
COMP 6471
Software Design Methodologies

Fall 2011

Dr Greg Butler
http://www.cs.concordia.ca/~gregb/home/comp6471-fall2011.html

Week 8 Outline
• Software Design Patterns

•Present solutions
to common
software problems
arising within a
certain context

Overview of Patterns

•Capture recurring structures &
dynamics among software
participants to facilitate reuse of
successful designs

The Proxy Pattern

1 1
Proxy

service

Service

service

AbstractService

service

Client

•Help resolve
key software
design
forces

•Flexibility
•Extensibility
•Dependability
•Predictability
•Scalability
•Efficiency

•Generally codify expert
knowledge of design strategies,
constraints & “best practices”

 P. Molli 4

A Partial Bibliography

 « A System of Pattern » Bushmann et All
 « Design Patterns » Gamma et All
 « Concurrent Programming in Java » D. Lea.
 « Distributed Objects » Orfali et All
 « Applying UML and Patterns » Larman
 « Head First Design Patterns » Freeman and Freeman

 P. Molli 5

Patterns
 « Patterns help you build on the collective experience of

skilled software engineers. »

 « They capture existing, well-proven experience in software
development and help to promote good design practice »

 « Every pattern deals with a specific, recurring problem in
the design or implementation of a software system »

 « Patterns can be used to construct software architectures
with specific properties… »

 P. Molli 6

Becoming a Chess Master
 First learn the rules.

– e.g., names of pieces, legal movements, chess board
geometry and orientation, etc.

 Then learn the principles.
– e.g., relative value of pieces, strategic value of center

squares, pins, etc.

 However, to become a master of chess, one must
study the games of other masters.
– These games contain patterns that must be understood,

memorized, and applied repeatedly

 There are hundreds of these patterns.

 P. Molli 7

Becoming a Software Design Master
 First learn the rules.

– e.g., the algorithms, data structures and languages of
software

 Then learn the principles.
– e.g., structured programming, modular programming,

object oriented programming, generic programming, etc.

 However, to truly master software design, one must
study the designs of other masters.
– These designs contain patterns must be understood,

memorized, and applied repeatedly

 There are hundreds of these patterns.

Why Use Design Patterns?

• If you’re a software engineer, you should know about
them anyway.

• There are many architectural patterns published, and
the GoF design patterns are a prerequisite to
understanding them, e.g.
– Mowbray and Malveau – CORBA Design Patterns
– Schmidt et al – Pattern-Oriented Software Architecture

• Design patterns help you break out of first-generation
OO thought patterns.

The seven layers of architecture*

Global architecture
Enterprise architecture

System architecture

Application architecture

Macro-architecture

Micro-architecture

Objects

* Mowbray and Malveau

ORB

OO architecture

Frameworks

Subsystem

Design patterns

OO programming

How Patterns Arise

Problem

Context

Solution

Benefits

Related Patterns

Consequences

Forces

Structure of a Pattern

• Name
• Intent
• Motivation
• Applicability
• Structure
• Consequences
• Implementation
• Known Uses
• Related Patterns

Design Patterns

The design pattern concept can be viewed
as an abstraction of imitating useful
parts of other software products.

The design pattern is description of
communicating objects and classes
that are customized to solve a general
design problem in a particular context.

Classification of Design Patterns

Creational patterns defer some part of
object creation to a subclass or another
object.

Structural patterns composes classes
or objects.

Behavioral patterns describe
algorithms or cooperation of objects.

Creational Design Patterns

Factory Method define an interface for
creating an object, but let subclasses
decide which class to instantiate.

Factory provides an interface for creating
families of related objects without
specifying their concrete classes.

Structural Design Patterns
Composite composes objects into tree structures to

represent part-whole hierarchies. Composite lets
client treat individual objects and compositions of
objects uniformly.

Adapter converts the interface of a class into another
interface clients expect. Adapter lets classes work
together that couldn’t otherwise because of
incompatible interfaces.

Proxy provides a surrogate or representative for
another object to control access to it.

Behavioral Design Patterns

Observer defines a one-to-many dependency between objects
so that when one object changes state, all its dependents are
notified and updated automatically.

Strategy defines a family of algorithms, encapsulates each one,
and makes them interchangable. Strategy lets algorithm vary
independently from clients that use it.

Some Key Patterns

• The following patterns are a good
“basic” set of design patterns.

• Competence in recognizing and
applying these patterns will improve
your low-level design skills.

• (The slides are necessarily brief and do
not follow the structure just given
above!)

 P. Molli 18

Singleton

Intent: Ensure a class only has one instance, and provide a
global point of access to it.

 It's easy to create one instance of an object.

...but how do you ensure that only one instance can
be created?

 Sometimes it really does matter that an object is unique.
For example, a system may have many printers, but should
have only one print spooler. Multiple file managers would
only get in each others' way, etc.

 P. Molli 19

Singleton Structure

public class ClassicSingleton
{

 private static ClassicSingleton instance = null;

 protected ClassicSingleton()
 {

 // exists only to prevent direct instantiation
 }

 public static ClassicSingleton getInstance()
 {

 if (instance == null)
 {

 instance = new ClassicSingleton();
 }

 return instance;
 }

}

The Classic Singleton
Implementation

Warning: This
code is not
thread-safe!

 P. Molli 21

Command

Intent: Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log
requests, and support undoable operations.

Translation:
Implement a programmable remote control. :-)

 P. Molli 22

Command

Consider what happens when you order a meal in a restaurant:

1) You tell the server what you want to eat.
2) The server writes your instructions on an order pad.
3) The server delivers the order to the kitchen.
4) The chef reads the order and produces the appropriate meal.

What this amounts to is that the top sheet of paper on the order pad
(the "Order") encapsulates a request for a specific meal:

● The server doesn't need to know how to cook the meal.

● The chef doesn't need to know how the order was
 obtained.

 P. Molli 23

Command
Now let's describe the same transaction in more general terms:

 A client creates a Command object. This contains whatever commands the client
wishes to use, and specifies the Receiver object which will eventually run the
commands.

 The Command object includes a method called execute(). When run, this method
will run the client's chosen commands.

 The Command object is passed to an Invoker, which will store it (using a method
called setCommand()) until it's needed (and until the commands are ready to be run).

 Eventually the Invoker will call the Command's execute() method. This will cause the
Command's Receiver to run the commands originally specified by the client.

 Translations:
 client = restaurant customer
Command object = order
 Invoker = server
 setCommand() = server writing down an order
Receiver = chef
 execute() = chef preparing the meal based on the order

 Client Command

Receiver

 action1()
 action2()
 [...]

ConcreteCommand

Command

public void execute() {
 receiver.action1()
 receiver.action2()
 [...]
}

execute()
undo()

Invoker

 Command

setCommand()

execute()
undo()

 P. Molli 25

Command Sequence

1) The Client creates a new ConcreteCommand object, and
specifies its Receiver. (You tell the server what you want to eat.)

2) The Client calls the Invoker's setCommand() method to store the
ConcreteCommand. (The server writes your instructions on an
order pad.)

3) The Invoker (eventually) calls the ConcreteCommand's execute()
method. (The server delivers the order to the kitchen.)

4) The ConcreteCommand's execute() method calls methods in the
Receiver in order to fulfill the Client's request. (The chef reads
the order and produces the appropriate meal.)

 P. Molli 26

Command Sequence

 P. Molli 27

Command Consequences

■ Command decouples the object that invokes the
operation from the one that knows how to perform it.

■ Commands are first-class objects. They can be
manipulated and extended like any other object.

■ It's easy to add new Commands, because you don't
have to change existing classes.

 P. Molli 28

Applying the Command
Pattern

Account

int amount
int ida

withdraw(a : int)
deposit(a : int)

Customer

String name;
int idc

Client(String name, int idc)

ida : int
11..n 1

ida : int
1..n

Withdrawal
ida : int
amount : int

do() : void
undo:void()

Command

b : banque

do() : void
undo() : void
Command(Bank b)

Bank

getAccount(int ida) : Account
Execute(cmd : Command) : void

ida : int

1

0..n

1

ida : int

0..n

idc : int
1

0..n

1
idc : int

0..n

+receiver

Deposit

ida : int
amount : int

do() : void
undo: void()

Transfer

ida1 : int
ida2 : int
amount : int

do() : void
undo:void()
opname()
Transfer(ida1 : int, ida2 : int, int a, Bank b)

 P. Molli 29

Applying the Command Pattern

Account

int amount
int ida

withdraw(a : int)
deposit(a : int)

Customer

String name;
int idc

Client(String name, int idc)

ida : int
11..n 1

ida : int
1..n

Withdrawal
ida : int
amount : int

do() : void
undo:void()

Command

b : banque

do() : void
undo() : void
Command(Bank b)

Bank

getAccount(int ida) : Account
Execute(cmd : Command) : void

ida : int

1

0..n

1

ida : int

0..n

idc : int
1

0..n

1
idc : int

0..n

+receiver

Deposit

ida : int
amount : int

do() : void
undo: void()

Transfer

ida1 : int
ida2 : int
amount : int

do() : void
undo:void()
opname()
Transfer(ida1 : int, ida2 : int, int a, Bank b)

A typical transfer operation would look like this:
(0) a Customer creates a new Transfer object,

e.g. Transfer T = new
Transfer(account1,account2,amount,bank);

(1) Customer calls bank.Execute(T);
(2) bank.Execute() calls T.do();
(3) T.do() calls bank.getAccount(account1),

Bank.getAccount(account2), Account1.withdraw(amount),
Account2.deposit(amount)

 P. Molli 30

Applying the Command
Pattern

concrete Commands

Receiver

NOTE: Client is also Invoker! Account and
Bank combined are the Receiver

Client

Account

int amount
int ida

withdraw(a : int)
deposit(a : int)

Customer

String name;
int idc

Client(String name, int idc)

ida : int
11..n 1

ida : int
1..n

Withdrawal
ida : int
amount : int

do() : void
undo:void()

Command

b : banque

do() : void
undo() : void
Command(Bank b)

Bank

getAccount(int ida) : Account
Execute(cmd : Command) : void

ida : int

1

0..n

1

ida : int

0..n

idc : int
1

0..n

1
idc : int

0..n

+receiver

Deposit

ida : int
amount : int

do() : void
undo: void()

Transfer

ida1 : int
ida2 : int
amount : int

do() : void
undo:void()
opname()
Transfer(ida1 : int, ida2 : int, int a, Bank b)

 P. Molli 31

Factory
Intent: Define an interface for creating an object, but let

subclasses decide which class to instantiate.
Factory lets a class defer instantiation to
subclasses.

Translation:

Instantiate new objects, without using new directly
— wait until run-time to decide what kind of object to
instantiate.

– Also known as "Factory Method" or "Virtual Constructor".

 P. Molli 32

Applicability: use when

– a class cannot anticipate the class of objects it must
create

– a class wants its subclasses to specify the objects it
creates

– classes delegate responsibility to one of several helper
subclasses, and you want to localize the knowledge of
which helper subclass to delegate

Factory

◆ A good analogy for this is a pasta maker. A pasta maker will produce
different types of pasta, depending what kind of disk is loaded into the
machine.

◆ All disks should have certain properties in common, so that they will
work with the pasta maker. This specification for the disks is the
Abstract Factory, and each specific disk is a Factory.

◆ You will never see an Abstract Factory, because one can never exist,
but all Factories (pasta maker disks) inherit their properties from the
Abstract Factory.

◆ In this way, all disks will work in the pasta maker, since they all comply
with the same specifications. The pasta maker doesn't care what the
disk is doing, nor should it. You turn the handle on the pasta maker, and
the disk makes a specific shape of pasta come out.

◆ Each individual disk contains the information of how to create the pasta,
and the pasta maker does not.

Factory

Going from pasta to pizza :-), consider the following code:

Pizza orderPizza() {
 Pizza pizza = new Pizza();
 pizza.prepare();
 pizza.bake();
 pizza.cut();
 pizza.box();
 return pizza;
}

This works just fine — as long as we always want the same kind of
pizza. :-)

How would we handle different toppings?

Factory

Different toppings, take 1:

Pizza orderPizza(String type) {
 Pizza pizza;
 if (type.equals("cheese")) {
 pizza = new CheesePizza();
 } else if (type.equals("pepperoni")) {
 pizza = new PepperoniPizza();
 } [...other types go here...]
 pizza.prepare(); // each type knows how
 pizza.bake(); // to prepare itself :­)
 pizza.cut();
 pizza.box();
 return pizza;
}

This assumes that each type of pizza must implement the Pizza
interface. It works, but...

Factory

 if (type.equals("cheese")) {
 pizza = new CheesePizza();
 } else if (type.equals("pepperoni")) {
 pizza = new PepperoniPizza();
 } else if (type.equals("veggie")) {
 pizza = new VeggiePizza();
 } else if (type.equals("mexican")) {
 pizza = new MexicanPizza();
 } [...]

You can see what happens here if we want to add new types of pizzas,
or to eliminate existing types.

This code does work, but it really isn't a good design. How can we
improve it?

Factory

Step 1 is to take the creation code out of the order method altogether:

Pizza orderPizza(String type) {
 Pizza pizza;
 pizza = factory.createPizza(type);
 pizza.prepare();
 pizza.bake();
 pizza.cut();
 pizza.box();
 return pizza;
}

Now all we need to do is figure out how to implement
factory.createPizza() :-)

Factory

Now let's put that in context:

public class PizzaStore {
 SimplePizzaFactory factory;

 public PizzaStore(SimplePizzaFactory factory) {
 this.factory = factory;
 }

Pizza orderPizza(String type) {
 Pizza pizza = factory.createPizza(type);
 pizza.prepare();
 pizza.bake();
 pizza.cut();
 pizza.box();
 return pizza;
}
// other methods go here

}

Factory

This is a SimpleFactory, which is more of an idiom than a full pattern.

Factory

PizzaStore

orderPizza()

SimplePizzaFactory

createPizza()

 Pizza

prepare()
bake()
cut()
box()

CheesePizza

MexicanPizza

PepperoniPizza
VeggiePizza

Now let's expand:

NYPizzaFactory nyFactory = new NYPizzaFactory();
PizzaStore nyStore = new PizzaStore(nyFactory);
nyStore.order("veggie");

ChicagoPizzaFactory chicagoFactory =
 new ChicagoPizzaFactory();
PizzaStore chicagoStore =

new PizzaStore(chicagoFactory);
chicagoStore.order("veggie");

...and likewise for CaliforniaPizzaFactory, etc.

How do we ensure that all the different stores are consistent?

Factory

PizzaStore revisited:

public abstract class PizzaStore {
 public Pizza orderPizza(String type) {

 Pizza pizza;
 pizza = createPizza(type); // it's back :­)
 pizza.prepare();
 pizza.bake();
 pizza.cut();
 pizza.box();
 return pizza;
}
protected abstract Pizza createPizza(String type)
// other methods go here

}

In this formulation, the PizzaStore must be subclassed — and each subclass
must define its own createPizza() method.

Factory

Consider the NY-style createPizza() method:

public Pizza createPizza(String type) {
 if (type.equals("cheese")) {
 return new NYStyleCheesePizza();
 } else if (type.equals("pepperoni")) {
 return new NYStylePepperoniPizza();
 } [...other types go here...]
}

...and likewise for Chicago-style:

public Pizza createPizza(String type) {
 if (type.equals("cheese")) {
 return new ChicagoStyleCheesePizza();
 } else if (type.equals("pepperoni")) {
 return new ChicagoStylePepperoniPizza();
 } [...other types go here...]
}

Factory

The NYPizzaStore class contains only the createPizza method (which it must
define, since it's abstract; the orderPizza() method is inherited from the base
class PizzaStore):

public class NYPizzaStore extends PizzaStore
{

public Pizza createPizza(String type)
{
 if (type.equals("cheese")) {
 return NYStyleCheesePizza();
 } else if (type.equals("pepperoni")) {
 return NYStylePepperoniPizza();
 } [...other types go here...]
 else {
 return null;
 }
}

}

...and likewise for the ChicagoPizzaStore class.

Factory

◆ No variable should hold a reference to a concrete class.
– If you use new, you'll be holding a reference to a concrete class; to avoid

that, use a factory.

◆ No class should derive from a concrete class.
– If you derive from a concrete class, you're depending on a concrete class.

Derive from an interface or abstract class instead.

◆ No method should override an implemented method of any of its
base classes.

– If you override an implemented method, your base class wasn't really an
abstraction.

Note that it's impossible to follow ALL of these suggestions ALL
of the time! ...but like any rule, the most important thing about
understanding them is knowing WHY and WHEN to break them.

Design Guidelines

Intent: Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.

Translation:

Instantiate groups of related objects, without using new
directly — wait until run-time to decide what kinds of
objects to instantiate

Compare vs. Factory Method:

Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory lets
a class defer instantiation to subclasses.

Abstract Factory

 AbstractCreator

create()

Product

ConcreteCreator1

 create()

ConcreteCreator2

create()

ConcreteProduct2A

create()

ConcreteCreator3 ...

Factory, Revisited

ConcreteProduct1A

ConcreteProduct1B ConcreteProduct2B

... ...

...

...
...

 AbstractFactory

createProductA()
createProductB()

Product

ConcreteFactory1

 createProductA()
 createProductB()

ConcreteFactory2

ConcreteProduct2A

...

Abstract Factory

ConcreteProduct1A

ConcreteProduct1B

ConcreteProduct2B

...

...

 createProductA()
 createProductB()

AbstractProductA

AbstractProductB

• As the diagrams show, the principal difference between
Factory (Method) and Abstract Factory is that Abstract
Factory has a separate abstraction for each family of
related products.

• Factory (Method) doesn't need the extra layer of
abstraction because it typically creates only one (product)
object at a time (e.g. one pizza per order).

• Factory (Method) uses inheritance to create objects,
whereas Abstract Factory uses composition.

• Typically, an Abstract Factory actually uses Factory
(Method) internally!

Abstract Factory

• To see Abstract Factory in action, let's return to our favourite
pizza stores:

– Suppose we want to ensure that all the ingredients
used in every store are consistent (fresh, high quality,
etc.).

– But suppose we also want to allow for regional
differences (e.g. New York uses Marinara sauce but
Chicago uses red plum tomato sauce; New York uses
mushrooms on vegetarian pizza, but Chicago uses
spinach instead, etc.).

– In this situation, each combination of pizza type and
style uses the same categories of ingredients, but not
the same ingredients.

Abstract Factory

Let's start by (surprise! :-) creating an interface:

public interface PizzaIngredientFactory

{

public Dough createDough();

public Sauce createSauce();

public Cheese createCheese();

public Veggies[] createVeggies();

public Pepperoni createPepperoni();

public Clams createClam();

}

Now we can implement this interface for each region.

Abstract Factory

Now let's implement the New York style factory:

public class NYPizzaIngredientFactory implements

PizzaIngredientFactory {

public Dough createDough() {

 return new ThinCrustDough(); // thick crust for Chicago

}

public Sauce createSauce() {

 return new MarinaraSauce(); // red plum sauce for Chicago

}

public Veggies[] createVeggies() {

 Veggies v = { new Garlic(), new Onion(),

 new Mushroom(), new RedPepper() };

 return v; // other regions use different vegetables

}

// ...and similarly for createCheese(), createPepperoni()

// and createClam()

}

The Chicago and California style factories will be similar, though the details will
differ.

Abstract Factory

The next step is to modify the Pizza class:

public abstract class Pizza {

String name; Dough dough; Sauce sauce;

Veggies veggies[]; Cheese cheese;

Pepperoni pepperoni; Clams clam;

abstract void prepare();

void bake() { ... };

void cut() { ... };

void box() { ... };

void setName(String name) { this.name = name; }

String getName() { return name; }

}

The important changes are the addition of the ingredients as data members, plus
the fact that prepare is now abstract — it will be implemented by each concrete
pizza store.

Abstract Factory

Next, let's look at a concrete pizza store:

public class NYPizzaStore extends PizzaStore{

protected Pizza createPizza(String item) {

Pizza pizza = null;

PizzaIngredientFactory ingredientFactory =

 new NYPizzaIngredientFactory();

if (item.equals("cheese")) {

 pizza = new CheesePizza(ingredientFactory);

 pizza.setName("New York style cheese pizza");

} else if (item.equals("veggie")) {

 pizza = new VeggiePizza(ingredientFactory);

 pizza.setName("New York style veggie pizza");

}

// [...similar code for other pizza types]

return pizza;

}

}

Abstract Factory

Tracing an order through to completion: a New York style cheese pizza is born:

 First we need an appropriate pizza store:

PizzaStore nyPizzaStore = new NYPizzaStore();

 Next, we can take an order:

nyPizzaStore.orderPizza("cheese");

 A pizza must be created (in orderPizza()):

Pizza pizza = createPizza("cheese");

 The new pizza needs ingredients (in createPizza()):

Pizza pizza = new CheesePizza(nyIngredientFactory);

 The pizza must be prepared:

void prepare() {

 dough = factory.createDough(); // thin crust

 sauce = factory.createSauce(); // Marinara

 cheese = factory.createCheese(); // Reggiano

}

 Finally we're ready for the pizza to be baked, cut and boxed.

Abstract Factory

 AbstractFactory

createProductA()
createProductB()

Product

ConcreteFactory1

 createProductA()
 createProductB()

ConcreteFactory2

ConcreteProduct2A

...

Abstract Factory

ConcreteProduct1A

ConcreteProduct1B

ConcreteProduct2B

...

...

 createProductA()
 createProductB()

AbstractProductA

AbstractProductB

 P. Molli 56

Proxy Pattern

Intent: Provide a surrogate or placeholder for another object to
control access to it.

Translation:
Pay no attention to that man behind the curtain. :-)

Translation of the translation:
Communicate between some other object and the user,
while pretending to be the other object.

 P. Molli 57

Proxy Pattern

Recall the dictionary definition of the word 'proxy':

1. A person authorized to act for another; an agent or substitute.

2. The authority to act for another.

3. The written authorization to act in place of another.

(source: The American Heritage Dictionary, as found by

 a Google search on the word 'proxy' :-)

 P. Molli 58

Proxies come in several flavours:

◆ A remote proxy is a local stand-in for a non-local object.

The typical web proxy is a good example, although technically
"remote" could just mean "in another address space on the same
machine". Some people call this kind of proxy an ambassador.

◆ A virtual proxy creates an expensive object on demand.

The classic example is a document processor, in which images are
loaded only when actually required.

◆ A protection proxy enforces (security) access rights to another object.

For example, a good secretary or receptionist. :-)

◆ A smart reference is replacement for an ordinary pointer, that
supplements the pointer's capabilities.

Possibilities include reference counting, managing persistent
objects, (synchronization) locking, etc.

Proxy Pattern

 P. Molli 59

(Virtual) Proxy Example

 P. Molli 60

Proxy Structure

 P. Molli 61

◆ From an operating system's point of view, copying a page of
memory is expensive, and not always necessary.

◆ Most modern operating systems implement some form of
"copy-on-write" when a new process is created: each page
inherited from the creator of the new process are actually
shared with the creator until either process writes to the page;
at that time, the page is copied before the write is allowed to
proceed.

Another Virtual Proxy

 P. Molli 62

Proxy Consequences

■ A remote proxy can hide the fact that an object resides in a
different address space.

■ A virtual proxy can perform optimizations such as creating an
object on demand.

■ Both protection proxies and smart references allow additional
housekeeping tasks when an object is accessed.

 P. Molli 63

Proxy Notes

■ There are many variants on the general Proxy pattern, but they all
have one thing in common: a client invokes a method on some
subject, but the method call is intercepted and actually handled by
the proxy, usually working together with the real subject.

■ Proxy works well with Factory Method: when a client tries to
instantiate a subject, the Factory can instantiate the proxy at the
same time, and return the proxy instead.

■ Factory is similar to the Adapter pattern (coming up next :-), but
Adapter changes the interface of another object while Proxy
deliberately implements the same interface.

 P. Molli 64

Adapter Pattern

Intent: Converts the interface of a class into another interface
clients expect. Adapter lets classes work together that
couldn't otherwise because of incompatible interfaces.

Translation:
Make a square peg actually fit into a round hole. :-)

 P. Molli 65

◆ Suppose that you're travelling in Europe with your North American
laptop computer. Your battery is getting low, so you pull out your AC
adapter to charge it.

◆ ...but of course you can't plug it in, because Europe has a different
standard for AC current, meaning your plug won't fit.

◆ ...so you end up having to use an adapter for your adapter. :-)

◆ Note that an adapter between North American and European AC
standards doesn't just change the shape of the plug; it also changes
the voltage and frequency (110-120 volts at 60 Hz vs. 220-240 volts
at 50 Hz).

◆ ...which is relevant, because software Adapters also cause
behavioural change :-)

Adapter in the Real World

 P. Molli 66

◆Back to the old drawing editor. :-) Specifically,
suppose you're implementing a drawing editor. Basic
shapes such as lines and polygons are easy, but text
can be difficult to write.

◆ ...but suppose that you have (legal :-) access to
somebody else's TextView class.

◆ ...but TextView wasn't designed with your application
in mind, and won't fit into your collection of Shape
classes because of an incompatible interface.

◆As you may surmise, it's Adapter to the rescue. :-)

Adapter Example

 P. Molli 67

◆There are two general approaches in this kind of situation:

(0) define a TextShape that inherits the interface from
Shape and the implementation from TextView

(1) define a TextShape that contains a TextView
instance, and implementing TextShape in terms of
the services provided by TextView

◆Option (1) is the class version of the Adapter pattern, and
option (2) is the object version of Adapter.

Adapter Example

 P. Molli 68

(Class) Adapter Example

Notice how TextShape inherits from both Shape and TextView
(in C++).

In Java, TextShape would have to implement Shape and extend
TextView; this is sort of a bit of both styles :-).

 P. Molli 69

(Class) Adapter Structure

 P. Molli 70

(Object) Adapter Structure

 P. Molli 71

A class adapter...

◆adapts Adaptee to target by committing to a
concrete Adaptee class. As a consequence, a
class adapter won't work when we want to adapt a
class and all its subclasses.

◆ lets Adapter override some of Adaptee's
behaviour, since Adapter is a subclass of Adaptee.
 (Note: this often makes a class adapter easier to
write, since less code is required.)

◆ introduces only one object, and no additional

pointer indirection is needed to get to the adaptee.

(Class) Adapter Consequences

 P. Molli 72

An object adapter...

◆ lets a single Adapter work with many Adaptees —
that is, the Adaptee itself and all of its subclasses.
The Adapter can also add functionality to all
Adaptees at once.

◆makes it harder to override Adaptee behaviour. It
will require subclassing Adaptee and making
Adapter refer to the subclass rather than the
Adaptee itself.

(Object) Adapter Consequences

 P. Molli 73

Visitor Pattern

Intent: Represent an operation to be performed on the elements of
an object structure. Visitor lets you define a new operation
without changing the classes of the elements on which it
operates.

Translation:
Traverse a tree or other data structure and do stuff with each
node in turn. :-)

 P. Molli 74

◆Recall the menu/submenu tree we discussed while
looking at Composite.

◆Suppose that restaurant customers have questions about
the ingredients and nutrition value of the various menu
items. To answer them, we could add methods such as
getHealthRating(), getCalories(), getProtein(), etc. — but
this would complicate the interface enormously, making it
much more fragile with respect to future change.

◆ Instead, suppose we add a single getState() method. A
client could then traverse the structure, calling getState()
on each item and interpreting the result.

◆Yes, this does imply that Visitor is most useful in
conjunction with Composite. :-)

Visitor Example

 P. Molli 75

◆Visitor clearly has two big drawbacks right up front:

◆ It breaks encapsulation of the classes in the structure
being visited.

◆ It makes changes to the structure more difficult, since
the shape of the structure is now known and used from
outside.

◆Despite these problems, there are also some advantages:

◆ Operations can be added to the structure without having to modify the
structure itself.

◆ All the operations are now centralized in one place.

◆ Adding new operations is easier than it would be otherwise.

To Visit, or Not to Visit?

 P. Molli 76

Another Visitor Example

Consider the parse tree of a
hypothethical compiler. There will
probably be different types of
nodes corresponding to different

types of source language entities.

For example, perhaps there will
be a node type for assignment
statements, one for variable
references, one arithmetic
expressions, etc., as in this
picture:

 P. Molli 77

Another Visitor Example

As with the menu example, the
problem here is the proliferation
of methods in each node. What

happens if these need to be
modified, or new ones added?

 P. Molli 78

Another Visitor Example
The Visitor pattern suggests

creating a separate interface
for the node operations:

The original nodes

would now look like this:

To use this structure, we traverse the nodes and invoke the Accept() method in
each one. The traversal is usually done either by the object structure itself or
by an iterator.

 P. Molli 79

Visitor Structure

 P. Molli 80

Visitor Applicability
Use Visitor when...

 an object structure contains many classes with different interfaces,
and you want to perform operations on these objects that depend
on their concrete classes.

 many distinct and unrelated operations need to be performed on
objects in an object structure and one wants to avoid "polluting"
their classes with these operations.

 the classes defining the object structure rarely change, but
you often want to define new operations over the structure.
Changing the object structure classes requires redefining the
interface to all visitors, which is potentially costly.

 P. Molli 81

Visitor Consequences
■ Visitor pattern makes adding new operations easy.

■ A visitor gathers related operations and separates unrelated
ones.

■ Adding new Concrete Element classes is hard.

■ Visiting can occur across class hierarchies (compared to
iterators which can only operate within a single class and its
descendants at a time).

■ Visitors can accumulate state information as they traverse
the object structure.

■ Visitor breaks the object structure's encapsulation.

 P. Molli 82

Decorator

Intent: Attach additional responsibilities to an object
dynamically. Decorators provide a flexible alternative
to subclassing for extending functionality.

Translation:

Add additional capabilities to an object, without
changing the class it belongs to.

 P. Molli 83

Decorator
"Starbuzz Coffee" represents their products using the
following classes:

Now they want to
model the condiments
(milk, soy, mocha,
etc.) that they offer.

How would you do
that?

 P. Molli 84

Decorator
Here's their
first attempt:

 P. Molli 85

Decorator
Here we have boolean instance variables with access
methods to record the presence of each condiment:

This looks better. Is it good enough?

 P. Molli 86

Decorator
Using inheritance this way certainly reduces the number of
classes.But...

◆ What happens when the price of a condiment changes?

◆ How do we add a new condiment?

◆ How do we add a new beverage?

◆ What if a given condiment isn't appropriate for a new
beverage? It would still be inherited.

◆ What if a customer wants a double mocha?

Oops. Looks like it's time to introduce the Decorator pattern. :-)

 P. Molli 87

Decorator Structure
A Decorator implements
the same interface as the
component it decorates,
and holds a reference to it.

 Component

methodA()
methodB()
// other stuff

ConcreteComponent

methodA()
methodB()
// other stuff

 Decorator

methodA()
methodB()
// other stuff

 ConcreteDecoratorA
Component wrappedObj
methodA()
methodB()
newBehaviour()
// other stuff

 ConcreteDecoratorB
Component wrappedObj
Object newState

methodA()
methodB()
newBehaviour()
// other stuff

This resembles the Proxy
pattern ― but Proxy
pretends to be the
wrapped object, while
Decorator supplements
the wrapped object.

 P. Molli 88

Decorator Notes
◆ Decorators share the same supertype as the objects they

decorate.

◆ You can use one or more decorators to wrap an object.

◆ Because the decorator shares the supertype (i.e. implements the
same interface), you can pass a decorator anywhere the wrapped
object is expected.

◆ The decorator adds its own behaviour before and/or after invoking
the same method in the wrapped object.

◆ Objects can be decorated at run-time, so the choice of decorators
for a given object can change during execution of the program.

 P. Molli 89

Decorator in
Action

 P. Molli 90

Decorator in Action

 P. Molli 91

Decorated DrinksHere are the
Starbuzz beverage
classes reworked
using Decorator:

 P. Molli 92

Decorator Consequences
More flexible than static inheritance. Responsibilities can be added or
removed at run-time, and the same property can even be added more
than once (e.g. double mocha, or a double window border).

Avoids feature-laden classes high up in the hierarchy. This helps to
avoid circle-ellipse problems; more specifically, it allows the design of
simple classes that can be extended flexibly without having to modify
the base of a family of classes.

A decorator and its component aren't identical. As we've seen, be
careful about type-based assumptions and tests when using
Decorator.

Lots of little objects. As with the Java IO classes, Decorator often
results in many small classes that look alike; although they differ in
how they're connected, they all have the same instance variables and
methods. This can be confusing to learn and hard to debug.

 P. Molli 93

Facade

Intent: Provide a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface
that makes the subsystem easier to use.

Translation:

Provide the moral equivalent of a batch file or shell
script. :-)

 P. Molli 94

Facade Motivation
◆ Steps involved in compiling a program include preprocessing, syntax

analysis, code generation, linking and loading. ...but typical command-line
invocation is done in (only) one step: g++ ­o foo foo.cpp

◆ Consider the steps involved in getting ready to watch a movie on your
home theater system:

(1) Turn on the popcorn popper.

(2) Start the popper popping.

(3) Dim the lights.

(4) Turn on the TV.

(5) Turn on the control unit.

(6) Set the input to DVD.

(7) Set the audio mode to surround sound.

(8) Set the desired volume level.

(9) Turn on the DVD player.

(10) Start the DVD player.

(11) Collect the popcorn.

(12) Sit down and enjoy the show.

Wouldn't it be nice to be able to do all that with one press of a remote
control button? :-)

 P. Molli 95

Facade Structure
The (simple) Facade interface sits
between the clients and the classes
which do the real work.

 P. Molli 96

Facade Consequences

Facade offers the following benefits:

◆ It shields clients from subsystem components, therey reducing
the number of objects that clients deal with and making the
subsystem easier to use.

◆ It promotes weak coupling between the subsystem and its clients.
 If the subsystem is modified, the Facade will probably have to be
modified also, but the clients probably won't.

◆ It doesn't prevent applications from accessing subsystem
components directly if they need to. Sometimes a client will need
a service that the Facade doesn't provide, but this isn't a problem
because the subsystem's services are still available.

 P. Molli 97

It's All a Matter of Intent

We've now seen three patterns that seem very similar. The major
difference between them is in how they're intended to be used:

pattern purpose

Adapter Convert one interface to another.

Decorator Don't alter an interface, but add responsibility.

Facade Make an interface simpler to use.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Why design patterns in SA?
	The seven layers of architecture*
	How patterns arise
	Structure of a pattern
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Key patterns
	Singleton (Idiom)
	Singleton Structure
	NEW !!!
	Applying the Command Pattern…
	Slide 22
	Slide 23
	Slide 24
	Command Consequences
	Slide 26
	Slide 27
	Applying the Command Pattern
	Slide 29
	Slide 30
	Pattern Factory Method
	Factory Method
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Proxy Pattern
	Slide 57
	Slide 58
	Proxy Example
	Proxy Structure
	Slide 61
	Proxy benefits
	Slide 63
	Adapter Pattern
	Slide 65
	Slide 66
	Slide 67
	Adapter Example
	Adapter Structure
	Slide 70
	Slide 71
	Slide 72
	Visitor Pattern
	Slide 74
	Slide 75
	Visitor example
	Slide 77
	Slide 78
	Visitor Structure
	Visitor applicability
	Visitor Consequences
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97

