COMP 499 Introduction to Data Analytics

Lecture 2 — Data Wrangling

Greg Butler

Data Science Research Centre

and

Centre for Structural and Functional Genomics

and

Computer Science and Software Engineering Concordia University, Montreal, Canada gregb@cs.concordia.ca

Overview of Lecture

- 1. Data Wrangling Overview
 - Discover
 - ▶ Structure
 - ▶ Cleanse
 - ► Enrich
 - Validate
 - Publish
- Context
 - ▶ Measurement Scales
 - Normalization
 - ▶ Accuracy & Precision
 - ► Significant Digits
- 3. Data Cleaning Professor Skiena lecture

Data Wrangling — Discovery

Discover what data is available

Extract step of ETL

Data Wrangling — Structure

Organize data into suitable format

Transform step of ETL

Data Wrangling — Cleanse

Clean the data

Iterative step with basic data analysis

Data Wrangling — Enrich

Discover and include related data

Integrate new data sets and data types add more data fields

Data Wrangling — Validate

Check data is consistent and complete

Consistency

Does your data fit into expected values for it?

Do field values match the data type for the column?

Are values within acceptable ranges?

Are rows unique? Duplicated?

Completeness

Are all expected values included in your data?
Are some fields missing values?
Are there expected values that are not present in the dataset?

Test routines for your data wrangling process

Data Wrangling — Publish

Make available for analysis

Load step of ETL

into data warehouse in traditional business intelligence setting

Context — Measurement Scales

Nominal aka Categorical

Values have *names* as in enum or scalar type equality testing allowed mode is measure of central tendency

Ordinal

Ranked values, such as good, better, best equality and comparison allowed median is measure of central tendency mean and deviation do not make sense

Interval

Difference between values can be determined, eg integers equality, comparison, +, - allowed mean is measure of central tendency; deviation makes sense

Ratio

Value is a ratio of continuous values, eg real number also \times , / allowed geometric mean is measure of central tendency

Context — Normalization

A normal form ...

is a unique representation for an entity

Examples

a string "the Happiest day of My Life" to all lower case and without leading or trailing blanks and only one blank between words "the happiest day of my life"

Normalization creates a normal form allows simple test for equality

More Examples

Names

Dates

Currency

Metric vs Imperial measurements

Context — Accuracy and Precision

http://www.geographer-miller.com/accuracy-vs-precision/

Context — Significant Digits Problem

Showing more digits in a number than are meaningful Especially in decimal component

Examples

0.046 has two significant digits 4009 kg has four significant digits

7.90 has three significant digits

8200 has 2, 3, or 4 significant digits (unclear)

 8.200×10^3 has four significant digits 8.20×10^3 has three significant digits

 8.2×10^3 has two significant digits

Problem

Need to know significant digits for input data Need to keep track of sig. digits in arithmetic Be careful formatting output

Reference

https://www.physics.uoguelph.ca/tutorials/sig_fig/