structures, threads, math,
file, DB, and network I/O

more
app

specific

de
pe

n
de

nc
y

Business Infrastructure
(AKA Low­level Business Services)

> very general low­level business services
used in many business domains

> CurrencyConverter

Typical Software Architecture Layers (Simplified)

Domain

UI

Swing
not the Java
Swing libraries, but
our GUI classes
based on Swing

Web

Sales Payments Taxes

Technical Services

Persistence Logging RulesEngine

 P. Molli 33

Layers: Structure

 P. Molli 34

Layers: Structure

 P. Molli 35

Layers and Components

 P. Molli 36

Layers: Variants

 relaxed layered system:
– a layer j can use services from j-1, j-2…

 layering through inheritance:
– lower layers are implemented as base classes
– higher level can override lower level

 P. Molli 37

Layers: Known Uses
• virtual machines: JVM and binary code format

• API: layer that encapsulates lower layers

• information systems
– presentation, application logic, domain layer, database

• operating systems (relaxed for: kernel and IO and hardware)
– system services,
– resource management (object manager, security monitor, process

manager, I/O manager, VM manager, LPC),
– kernel (exception handling, interrupt, multiprocessor

synchronization, threads),
– HAL (Hardware Abstraction Layer, e.g. in Linux)

Layered Architectures

Layered Architectures

 P. Molli 44

Applying Layers Architecture

Play View High Score

File or RDB

UI

Core

Persistence

MVC

MVC
model, view, and controller communicate regularly

for example:

model notifies the view of state changes

view registers controller to receive user interface events
(e.g., "onClick()"

controller updates the model when input is received

MVC Responsibilities
model responsibilities

store data in properties

implement application methods

methods to register/unregister views

notify views of state changes

implement application logic

view responsibilities

create interface

update interface when model changes

forward input to controller

controller responsibilities

• translate user input into changes in
the model

• if change is purely cosmetic, update
view

Digression: MVC

MVC dates back to Smalltalk, almost 30 years ago.

...in fact MVC actually exhibits a mix of three GoF
design patterns: Strategy, Observer and Composite.

Compound MVC
MVC components:

• Strategy

The view is configured with a given strategy, as
provided by the controller. Yes, this implies that the
same view could work with a different controller if you
want the system's behaviour to change.

• Observer

The model is the concrete observable object, and the
views are concrete observers.

• Composite

The view may include nested components as part of a
GUI. When the controller tells the view to update
itself, all the subcomponents will be taken care of as
well.

 P. Molli 51

Observer

Intent: Define a one-to-many dependency between objects so
that when one object changes state, all its dependents
are notified and updated automatically.

Translation:

Set up the moral equivalent of a newspaper or
magazine subscription service. :-)

 P. Molli 52

Observer

When an object's value is updated, observers watching it are
notified that the change has occurred.

 P. Molli 53

Observer: Applicability
 A change to one object requires changing an unknown set

of other objects.

 Object should be able to notify others that may not be
known from the beginning.

 Metaphor = newspaper or magazine subscription:
 A publisher goes into business and starts printing a periodical.

 You subscribe.

 Every time a new edition is printed, you receive a copy in the mail.

 You unsubscribe when you want to stop receiving new copies.

 New copies stop being delivered to you — but other people can
still subscribe and receive their own copies.

 P. Molli 54

Observer: Data Flow

Dog
object

Mouse
object

Cat
object

Food
object

Duck
object

Observer
objects

Subject

unrelated
object

These objects have
registered with the
subject. Whenever
the subject's value
changes, the new
value is sent to all of
three of them.

 P. Molli 55

Observer: Data Flow

Dog
object

Mouse
object

Cat
object

Food
object

Observer
objects

Subject

Duck
object

 P. Molli 56

Observer: Data Flow

Cat
object

Duck
object

Mouse
object

Food
object

Dog
object

Observer
objects

Subject

unrelated
object

 P. Molli 57

Observer: Data Flow

Cat
object

Duck
object

Food
object

Mouse
object

Observer
objects

Subject

unrelated
objects

Dog
object

 P. Molli 58

Observer: Formal Structure

 P. Molli 59

Observer: Pros and Cons
 promotes loose coupling between subject and observer

 the subject only knows that an observer implements an interface

 new observers can be added or removed at any time

 no need to modify the subject to add a new type of observer

 subject and objects can be reused independently of each other

 support for broadcast communication

 may become expensive if many observers, especially for
small changes to a large data area (i.e., broadcasting
redundant information)

 P. Molli 60

Observer in Java
• In Java, Observer will usually be an interface rather than an abstract base class

(no surprise, right? :-).

• In fact, the Java library already includes an Observer interface and an Observable
class (in the java.util package).

• ...but the Observable class has some drawbacks:

• it is a class, rather than an interface, and it doesn't even implement an
interface — so it can't be used by a class that already inherits from something
else (no multiple inheritance in Java)

• ...and some key methods in it are protected, so it can't be used unless you
can extend it; so much for favouring composition over inheritance :-/

For these reasons, even in Java it's often preferable to write your own Subject
interface and class(es).

 P. Molli 61

Composite Pattern

Intent: Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects
and compositions of objects uniformly.

Translation:
Allow a container to contain itself. :-)

 P. Molli 62

Composite Example
Consider a graphical drawing editor that allows you to build an
image out of components — and also allows you to use images
you've constructed as new components.

This supports the creation of recursive structures, e.g.

 P. Molli 63

Composite Question
◆ The obvious implementation is a standard tree structure, in

which each leaf node represents a primitive object (text, line,
circle, rectangle, etc.) and each subtree represents a container
(i.e., an image built from primitive objects in this particular
example).

◆ ...but the problem with this approach is that code which uses
these classes must treat primitive objects and containers
differently. This means that knowledge of the two node types

must be built in, and is thus subject to change.

◆ How can we encapsulate this knowledge?

 P. Molli 64

Composite Example
The key is that in the Composite pattern, both leaf
nodes and containers are implementations of the
same interface or abstract class:

 P. Molli 65

Composite Structure

In general, that becomes:

 P. Molli 66

Composite Consequences
Composite...

■ ...defines class hierarchies consisting of primitive objects and composite
objects in a way such that wherever client code expects a primitive
object, it can also take a composite object.

■ ...simplifies the client, by allowing it to treat composite structures and
individual objects uniformly. The client doesn't need to know which kind
of node it's dealing with.

■ ...makes it easier to add new kinds of components, without having to
change any existing client code.

■ ...can make your design too general, by making it difficult to restrict the
components of a composite object. There's nothing in the pattern to
prevent any kind of component being added to a container, so
applications which care must check at run-time.

 P. Molli 67

Composite Consequences

A coding issue with Composite:

■ Since every component in a Composite hierarchy must implement the
same interface, it can happen that some operations won't make sense in
a given context.

■ For example, suppose we use Composite to manage a restaurant menu.
The menu as a whole may have submenus for breakfast, lunch and
supper; the lunch and supper menus may have submenus of their own
(e.g. appetizers, soups, desserts, ...). Of course, each menu also has
actual food items. :-)

■ Suppose that the food items implement query methods such as
isVegetarian() or containsNuts(). This means that a typical tree traversal
may attempt to call these methods on the submenus as well. How can
this be handled cleanly?

 P. Molli 68

Composite Consequences

Possibilities include:

■ Implement stub methods that return zero, false or an empty string.

■ Throw an exception when a method is called in a context where it makes
no sense.

■ Have the client test which type of node it's dealing with before attempting
to call a potentially inappropriate method.

■ other (use your imagination :-)

 P. Molli 69

Composite Consequences
■ Notice that Composite loses some cohesion by forcing a single class to

include both its intended purpose (e.g. draw() in the case of the image
editor) and also tree management operations (i.e. add() and remove()).

■ This is an example of a design tradeoff. On the one hand, we lose
cohesion, but on the other, we gain transparency (i.e. the ability to use
the same code to traverse all nodes in the tree, without having to care
about the type of each node).

■ Which principle is more important? There's no one right answer; the best
choice will depend on your circumstances and priorities.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Observer
	Slide 52
	Observer: Applicability
	Observer: Structure
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Observer: Consequences
	Slide 60
	Composite Pattern
	Slide 62
	Composite Example
	Slide 64
	Composite Structure
	Slide 66
	Slide 67
	Slide 68
	Slide 69

